Class Lectures (for Chapter 4)

Loose idea: Take a very fine partition $0 = a_0 < a_1 < \ldots < a_n$ of [0, 1] use the Riemann sum

$$\sum_{i=1}^n f(a_i)(a_i-a_{i-1})$$

Loose idea: Take a very fine partition $0 = a_0 < a_1 < \ldots < a_n$ of [0, 1] use the Riemann sum

$$\sum_{i=1}^n f(a_i)(a_i-a_{i-1})$$

to estimate $\int f(x) dx$.

f is Riemann integrable (RI) if, as max_{i=1,...n}{|a_i - a_{i-1}|} of the partitions goes to 0, all the Riemann sums should have a single limit.

Loose idea: Take a very fine partition $0 = a_0 < a_1 < \ldots < a_n$ of [0, 1] use the Riemann sum

$$\sum_{i=1}^n f(a_i)(a_i-a_{i-1})$$

- *f* is Riemann integrable (RI) if, as max_{i=1,...n}{|a_i − a_{i−1}|} of the partitions goes to 0, all the Riemann sums should have a single limit.
- If Q are the rationals in [0,1], then I_Q is not Riemann integrable.

Loose idea: Take a very fine partition $0 = a_0 < a_1 < \ldots < a_n$ of [0, 1] use the Riemann sum

$$\sum_{i=1}^n f(a_i)(a_i-a_{i-1})$$

- *f* is Riemann integrable (RI) if, as max_{i=1,...n}{|a_i − a_{i−1}|} of the partitions goes to 0, all the Riemann sums should have a single limit.
- If Q are the rationals in [0,1], then I_Q is not Riemann integrable.
- Calculus course: A continuous function on [0,1] is Riemann integrable.

Loose idea: Take a very fine partition $0 = a_0 < a_1 < \ldots < a_n$ of [0, 1] use the Riemann sum

$$\sum_{i=1}^n f(a_i)(a_i-a_{i-1})$$

- f is Riemann integrable (RI) if, as max_{i=1,...n}{|a_i a_{i-1}|} of the partitions goes to 0, all the Riemann sums should have a single limit.
- If Q are the rationals in [0,1], then I_Q is not Riemann integrable.
- Calculus course: A continuous function on [0,1] is Riemann integrable.
- More advanced theorem due to Lebesgue.

Loose idea: Take a very fine partition $0 = a_0 < a_1 < \ldots < a_n$ of [0, 1] use the Riemann sum

$$\sum_{i=1}^n f(a_i)(a_i-a_{i-1})$$

to estimate $\int f(x) dx$.

- f is Riemann integrable (RI) if, as max_{i=1,...n}{|a_i a_{i-1}|} of the partitions goes to 0, all the Riemann sums should have a single limit.
- If Q are the rationals in [0,1], then I_Q is not Riemann integrable.
- Calculus course: A continuous function on [0, 1] is Riemann integrable.
- More advanced theorem due to Lebesgue.

Theorem

If f is a bounded function, then f is RI if and only if the set $\{x : f \text{ is not continuous at } x\}$ has Lebesgue measure 0.

Instead of breaking up the x-axis, we break up the y-axis.

Instead of breaking up the x-axis, we break up the y-axis.

If f takes values in [0,1], we partition [0,1] in the y-axis into $0=a_0< a_1< a_2< \ldots < a_n=1$

Instead of breaking up the x-axis, we break up the y-axis.

If f takes values in [0, 1], we partition [0, 1] in the y-axis into $0 = a_0 < a_1 < a_2 < \ldots < a_n = 1$ and approximate "the integral" by

$$\sum_{i=0}^{n-1} a_i m(\{x : f(x) \in [a_i, a_{i+1})\})$$

where *m* is Lebesgue measure.

Instead of breaking up the x-axis, we break up the y-axis.

If f takes values in [0, 1], we partition [0, 1] in the y-axis into $0 = a_0 < a_1 < a_2 < \ldots < a_n = 1$ and approximate "the integral" by

$$\sum_{i=0}^{n-1} a_i m(\{x : f(x) \in [a_i, a_{i+1})\})$$

where m is Lebesgue measure. The last interval is taken closed.

Instead of breaking up the x-axis, we break up the y-axis.

If f takes values in [0, 1], we partition [0, 1] in the y-axis into $0 = a_0 < a_1 < a_2 < \ldots < a_n = 1$ and approximate "the integral" by

$$\sum_{i=0}^{n-1} a_i m(\{x : f(x) \in [a_i, a_{i+1})\})$$

where m is Lebesgue measure. The last interval is taken closed.

What happens with I_Q ? Only is the first term and the last term giving

$$0m([0,1]\backslash Q) + a_{n-1}m(Q) = 0.$$

Instead of breaking up the x-axis, we break up the y-axis.

If f takes values in [0, 1], we partition [0, 1] in the y-axis into $0 = a_0 < a_1 < a_2 < \ldots < a_n = 1$ and approximate "the integral" by

$$\sum_{i=0}^{n-1} a_i m(\{x : f(x) \in [a_i, a_{i+1})\})$$

where m is Lebesgue measure. The last interval is taken closed.

What happens with I_Q ? Only is the first term and the last term giving

$$0m([0,1]\backslash Q) + a_{n-1}m(Q) = 0.$$

The structure of the domain is irrelevant which allows us to do this on a general measure space.

Definition

If (X, \mathcal{M}) is a measurable space, a mapping $f : X \to R$ is called **measurable** if for all $B \in \mathcal{B}$ (recall that \mathcal{B} is the collection of Borel sets in R), we have that (see picture)

$$f^{-1}(B) := \{x \in X : f(x) \in B\} \in \mathcal{M}.$$

Definition

If (X, \mathcal{M}) is a measurable space, a mapping $f : X \to R$ is called **measurable** if for all $B \in \mathcal{B}$ (recall that \mathcal{B} is the collection of Borel sets in R), we have that (see picture)

$$f^{-1}(B) := \{x \in X : f(x) \in B\} \in \mathcal{M}.$$

 $f:(X,\mathcal{M})
ightarrow\overline{R}:=R\cup\{-\infty,\infty\}$ is measurability if for all $B\in\mathcal{B}$,

$$\{x \in X : f(x) \in B\} \in \mathcal{M}$$

and

$$\{x \in X : f(x) = \infty\} \in \mathcal{M}, \ \{x \in X : f(x) = -\infty\} \in \mathcal{M}.$$

Proposition If (X, \mathcal{M}) is a measurable space and $f : X \to R$ is a mapping, Then $f : X \to R$ is measurable if for all open intervals I

 $f^{-1}(I) \in \mathcal{M}.$

Proposition If (X, \mathcal{M}) is a measurable space and $f : X \to R$ is a mapping, Then $f : X \to R$ is measurable if for all open intervals I

$$f^{-1}(I) \in \mathcal{M}.$$

Proof:

Proposition If (X, \mathcal{M}) is a measurable space and $f : X \to R$ is a mapping, Then $f : X \to R$ is measurable if for all open intervals I

$$f^{-1}(I) \in \mathcal{M}.$$

Proof:

Let

$$\mathcal{F} := \{E \in \mathcal{B} : f^{-1}(E) \in \mathcal{M}\}$$

Proposition If (X, \mathcal{M}) is a measurable space and $f : X \to R$ is a mapping, Then $f : X \to R$ is measurable if for all open intervals I

$$f^{-1}(I) \in \mathcal{M}.$$

Proof:

Let

$$\mathcal{F} := \{E \in \mathcal{B} : f^{-1}(E) \in \mathcal{M}\}$$

The set of open intervals are contained in \mathcal{F} by assumption.

Proposition If (X, \mathcal{M}) is a measurable space and $f : X \to R$ is a mapping, Then $f : X \to R$ is measurable if for all open intervals I

$$f^{-1}(I) \in \mathcal{M}.$$

Proof:

Let

$$\mathcal{F} := \{E \in \mathcal{B} : f^{-1}(E) \in \mathcal{M}\}$$

The set of open intervals are contained in \mathcal{F} by assumption. If we show that \mathcal{F} is a σ -algebra , then $\mathcal{F} = \mathcal{B}$ and done.

Proposition If (X, \mathcal{M}) is a measurable space and $f : X \to R$ is a mapping, Then $f : X \to R$ is measurable if for all open intervals I

 $f^{-1}(I) \in \mathcal{M}.$

Proof:

Let

$$\mathcal{F} := \{E \in \mathcal{B} : f^{-1}(E) \in \mathcal{M}\}$$

The set of open intervals are contained in \mathcal{F} by assumption. If we show that \mathcal{F} is a σ -algebra , then $\mathcal{F} = \mathcal{B}$ and done. 1. $X, \emptyset \in \mathcal{F}$.

Proposition If (X, \mathcal{M}) is a measurable space and $f : X \to R$ is a mapping, Then $f : X \to R$ is measurable if for all open intervals I

$$f^{-1}(I) \in \mathcal{M}.$$

Proof:

Let

$$\mathcal{F} := \{E \in \mathcal{B} : f^{-1}(E) \in \mathcal{M}\}$$

The set of open intervals are contained in \mathcal{F} by assumption. If we show that \mathcal{F} is a σ -algebra , then $\mathcal{F} = \mathcal{B}$ and done.

1. $X, \emptyset \in \mathcal{F}$.

2.

 $E \in \mathcal{F} \to f^{-1}(E) \in \mathcal{M} \to (f^{-1}(E))^c \in \mathcal{M} \to f^{-1}(E^c) \in \mathcal{M} \to E^c \in \mathcal{F}$ noting that $(f^{-1}(E))^c = f^{-1}(E^c)$ (Check this!).

3.

$$E_1, E_2, \ldots \in \mathcal{F} \to f^{-1}(E_1), f^{-1}(E_2), \ldots \in \mathcal{M} \to \bigcup_i (f^{-1}(E_i)) \in \mathcal{M}$$

$$ightarrow f^{-1}(igcup_i E_i)\in \mathcal{M}
ightarrow igcup_i E_i\in \mathcal{F}$$

noting that $\bigcup_i (f^{-1}(E_i)) = f^{-1}(\bigcup_i E_i)$ (Check this!). QED

3.

$$E_1, E_2, \ldots \in \mathcal{F} \to f^{-1}(E_1), f^{-1}(E_2), \ldots \in \mathcal{M} \to \bigcup_i (f^{-1}(E_i)) \in \mathcal{M}$$

$$ightarrow f^{-1}(\bigcup_i E_i) \in \mathcal{M}
ightarrow \bigcup_i E_i \in \mathcal{F}$$

noting that $\bigcup_i (f^{-1}(E_i)) = f^{-1}(\bigcup_i E_i)$ (Check this!). QED

The exact same proof shows that to show that f is measurable, it is enough to check that for all c

$$f^{-1}(c,\infty) = \{x: f(x) > c\} \in \mathcal{M}.$$

Proposition If $f, g : (X, \mathcal{M}) :\rightarrow R$ are measurable, then f + g is measurable.

Proposition If $f, g : (X, \mathcal{M}) :\rightarrow R$ are measurable, then f + g is measurable.

Proof:

Proposition If $f, g: (X, \mathcal{M}) :\rightarrow R$ are measurable, then f + g is measurable.

Proof:

For all $a \in R$, we have

$$\{x: (f+g)(x) > a\} = \bigcup_{q \in Q} (\{x: f(x) > q\} \cap \{x: g(x) > a - q\}).$$
(1)

Proposition If $f, g: (X, \mathcal{M}) :\rightarrow R$ are measurable, then f + g is measurable.

Proof:

For all $a \in R$, we have

$$\{x: (f+g)(x) > a\} = \bigcup_{q \in Q} \left(\{x: f(x) > q\} \cap \{x: g(x) > a - q\}\right).$$
(1)

 \supseteq is trivial.

Proposition If $f, g: (X, \mathcal{M}) :\rightarrow R$ are measurable, then f + g is measurable.

Proof:

For all $a \in R$, we have

$$\{x: (f+g)(x) > a\} = \bigcup_{q \in Q} \left(\{x: f(x) > q\} \cap \{x: g(x) > a - q\}\right).$$
(1)

 \supseteq is trivial. To see the opposite containment, if $x\in \ {\sf LHS},$ choose $q\in Q$ so that

$$0 < f(x) - q < f(x) + g(x) - a.$$

Proposition If $f, g : (X, \mathcal{M}) :\rightarrow R$ are measurable, then f + g is measurable.

Proof:

For all $a \in R$, we have

$$\{x: (f+g)(x) > a\} = \bigcup_{q \in Q} \left(\{x: f(x) > q\} \cap \{x: g(x) > a - q\}\right).$$
(1)

 \supseteq is trivial. To see the opposite containment, if $x \in LHS$, choose $q \in Q$ so that

$$0 < f(x) - q < f(x) + g(x) - a.$$

Now, f, g being measurable implies each of the terms in the union are in \mathcal{M} and since we have a *countable* union, the RHS and hence the LHS belongs to \mathcal{M} . QED

Measurable functions are closed under multiplication

Proposition If $f, g: (X, \mathcal{M}) :\to R$ are measurable, then fg is measurable.

Measurable functions are closed under multiplication

Proposition If $f, g : (X, \mathcal{M}) :\to R$ are measurable, then fg is measurable. Proof:

Proposition If $f, g : (X, \mathcal{M}) :\to R$ are measurable, then fg is measurable. Proof: One first observes that

$$fg = 1/2[(f+g)^2 - f^2 - g^2].$$

Proposition If $f, g : (X, \mathcal{M}) :\to R$ are measurable, then fg is measurable. Proof: One first observes that

$$fg = 1/2[(f+g)^2 - f^2 - g^2].$$

Using the first part, one just needs to show that if h is measurable, then h^2 is measurable.

Proposition If $f, g : (X, \mathcal{M}) :\to R$ are measurable, then fg is measurable. Proof: One first observes that

$$fg = 1/2[(f + g)^2 - f^2 - g^2].$$

Using the first part, one just needs to show that if h is measurable, then h^2 is measurable.

$$\{x:h^2(x)\geq c\}=X$$
 if $c\leq 0$

Proposition If $f, g : (X, \mathcal{M}) :\to R$ are measurable, then fg is measurable. Proof:

One first observes that

$$fg = 1/2[(f + g)^2 - f^2 - g^2].$$

Using the first part, one just needs to show that if h is measurable, then h^2 is measurable.

$$\{x: h^2(x) \ge c\} = X \text{ if } c \le 0$$

and

$$\{x: h^2(x) \ge c\} = \{x: h(x) \ge c^{1/2}\} \cup \{x: h(x) \le -c^{1/2}\}$$
 if $c > 0$.

QED

Proposition: If f_1, f_2, \ldots is a sequence of measurable functions, then $\sup_j f_j$ is measurable.

Proposition:

If f_1, f_2, \ldots is a sequence of measurable functions, then $\sup_j f_j$ is measurable. Of course

$$(\sup_j f_j)(x) := \sup_j (f_j(x)).$$

Proposition:

If f_1, f_2, \ldots is a sequence of measurable functions, then $\sup_j f_j$ is measurable. Of course

$$(\sup_j f_j)(x) := \sup_j (f_j(x)).$$

The same result holds for $\inf_j f_j$ defined in the obvious way.

Proposition:

If f_1, f_2, \ldots is a sequence of measurable functions, then $\sup_j f_j$ is measurable. Of course

$$(\sup_j f_j)(x) := \sup_j (f_j(x)).$$

The same result holds for $\inf_j f_j$ defined in the obvious way. Proof:

Proposition:

If f_1, f_2, \ldots is a sequence of measurable functions, then $\sup_j f_j$ is measurable. Of course

$$(\sup_j f_j)(x) := \sup_j (f_j(x)).$$

The same result holds for $\inf_j f_j$ defined in the obvious way. Proof:

$$\{x \in X : (\sup_{j} f_{j})(x) > a\} = \bigcup_{j} \{x \in X : f_{j}(x) > a\}.$$

QED

Proposition: If f_1, f_2, \ldots is a sequence of measurable functions, then $\limsup_i f_i$ is measurable.

Proposition: If f_1, f_2, \ldots is a sequence of measurable functions, then $\limsup_i f_i$ is measurable. Of course

$$(\limsup_{j} f_j)(x) := \limsup_{j} (f_j(x)).$$

Proposition: If f_1, f_2, \ldots is a sequence of measurable functions, then $\limsup_i f_i$ is measurable. Of course

$$(\limsup_j f_j)(x) := \limsup_j (f_j(x)).$$

In particular, if (f_k) converges to the function f_∞ pointwise, then f_∞ is measurable.

Proposition: If f_1, f_2, \ldots is a sequence of measurable functions, then $\limsup_i f_i$ is measurable. Of course

$$(\limsup_j f_j)(x) := \limsup_j (f_j(x)).$$

In particular, if (f_k) converges to the function f_∞ pointwise, then f_∞ is measurable.

Proof:

Proposition: If f_1, f_2, \ldots is a sequence of measurable functions, then $\limsup_i f_i$ is measurable. Of course

$$(\limsup_{j} f_j)(x) := \limsup_{j} (f_j(x)).$$

In particular, if (f_k) converges to the function f_∞ pointwise, then f_∞ is measurable.

Proof: One notes first that

$$\limsup_{j} f_j = \inf_k (\sup_{n \ge k} f_n).$$

Proposition: If f_1, f_2, \ldots is a sequence of measurable functions, then $\limsup_i f_i$ is measurable. Of course

$$(\limsup_{j} f_j)(x) := \limsup_{j} (f_j(x)).$$

In particular, if (f_k) converges to the function f_∞ pointwise, then f_∞ is measurable.

Proof: One notes first that

$$\limsup_{j} f_j = \inf_k (\sup_{n \ge k} f_n).$$

Apply the previous proposition twice. $\ensuremath{\mathsf{QED}}$

Definition

Definition

A simple function on (X, \mathcal{M}) is a function of the form

$$f(x) = \sum_{i=1}^n c_i I_{E_i}$$

Definition

A simple function on (X, \mathcal{M}) is a function of the form

$$f(x) = \sum_{i=1}^n c_i I_{E_i}$$

where c_1, \ldots, c_n are real numbers,

Definition

A simple function on (X, \mathcal{M}) is a function of the form

$$f(x) = \sum_{i=1}^n c_i I_{E_i}$$

where c_1, \ldots, c_n are real numbers, E_1, \ldots, E_n are disjoint sets in \mathcal{M}

Definition

A simple function on (X, \mathcal{M}) is a function of the form

$$f(x) = \sum_{i=1}^n c_i I_{E_i}$$

where c_1, \ldots, c_n are real numbers, E_1, \ldots, E_n are disjoint sets in \mathcal{M} and I_{E_i} is the indicator function of E_i which means it is 1 on E_i and 0 otherwise.

Definition

A simple function on (X, \mathcal{M}) is a function of the form

$$f(x) = \sum_{i=1}^n c_i I_{E_i}$$

where c_1, \ldots, c_n are real numbers, E_1, \ldots, E_n are disjoint sets in \mathcal{M} and I_{E_i} is the indicator function of E_i which means it is 1 on E_i and 0 otherwise.

Theorem

(Folland Theorem 2.10) If (X, \mathcal{M}) is a measurable space and $f : X \to [0, \infty]$ is measurable,

Definition

A simple function on (X, \mathcal{M}) is a function of the form

$$f(x) = \sum_{i=1}^n c_i I_{E_i}$$

where c_1, \ldots, c_n are real numbers, E_1, \ldots, E_n are disjoint sets in \mathcal{M} and I_{E_i} is the indicator function of E_i which means it is 1 on E_i and 0 otherwise.

Theorem

(Folland Theorem 2.10) If (X, \mathcal{M}) is a measurable space and $f: X \to [0, \infty]$ is measurable, then there exists a sequence (ϕ_n) of simple functions such that $0 \le \phi_1 \le \phi_2 \le \ldots$ so that ϕ_n approaches f pointwise.

 $L^+((X, \mathcal{M}, m)) := \{f : X \to [0, \infty], f \text{ is measurable}\}$

 $L^+((X, \mathcal{M}, m)) := \{f : X \to [0, \infty], f \text{ is measurable}\}$

Step 1: Definition of the integral for nonnegative simple functions

 $L^+((X, \mathcal{M}, m)) := \{f : X \to [0, \infty], f \text{ is measurable}\}$

Step 1: Definition of the integral for nonnegative simple functions

Definition

If ϕ is a simple function in $L^+((X, \mathcal{M}, m))$,

 $L^+((X, \mathcal{M}, m)) := \{f : X \to [0, \infty], f \text{ is measurable}\}$

Step 1: Definition of the integral for nonnegative simple functions

Definition

If ϕ is a simple function in $L^+((X, \mathcal{M}, m))$,

$$\phi(x) = \sum_{i=1}^n c_i I_{E_i} \ (c_i \ge 0 \,\forall i),$$

then we define the integral of ϕ by

$$\int \phi(x) \, dm(x) :=$$

 $L^+((X, \mathcal{M}, m)) := \{f : X \to [0, \infty], f \text{ is measurable}\}$

Step 1: Definition of the integral for nonnegative simple functions

Definition

If ϕ is a simple function in $L^+((X, \mathcal{M}, m))$,

$$\phi(x) = \sum_{i=1}^n c_i I_{E_i} \quad (c_i \ge 0 \forall i),$$

then we define the integral of ϕ by

$$\int \phi(x) \ dm(x) := \sum_{i=1}^n c_i m(E_i).$$

Definition

If ϕ is a simple function in $L^+((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

Definition

If ϕ is a simple function in $L^+((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

we define
$$\int_A \phi(x) \ dm(x) := \int \phi(x) I_A \ dm(x).$$

Definition

If ϕ is a simple function in $L^+((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

we define
$$\int_A \phi(x) \ dm(x) := \int \phi(x) I_A \ dm(x)$$
.

Proposition (Proposition 2.13 in Folland) Let ϕ and ψ be simple nonnegative functions. Then the following hold.

Definition

If ϕ is a simple function in $L^+((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

we define
$$\int_A \phi(x) \ dm(x) := \int \phi(x) I_A \ dm(x)$$
.

Proposition (Proposition 2.13 in Folland) Let ϕ and ψ be simple nonnegative functions. Then the following hold. a. $\int c\phi(x) dm(x) = c \int \phi(x) dm(x) \quad \forall c \ge 0.$

Definition

If ϕ is a simple function in $L^+((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

we define
$$\int_A \phi(x) dm(x) := \int \phi(x) I_A dm(x)$$
.

Proposition (Proposition 2.13 in Folland) Let ϕ and ψ be simple nonnegative functions. Then the following hold. a. $\int c\phi(x) dm(x) = c \int \phi(x) dm(x) \quad \forall c \ge 0.$ b. $\int (\phi(x) + \psi(x)) dm(x) = \int \phi(x) dm(x) + \int \psi(x) dm(x).$

Definition

If ϕ is a simple function in $L^+((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

we define
$$\int_A \phi(x) \ dm(x) := \int \phi(x) I_A \ dm(x)$$
.

Proposition (Proposition 2.13 in Folland) Let ϕ and ψ be simple nonnegative functions. Then the following hold. a. $\int c\phi(x) dm(x) = c \int \phi(x) dm(x) \quad \forall c \ge 0$. b. $\int (\phi(x) + \psi(x)) dm(x) = \int \phi(x) dm(x) + \int \psi(x) dm(x)$. c. $\phi \le \psi$ implies that $\int \phi(x) dm(x) \le \int \psi(x) dm(x)$.

Definition

If ϕ is a simple function in $L^+((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

we define
$$\int_A \phi(x) \ dm(x) := \int \phi(x) I_A \ dm(x)$$
.

Proposition (Proposition 2.13 in Folland) Let ϕ and ψ be simple nonnegative functions. Then the following hold. a. $\int c\phi(x) dm(x) = c \int \phi(x) dm(x) \quad \forall c \ge 0$. b. $\int (\phi(x) + \psi(x)) dm(x) = \int \phi(x) dm(x) + \int \psi(x) dm(x)$. c. $\phi \le \psi$ implies that $\int \phi(x) dm(x) \le \int \psi(x) dm(x)$. d. The mapping from \mathcal{M} to $[0, \infty]$ given by $A \to \int_A \phi(x) dm(x)$ is a measure on \mathcal{M} . (We call this measure ϕm .).

Definition

If ϕ is a simple function in $L^+((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

we define
$$\int_A \phi(x) \ dm(x) := \int \phi(x) I_A \ dm(x)$$
.

Proposition (Proposition 2.13 in Folland) Let ϕ and ψ be simple nonnegative functions. Then the following hold. a. $\int c\phi(x) dm(x) = c \int \phi(x) dm(x) \quad \forall c \ge 0$. b. $\int (\phi(x) + \psi(x)) dm(x) = \int \phi(x) dm(x) + \int \psi(x) dm(x)$. c. $\phi \le \psi$ implies that $\int \phi(x) dm(x) \le \int \psi(x) dm(x)$. d. The mapping from \mathcal{M} to $[0, \infty]$ given by $A \to \int_A \phi(x) dm(x)$ is a measure on \mathcal{M} . (We call this measure ϕm .).

See the lecture notes for the proof.

Definition

If ϕ is a simple function in $L^+((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

we define
$$\int_A \phi(x) \ dm(x) := \int \phi(x) I_A \ dm(x)$$
.

Proposition (Proposition 2.13 in Folland) Let ϕ and ψ be simple nonnegative functions. Then the following hold. a. $\int c\phi(x) dm(x) = c \int \phi(x) dm(x) \quad \forall c \ge 0.$ b. $\int (\phi(x) + \psi(x)) dm(x) = \int \phi(x) dm(x) + \int \psi(x) dm(x).$ c. $\phi \le \psi$ implies that $\int \phi(x) dm(x) \le \int \psi(x) dm(x).$ d. The mapping from \mathcal{M} to $[0, \infty]$ given by $A \to \int_A \phi(x) dm(x)$ is a measure on \mathcal{M} . (We call this measure ϕm .).

See the lecture notes for the proof. Part d takes one measure m and gives us a new measure ϕm . Note that m(A) = 0 implies that $\phi m(A) = 0$. IMPORTANT!

Step 2. Definition of the integral for nonnegative measurable functions

Step 2. Definition of the integral for nonnegative measurable functions

Definition

If $f \in L^+((X, \mathcal{M}, m))$, we define

$$\int f(x)dm(x) :=$$

Step 2. Definition of the integral for nonnegative measurable functions

Definition

If $f \in L^+((X, \mathcal{M}, m))$, we define

$$\int f(x)dm(x) := \sup\{\int \phi \, dm : 0 \le \phi \le f, \, \phi \text{ simple } \}$$

Step 2. Definition of the integral for nonnegative measurable functions

Definition

If $f \in L^+((X, \mathcal{M}, m))$, we define

$$\int f(x)dm(x) := \sup\{\int \phi \, dm : 0 \le \phi \le f, \, \phi \text{ simple } \}$$

This integral is certainly allowed to be ∞ . Properties:

Step 2. Definition of the integral for nonnegative measurable functions

Definition

If $f \in L^+((X, \mathcal{M}, m))$, we define

$$\int f(x)dm(x) := \sup\{\int \phi \, dm : 0 \le \phi \le f, \, \phi \text{ simple } \}$$

This integral is certainly allowed to be ∞ . Properties:

• $f \leq g \rightarrow \int f dm \leq \int g dm$ (immediate)

Step 2. Definition of the integral for nonnegative measurable functions

Definition

If $f \in L^+((X, \mathcal{M}, m))$, we define

$$\int f(x)dm(x) := \sup\{\int \phi \, dm : 0 \le \phi \le f, \, \phi \text{ simple } \}$$

This integral is certainly allowed to be ∞ . Properties:

- $f \leq g \rightarrow \int f dm \leq \int g dm$ (immediate)
- For $c \ge 0$, $\int cfdm = c \int fdm$ (fairly easy)

Step 2. Definition of the integral for nonnegative measurable functions

Definition

If $f \in L^+((X, \mathcal{M}, m))$, we define

$$\int f(x)dm(x) := \sup\{\int \phi \, dm : 0 \le \phi \le f, \, \phi \text{ simple } \}$$

This integral is certainly allowed to be ∞ . Properties:

- $f \leq g \rightarrow \int f dm \leq \int g dm$ (immediate)
- For $c \geq 0$, $\int cfdm = c \int fdm$ (fairly easy)
- $\int (f+g)dm = \int fdm + \int gdm$ (requires some work and we will return to)

Theorem

(Monotone Convergence Theorem) Let (f_n) be in $L^+((X, \mathcal{M}, m))$ satisfying

 $0 \le f_1 \le f_2 \le f_3 \dots$ (meaning that these inequalities hold for every x)

Theorem

(Monotone Convergence Theorem) Let (f_n) be in $L^+((X, \mathcal{M}, m))$ satisfying

 $0 \le f_1 \le f_2 \le f_3 \dots$ (meaning that these inequalities hold for every x)

and define f by $f(x) := \lim_{n \to \infty} f_n(x) = \sup_n f_n(x).$

Theorem

(Monotone Convergence Theorem) Let (f_n) be in $L^+((X, \mathcal{M}, m))$ satisfying

 $0 \le f_1 \le f_2 \le f_3 \dots$ (meaning that these inequalities hold for every x)

and define f by $f(x) := \lim_{n \to \infty} f_n(x) = \sup_n f_n(x).$

Then

$$\int f dm = \lim_{n\to\infty} \int f_n dm.$$

Theorem

(Monotone Convergence Theorem) Let (f_n) be in $L^+((X, \mathcal{M}, m))$ satisfying

 $0 \le f_1 \le f_2 \le f_3 \dots$ (meaning that these inequalities hold for every x)

and define
$$f$$
 by $f(x) := \lim_{n \to \infty} f_n(x) = \sup_n f_n(x).$

Then

$$\int f dm = \lim_{n\to\infty} \int f_n dm.$$

Proof:

Theorem

(Monotone Convergence Theorem) Let (f_n) be in $L^+((X, \mathcal{M}, m))$ satisfying

 $0 \le f_1 \le f_2 \le f_3 \dots$ (meaning that these inequalities hold for every x)

and define f by $f(x) := \lim_{n \to \infty} f_n(x) = \sup_n f_n(x).$

Then

$$\int f dm = \lim_{n\to\infty} \int f_n dm.$$

Proof:

 $\int f_n dm$ is increasing and hence has a limit.

Theorem

(Monotone Convergence Theorem) Let (f_n) be in $L^+((X, \mathcal{M}, m))$ satisfying

 $0 \le f_1 \le f_2 \le f_3 \dots$ (meaning that these inequalities hold for every x)

and define f by $f(x) := \lim_{n \to \infty} f_n(x) = \sup_n f_n(x).$

Then

$$\int f dm = \lim_{n\to\infty} \int f_n dm.$$

Proof:

 $\int f_n dm$ is increasing and hence has a limit. $\int f dm \ge \int f_n dm$ for every n

Theorem

(Monotone Convergence Theorem) Let (f_n) be in $L^+((X, \mathcal{M}, m))$ satisfying

 $0 \le f_1 \le f_2 \le f_3 \dots$ (meaning that these inequalities hold for every x)

and define f by

$$f(x) := \lim_{n \to \infty} f_n(x) = \sup_n f_n(x).$$

Then

$$\int f dm = \lim_{n\to\infty} \int f_n dm.$$

Proof:

 $\int f_n dm$ is increasing and hence has a limit. $\int f dm \ge \int f_n dm$ for every n and so

$$\int f dm \geq \lim_{n \to \infty} \int f_n dm.$$
 September 9, 2020 17/38

$$\int \phi \, dm \leq \lim_{n \to \infty} \int f_n dm. \tag{2}$$

$$\int \phi \, dm \leq \lim_{n \to \infty} \int f_n dm. \tag{2}$$

Let $\alpha < 1$

$$\int \phi \, dm \le \lim_{n \to \infty} \int f_n dm. \tag{2}$$

Let $\alpha < 1$ and let $E_n := \{x : f_n(x) \ge \alpha \phi(x)\}.$

$$\int \phi \, dm \le \lim_{n \to \infty} \int f_n dm. \tag{2}$$

Let $\alpha < 1$ and let $E_n := \{x : f_n(x) \ge \alpha \phi(x)\}$. Note that $E_1 \subseteq E_2 \subseteq E_3 \dots$

$$\int \phi \, dm \leq \lim_{n \to \infty} \int f_n dm. \tag{2}$$

Let $\alpha < 1$ and let $E_n := \{x : f_n(x) \ge \alpha \phi(x)\}$. Note that $E_1 \subseteq E_2 \subseteq E_3 \dots$ and $X = \bigcup_n E_n$.

$$\int \phi \, dm \leq \lim_{n \to \infty} \int f_n dm. \tag{2}$$

Let $\alpha < 1$ and let $E_n := \{x : f_n(x) \ge \alpha \phi(x)\}$. Note that $E_1 \subseteq E_2 \subseteq E_3 \dots$ and $X = \bigcup_n E_n$. We now have for every n

$$\int f_n dm \geq \int f_n I_{E_n} dm \geq \int \alpha \phi I_{E_n} dm = \alpha \int_{E_n} \phi dm.$$

$$\int \phi \, dm \leq \lim_{n \to \infty} \int f_n dm. \tag{2}$$

Let $\alpha < 1$ and let $E_n := \{x : f_n(x) \ge \alpha \phi(x)\}$. Note that $E_1 \subseteq E_2 \subseteq E_3 \dots$ and $X = \bigcup_n E_n$. We now have for every n

$$\int f_n dm \geq \int f_n I_{E_n} dm \geq \int \alpha \phi I_{E_n} dm = \alpha \int_{E_n} \phi dm.$$

Let $n \to \infty$ (using earlier proposition),

$$\int \phi \, dm \leq \lim_{n \to \infty} \int f_n dm. \tag{2}$$

Let $\alpha < 1$ and let $E_n := \{x : f_n(x) \ge \alpha \phi(x)\}$. Note that $E_1 \subseteq E_2 \subseteq E_3 \dots$ and $X = \bigcup_n E_n$. We now have for every n

$$\int f_n dm \geq \int f_n I_{E_n} dm \geq \int \alpha \phi I_{E_n} dm = \alpha \int_{E_n} \phi dm.$$

Let $n \to \infty$ (using earlier proposition), we obtain

$$\lim_{n\to\infty}\int f_ndm\geq \alpha\int\phi\,dm.$$

$$\int \phi \, dm \leq \lim_{n \to \infty} \int f_n dm. \tag{2}$$

Let $\alpha < 1$ and let $E_n := \{x : f_n(x) \ge \alpha \phi(x)\}$. Note that $E_1 \subseteq E_2 \subseteq E_3 \dots$ and $X = \bigcup_n E_n$. We now have for every n

$$\int f_n dm \geq \int f_n I_{E_n} dm \geq \int \alpha \phi I_{E_n} dm = \alpha \int_{E_n} \phi dm.$$

Let $n \to \infty$ (using earlier proposition), we obtain

$$\lim_{n\to\infty}\int f_ndm\geq \alpha\int\phi\,dm.$$

Since this inequality holds for every $\alpha < 1$, we obtain (2). QED

Corollary

(Linearity) If f_1 and f_2 and in $L^+((X, \mathcal{M}, m))$, then

$$\int (f+g)dm = \int fdm + \int gdm.$$

Corollary

(Linearity) If f_1 and f_2 and in $L^+((X, \mathcal{M}, m))$, then

$$\int (f+g)dm = \int fdm + \int gdm.$$

Proof:

.

Corollary

(Linearity) If f_1 and f_2 and in $L^+((X, \mathcal{M}, m))$, then

$$\int (f+g)dm = \int fdm + \int gdm.$$

Proof:

. Choose ϕ_n and ψ_n to be simple functions increasing upward to f_1 and f_2 respectively.

Corollary

(Linearity) If f_1 and f_2 and in $L^+((X, \mathcal{M}, m))$, then

$$\int (f+g)dm = \int fdm + \int gdm.$$

Proof:

. Choose ϕ_n and ψ_n to be simple functions increasing upward to f_1 and f_2 respectively. Then $\phi_n + \psi_n$ is a sequence of simple functions increasing upward to $f_1 + f_2$.

Corollary

(Linearity) If f_1 and f_2 and in $L^+((X, \mathcal{M}, m))$, then

$$\int (f+g)dm = \int fdm + \int gdm.$$

Proof:

. Choose ϕ_n and ψ_n to be simple functions increasing upward to f_1 and f_2 respectively. Then $\phi_n + \psi_n$ is a sequence of simple functions increasing upward to $f_1 + f_2$.

$$\int f_1 + f_2 \, dm = \lim_{n \to \infty} \int \phi_n + \psi_n \, dm = \lim_{n \to \infty} \int \phi_n + \int \psi_n dm = \int f_1 + \int f_2$$

where the MCT was used in the outer most equalities. QED

Corollary

If $f_1, f_2 \dots$ in $L^+((X, \mathcal{M}, m))$, then

$$\int (\sum_{i=1}^{\infty} f_i) dm = \sum_{i=1}^{\infty} (\int f_i dm)$$

Corollary

If $f_1, f_2 \dots$ in $L^+((X, \mathcal{M}, m))$, then

$$\int (\sum_{i=1}^{\infty} f_i) dm = \sum_{i=1}^{\infty} (\int f_i dm)$$

Proof:

By the previous corollary, we have that for every N,

$$\int (\sum_{i=1}^N f_i) dm = \sum_{i=1}^N (\int f_i dm).$$

Corollary

If $f_1, f_2 \dots$ in $L^+((X, \mathcal{M}, m))$, then

$$\int (\sum_{i=1}^{\infty} f_i) dm = \sum_{i=1}^{\infty} (\int f_i dm)$$

Proof:

By the previous corollary, we have that for every N,

$$\int (\sum_{i=1}^N f_i) dm = \sum_{i=1}^N (\int f_i dm).$$

Let $N \to \infty$ using MCT on LHS. QED

An elementary (believable) fact

Proof (of only if):

Proof (of only if): By contradiction, we assume that m(x : f(x) > 0) > 0.

Proof (of only if):

By contradiction, we assume that m(x : f(x) > 0) > 0. Letting $E_n := \{x : f(x) > 1/n\}$, we have $E_1 \subseteq E_2 \subseteq E_3 \dots$

Proof (of only if):

By contradiction, we assume that m(x : f(x) > 0) > 0. Letting $E_n := \{x : f(x) > 1/n\}$, we have $E_1 \subseteq E_2 \subseteq E_3 \dots$ and $\bigcup_n E_n = \{x : f(x) > 0\}$. By continuity from below yields that there exists N with $m(E_N) > 0$.

Proof (of only if):

By contradiction, we assume that m(x : f(x) > 0) > 0. Letting $E_n := \{x : f(x) > 1/n\}$, we have $E_1 \subseteq E_2 \subseteq E_3 \dots$ and $\bigcup_n E_n = \{x : f(x) > 0\}$. By continuity from below yields that there exists N with $m(E_N) > 0$.

Now consider the nonnegative simple function

$$\phi := \frac{1}{N} I_{E_N}.$$

Proof (of only if):

By contradiction, we assume that m(x : f(x) > 0) > 0. Letting $E_n := \{x : f(x) > 1/n\}$, we have $E_1 \subseteq E_2 \subseteq E_3 \dots$ and $\bigcup_n E_n = \{x : f(x) > 0\}$. By continuity from below yields that there exists N with $m(E_N) > 0$.

Now consider the nonnegative simple function

$$\phi := \frac{1}{N} I_{E_N}.$$

We have $\phi \leq f$

Proof (of only if):

By contradiction, we assume that m(x : f(x) > 0) > 0. Letting $E_n := \{x : f(x) > 1/n\}$, we have $E_1 \subseteq E_2 \subseteq E_3 \dots$ and $\bigcup_n E_n = \{x : f(x) > 0\}$. By continuity from below yields that there exists N with $m(E_N) > 0$.

Now consider the nonnegative simple function

$$\phi := \frac{1}{N} I_{E_N}.$$

We have $\phi \leq f$ and so

$$\int f \, dm \geq \int \phi dm = \frac{1}{N}m(E_N) > 0.$$

Theorem

(Fatou's Lemma)

Theorem

Theorem

$$\int \liminf_{n\to\infty} f_n \, dm \leq \liminf_{n\to\infty} \int f_n \, dm.$$

Theorem

(Fatou's Lemma) If $f_1, f_2 \dots$ in $L^+((X, \mathcal{M}, m))$, then

$$\int \liminf_{n\to\infty} f_n \, dm \leq \liminf_{n\to\infty} \int f_n \, dm.$$

• Very important in analysis.

Theorem

$$\int \liminf_{n\to\infty} f_n \, dm \leq \liminf_{n\to\infty} \int f_n \, dm.$$

- Very important in analysis.
- Very important in probability.

Theorem

$$\int \liminf_{n\to\infty} f_n \, dm \leq \liminf_{n\to\infty} \int f_n \, dm.$$

- Very important in analysis.
- Very important in probability.
- Even if all limits exist, one might have strict inequality.

Theorem

$$\int \liminf_{n\to\infty} f_n \, dm \leq \liminf_{n\to\infty} \int f_n \, dm.$$

- Very important in analysis.
- Very important in probability.
- Even if all limits exist, one might have strict inequality. Recall our example of functions which converge to 0 for all x but the integrals are all 1.

Proof:

Proof: Fix an integer k.

Proof:

Fix an integer k. Now for all $j \ge k$, we have

$$\inf_{n\geq k} f_n \leq f_j$$

Proof:

Fix an integer k. Now for all $j \ge k$, we have

$$\inf_{n\geq k}f_n\leq f_j$$

and hence

$$\int \inf_{n\geq k} f_n \leq \int f_j.$$

Proof:

Fix an integer k. Now for all $j \ge k$, we have

$$\inf_{n\geq k}f_n\leq f_j$$

and hence

$$\int \inf_{n\geq k} f_n \leq \int f_j.$$

Since this is true for all $j \ge k$, we have

$$\int \inf_{n \ge k} f_n dm \le \liminf_{n \to \infty} \int f_n dm.$$
(3)

Proof:

Fix an integer k. Now for all $j \ge k$, we have

$$\inf_{n\geq k}f_n\leq f_j$$

and hence

$$\int \inf_{n\geq k} f_n \leq \int f_j.$$

Since this is true for all $j \ge k$, we have

$$\int \inf_{n \ge k} f_n dm \le \liminf_{n \to \infty} \int f_n dm.$$
(3)

We have what we want on the RHS and now we take $k \to \infty$.

Proof:

Fix an integer k. Now for all $j \ge k$, we have

$$\inf_{n\geq k} f_n \leq f_j$$

and hence

$$\int \inf_{n\geq k} f_n \leq \int f_j.$$

Since this is true for all $j \ge k$, we have

$$\int \inf_{n \ge k} f_n dm \le \liminf_{n \to \infty} \int f_n dm.$$
(3)

We have what we want on the RHS and now we take $k \to \infty$. Note that $\inf_{n \ge k} f_n$ is an increasing sequence in k

Proof:

Fix an integer k. Now for all $j \ge k$, we have

$$\inf_{n\geq k}f_n\leq f_j$$

and hence

$$\int \inf_{n\geq k} f_n \leq \int f_j.$$

Since this is true for all $j \ge k$, we have

$$\int \inf_{n \ge k} f_n dm \le \liminf_{n \to \infty} \int f_n dm.$$
(3)

We have what we want on the RHS and now we take $k \to \infty$. Note that $\inf_{n \ge k} f_n$ is an increasing sequence in k and converges to $\liminf f_n$.

Proof:

Fix an integer k. Now for all $j \ge k$, we have

$$\inf_{n\geq k}f_n\leq f_j$$

and hence

$$\int \inf_{n\geq k} f_n \leq \int f_j.$$

Since this is true for all $j \ge k$, we have

$$\int \inf_{n \ge k} f_n dm \le \liminf_{n \to \infty} \int f_n dm.$$
(3)

We have what we want on the RHS and now we take $k \to \infty$. Note that $\inf_{n \ge k} f_n$ is an increasing sequence in k and converges to $\liminf f_n$. Hence by the MCT, the LHS converges, as $k \to \infty$, to $\int \liminf_{n \to \infty} f_n dm$. QED

Let

$$f^+(x) = \max\{f(x), 0\}, \ f^-(x) = \max\{-f(x), 0\}$$

Let

$$f^+(x) = \max\{f(x), 0\}, f^-(x) = \max\{-f(x), 0\}$$

and note that both f^+, f^- are nonnegative, $f = f^+ - f^-$ and $|f| = f^+ + f^-$.

Let

$$f^+(x) = \max\{f(x), 0\}, f^-(x) = \max\{-f(x), 0\}$$

and note that both f^+, f^- are nonnegative, $f = f^+ - f^-$ and $|f| = f^+ + f^-$.

Definition

(Definition of the integral for general measurable functions)

Let

$$f^+(x) = \max\{f(x), 0\}, f^-(x) = \max\{-f(x), 0\}$$

and note that both f^+, f^- are nonnegative, $f = f^+ - f^-$ and $|f| = f^+ + f^-$.

Definition

(Definition of the integral for general measurable functions) If $f: (X, \mathcal{M}, m) \to \overline{R}$, define

$$\int f(x)dm(x) := \int f^+(x)dm(x) - \int f^-(x)dm(x)$$

Let

$$f^+(x) = \max\{f(x), 0\}, f^-(x) = \max\{-f(x), 0\}$$

and note that both f^+, f^- are nonnegative, $f = f^+ - f^-$ and $|f| = f^+ + f^-$.

Definition

(Definition of the integral for general measurable functions) If $f: (X, \mathcal{M}, m) \to \overline{R}$, define

$$\int f(x)dm(x) := \int f^+(x)dm(x) - \int f^-(x)dm(x)$$

provided that at least one of the two terms on the RHS is finite.

Let

$$f^+(x) = \max\{f(x), 0\}, f^-(x) = \max\{-f(x), 0\}$$

and note that both f^+, f^- are nonnegative, $f = f^+ - f^-$ and $|f| = f^+ + f^-$.

Definition

(Definition of the integral for general measurable functions) If $f: (X, \mathcal{M}, m) \to \overline{R}$, define

$$\int f(x)dm(x) := \int f^+(x)dm(x) - \int f^-(x)dm(x)$$

provided that at least one of the two terms on the RHS is finite. (Otherwise, the integral is not defined).

September 9, 2020 25 / 38

Definition

If $\int fdm$ is defined and *finite*, we say that f is **Lebesgue integrable**. (This is the same as having $\int |f| dm$ being finite.)

Definition

If $\int fdm$ is defined and *finite*, we say that f is **Lebesgue integrable**. (This is the same as having $\int |f| dm$ being finite.)

Notation:

Definition

If $\int fdm$ is defined and *finite*, we say that f is **Lebesgue integrable**. (This is the same as having $\int |f| dm$ being finite.)

Notation: We let

$$L^1((X, \mathcal{M}, m)) := \{f : (X, \mathcal{M}, m) \to \overline{R} : \int |f| dm < \infty\}$$

Definition

If $\int fdm$ is defined and *finite*, we say that f is **Lebesgue integrable**. (This is the same as having $\int |f| dm$ being finite.)

Notation: We let

$$L^1((X, \mathcal{M}, m)) := \{f : (X, \mathcal{M}, m) \to \overline{R} : \int |f| dm < \infty\}$$

and more generally, for $p \ge 1$, we let

$$L^p((X, \mathcal{M}, m)) := \{f : (X, \mathcal{M}, m) \to \overline{R} : \int |f|^p dm < \infty\}.$$

Definition

If $\int fdm$ is defined and *finite*, we say that f is **Lebesgue integrable**. (This is the same as having $\int |f| dm$ being finite.)

Notation: We let

$$L^1((X, \mathcal{M}, m)) := \{f : (X, \mathcal{M}, m) \to \overline{R} : \int |f| dm < \infty\}$$

and more generally, for $p \ge 1$, we let

$$L^p((X, \mathcal{M}, m)) := \{f : (X, \mathcal{M}, m) \to \overline{R} : \int |f|^p dm < \infty\}.$$

 $(L^p \text{ are Banach spaces and } L^2 \text{ is a Hilbert space.})$

Example: Is $f(x) = (\sin x)/x$ integrable on $(0, \infty)$ with Lebesgue measure?

Example: Is $f(x) = (\sin x)/x$ integrable on $(0, \infty)$ with Lebesgue measure?

$$\lim_{N\to\infty}\int_0^N \frac{\sin x}{x} dx \text{ exists and is finite (and even is } \pi/2).$$

Example: Is $f(x) = (\sin x)/x$ integrable on $(0, \infty)$ with Lebesgue measure?

$$\lim_{N\to\infty}\int_0^N \frac{\sin x}{x} dx \text{ exists and is finite (and even is } \pi/2).$$

Does that answer our question?

Example: Is $f(x) = (\sin x)/x$ integrable on $(0, \infty)$ with Lebesgue measure?

$$\lim_{N\to\infty}\int_0^N \frac{\sin x}{x} dx \text{ exists and is finite (and even is } \pi/2).$$

Does that answer our question?

No. $(\sin x)/x$ is not integrable on $(0,\infty)$ since one can check that

$$\int_0^\infty |\frac{\sin x}{x}| dx = \infty.$$

Example: Is $f(x) = (\sin x)/x$ integrable on $(0, \infty)$ with Lebesgue measure?

$$\lim_{N\to\infty}\int_0^N \frac{\sin x}{x} dx \text{ exists and is finite (and even is } \pi/2).$$

Does that answer our question? No. $(\sin x)/x$ is not integrable on $(0, \infty)$ since one can check that

.

$$\int_0^\infty |\frac{\sin x}{x}| dx = \infty.$$

Similar to the cancellation in a conditionally but not absolutely convergent sequence such as

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

Example: Is $f(x) = (\sin x)/x$ integrable on $(0, \infty)$ with Lebesgue measure?

$$\lim_{N\to\infty}\int_0^N \frac{\sin x}{x} dx \text{ exists and is finite (and even is } \pi/2).$$

Does that answer our question? No. $(\sin x)/x$ is not integrable on $(0, \infty)$ since one can check that

.

$$\int_0^\infty |\frac{\sin x}{x}| dx = \infty.$$

Similar to the cancellation in a conditionally but not absolutely convergent sequence such as

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

This requires an order of the domain.

Theorem

(Lebesgue Dominated Convergence Theorem)

Theorem

(Lebesgue Dominated Convergence Theorem) Let (f_n) be a sequence of functions in $L^1((X, \mathcal{M}, m))$ which converges pointwise to a function f.

Theorem

(Lebesgue Dominated Convergence Theorem) Let (f_n) be a sequence of functions in $L^1((X, \mathcal{M}, m))$ which converges pointwise to a function f. Assume that there exists $g \in L^1((X, \mathcal{M}, m))$ such that for all n

$$|f_n| \leq g.$$

Theorem

(Lebesgue Dominated Convergence Theorem) Let (f_n) be a sequence of functions in $L^1((X, \mathcal{M}, m))$ which converges pointwise to a function f. Assume that there exists $g \in L^1((X, \mathcal{M}, m))$ such that for all n

$$|f_n| \leq g.$$

Then $f \in L^1((X, \mathcal{M}, m))$

Theorem

(Lebesgue Dominated Convergence Theorem) Let (f_n) be a sequence of functions in $L^1((X, \mathcal{M}, m))$ which converges pointwise to a function f. Assume that there exists $g \in L^1((X, \mathcal{M}, m))$ such that for all n

$$|f_n|\leq g.$$

Then $f \in L^1((X, \mathcal{M}, m))$ and

$$\int f dm = \lim_{n \to \infty} \int f_n dm.$$

Proof:

Proof:

Since $|f_n| \leq g$ for all n and $f_n \rightarrow f$, we also have $|f| \leq g$

Proof:

Since $|f_n| \leq g$ for all n and $f_n \rightarrow f$, we also have $|f| \leq g$ and hence $f \in L^1((X, \mathcal{M}, m))$.

Proof:

Since $|f_n| \leq g$ for all n and $f_n \rightarrow f$, we also have $|f| \leq g$ and hence $f \in L^1((X, \mathcal{M}, m))$. Observe that for all n

 $g + f_n \ge 0$ and $g - f_n \ge 0$ and hence

Proof:

Since $|f_n| \leq g$ for all n and $f_n \to f$, we also have $|f| \leq g$ and hence $f \in L^1((X, \mathcal{M}, m))$. Observe that for all n

$$g + f_n \ge 0$$
 and $g - f_n \ge 0$ and hence

 $g + f \ge 0$ and $g - f \ge 0$.

Proof:

Since $|f_n| \leq g$ for all n and $f_n \rightarrow f$, we also have $|f| \leq g$ and hence $f \in L^1((X, \mathcal{M}, m))$. Observe that for all n

 $g + f_n \ge 0$ and $g - f_n \ge 0$ and hence

 $g + f \ge 0$ and $g - f \ge 0$.

Applying Fatou's Lemma to $(g + f_n)$ (and using linearity twice),

Proof:

Since $|f_n| \leq g$ for all n and $f_n \to f$, we also have $|f| \leq g$ and hence $f \in L^1((X, \mathcal{M}, m))$. Observe that for all n

$$g+f_n\geq 0$$
 and $g-f_n\geq 0$ and hence

 $g+f \ge 0$ and $g-f \ge 0$.

Applying Fatou's Lemma to $(g + f_n)$ (and using linearity twice), we get

$$\int g \, dm + \int f dm = \int g + f \, dm \leq \liminf_{n \to \infty} \int g + f_n dm = \int g \, dm + \liminf_{n \to \infty} \int f_n dm$$

Proof:

Since $|f_n| \leq g$ for all n and $f_n \rightarrow f$, we also have $|f| \leq g$ and hence $f \in L^1((X, \mathcal{M}, m))$. Observe that for all n

$$g+f_n\geq 0$$
 and $g-f_n\geq 0$ and hence

 $g+f \ge 0$ and $g-f \ge 0$.

Applying Fatou's Lemma to $(g + f_n)$ (and using linearity twice), we get

$$\int g \, dm + \int f dm = \int g + f \, dm \leq \liminf_{n \to \infty} \int g + f_n dm = \int g \, dm + \liminf_{n \to \infty} \int f_n dm$$

Subtracting $\int g dm$ from both sides gives

$$\int f \, dm \leq \liminf_{n\to\infty} \int f_n dm.$$

Similarly, we have

$$\int g \, dm - \int f dm = \int g - f dm \leq \liminf_{n \to \infty} \int g - f_n \, dm = \int g \, dm - \limsup_{n \to \infty} \int f_n \, dm$$

Similarly, we have

$$\int g \, dm - \int f dm = \int g - f dm \leq \liminf_{n \to \infty} \int g - f_n \, dm = \int g \, dm - \limsup_{n \to \infty} \int f_n \, dm$$

Subtracting $\int g dm$ from both sides gives

$$\int f dm \geq \limsup \int f_n dm.$$

Similarly, we have

$$\int g \, dm - \int f dm = \int g - f dm \leq \liminf_{n \to \infty} \int g - f_n \, dm = \int g \, dm - \limsup_{n \to \infty} \int f_n \, dm$$

Subtracting $\int g dm$ from both sides gives

$$\int f dm \geq \limsup \int f_n dm.$$

So we have

$$\int f dm \leq \liminf \int f_n dm \leq \limsup \int f_n dm \leq \int f dm.$$

Similarly, we have

$$\int g \, dm - \int f dm = \int g - f dm \leq \liminf_{n \to \infty} \int g - f_n \, dm = \int g \, dm - \limsup_{n \to \infty} \int f_n \, dm$$

Subtracting $\int g dm$ from both sides gives

$$\int f dm \geq \limsup \int f_n dm.$$

So we have

$$\int f dm \leq \liminf \int f_n dm \leq \limsup \int f_n dm \leq \int f dm.$$

Hence the limit of $\int f_n dm$ exists and is $\int f dm$ as claimed. QED

Lemma

If the sequence (f_n) and f are measurable functions on (X, \mathcal{M}, m) , then

 ${x: f_n(x) \to f(x)} \in \mathcal{M}.$

Lemma

If the sequence (f_n) and f are measurable functions on (X, \mathcal{M}, m) , then

 ${x: f_n(x) \to f(x)} \in \mathcal{M}.$

Proof:

Lemma

If the sequence (f_n) and f are measurable functions on (X, \mathcal{M}, m) , then

 ${x: f_n(x) \to f(x)} \in \mathcal{M}.$

Proof:

Untangling what the definition of a limit is (and thinking a bit), it is not hard to see that the set above is the same as

$$\bigcap_{m=1}^{\infty}\bigcup_{k=1}^{\infty}\bigcap_{n=k}^{\infty}\{x:|f_n(x)-f(x)|<1/m\}.$$

An example on how one shows a set is measurable

Lemma

If the sequence (f_n) and f are measurable functions on (X, \mathcal{M}, m) , then

 ${x: f_n(x) \to f(x)} \in \mathcal{M}.$

Proof:

Untangling what the definition of a limit is (and thinking a bit), it is not hard to see that the set above is the same as

$$\bigcap_{m=1}^{\infty}\bigcup_{k=1}^{\infty}\bigcap_{n=k}^{\infty}\{x:|f_n(x)-f(x)|<1/m\}.$$

This belongs to ${\cal M}$ since the events on the RHS do and then we are applying countable set operations. QED

Definition

If the sequence (f_n) and f are measurable functions on (X, \mathcal{M}, m) , then we say

Definition

If the sequence (f_n) and f are measurable functions on (X, \mathcal{M}, m) , then we say (i) f_n converges to f a.e. if

Definition

If the sequence (f_n) and f are measurable functions on (X, \mathcal{M}, m) , then we say

(i) f_n converges to f a.e. if

$$m(\{x: f_n(x) \not\to f(x)\}) = 0$$

Definition

If the sequence (f_n) and f are measurable functions on (X, \mathcal{M}, m) , then we say

(i) f_n converges to f a.e. if

$$m(\{x: f_n(x) \not\to f(x)\}) = 0$$

(ii) f_n converges to f in measure if for every $\epsilon > 0$,

Definition

If the sequence (f_n) and f are measurable functions on (X, \mathcal{M}, m) , then we say

(i) f_n converges to f a.e. if

$$m(\{x: f_n(x) \not\to f(x)\}) = 0$$

(ii) f_n converges to f in measure if for every $\epsilon > 0$,

$$\lim_{n\to\infty}m(\{x:|f_n(x)-f(x)|\geq\epsilon\})=0.$$

$$m(\{x: f_n(x) \not\to f(x)\}) = 0,$$

for every ϵ , $\lim_{n \to \infty} m(\{x: |f_n(x) - f(x)| \ge \epsilon\}) = 0.$

$$m(\{x: f_n(x) \not\to f(x)\}) = 0,$$

for every ϵ , $\lim_{n \to \infty} m(\{x: |f_n(x) - f(x)| \ge \epsilon\}) = 0.$

• There is an example where convergence a.e. occurs but not convergence in measure.

$$m(\{x: f_n(x) \not\to f(x)\}) = 0,$$

For every ϵ , $\lim_{n \to \infty} m(\{x: |f_n(x) - f(x)| \ge \epsilon\}) = 0.$

- There is an example where convergence a.e. occurs but not convergence in measure.
- Convergence a.e. implies convergence in measure if the measure space is finite.

$$m(\{x: f_n(x) \not\to f(x)\}) = 0,$$

for every ϵ , $\lim_{n \to \infty} m(\{x: |f_n(x) - f(x)| \ge \epsilon\}) = 0.$

- There is an example where convergence a.e. occurs but not convergence in measure.
- Convergence a.e. implies convergence in measure if the measure space is finite.
- Convergence in measure, does not imply convergence a.e. even if the measure space is finite.

$$m(\{x: f_n(x) \not\to f(x)\}) = 0,$$

for every ϵ , $\lim_{n \to \infty} m(\{x: |f_n(x) - f(x)| \ge \epsilon\}) = 0.$

- There is an example where convergence a.e. occurs but not convergence in measure.
- Convergence a.e. implies convergence in measure if the measure space is finite.
- Convergence in measure, does not imply convergence a.e. even if the measure space is finite.
- Convergence in measure implies that there exists a subsequence for which one has convergence a.e.

Proof:

Proof:

1. On $[0, \infty)$ with Lebesgue measure, let $f_n = I_{[n,n+1]}$. Check f_n goes to 0 for every x but not in measure.

Proof:

1. On $[0, \infty)$ with Lebesgue measure, let $f_n = I_{[n,n+1]}$. Check f_n goes to 0 for every x but not in measure.

2. Fix $\epsilon > 0$.

Proof:

1. On $[0, \infty)$ with Lebesgue measure, let $f_n = I_{[n,n+1]}$. Check f_n goes to 0 for every x but not in measure.

2. Fix $\epsilon > 0$. Let

$$E_N = \{x : |f_n(x) - f(x)| \ge \epsilon \text{ some } n \ge N\}.$$

Proof:

1. On $[0, \infty)$ with Lebesgue measure, let $f_n = I_{[n,n+1]}$. Check f_n goes to 0 for every x but not in measure.

2. Fix $\epsilon > 0$. Let

$$E_N = \{x : |f_n(x) - f(x)| \ge \epsilon \text{ some } n \ge N\}.$$

Observe that $E_1 \supseteq E_2 \supseteq E_3 \dots$

Proof:

1. On $[0, \infty)$ with Lebesgue measure, let $f_n = I_{[n,n+1]}$. Check f_n goes to 0 for every x but not in measure.

2. Fix $\epsilon > 0$. Let

$$E_N = \{x : |f_n(x) - f(x)| \ge \epsilon \text{ some } n \ge N\}.$$

Observe that $E_1 \supseteq E_2 \supseteq E_3 \dots$ and that

$$\bigcap_k E_k \subseteq \{x : f_n(x) \not\to f(x)\}$$

Proof:

1. On $[0,\infty)$ with Lebesgue measure, let $f_n = I_{[n,n+1]}$. Check f_n goes to 0 for every x but not in measure.

2. Fix $\epsilon > 0$. Let

$$E_N = \{x : |f_n(x) - f(x)| \ge \epsilon \text{ some } n \ge N\}.$$

Observe that $E_1 \supseteq E_2 \supseteq E_3 \ldots$ and that

$$\bigcap_k E_k \subseteq \{x : f_n(x) \not\to f(x)\}$$

and hence by assumption $m(\bigcap_k E_k) = 0$.

Proof:

1. On $[0,\infty)$ with Lebesgue measure, let $f_n = I_{[n,n+1]}$. Check f_n goes to 0 for every x but not in measure.

2. Fix $\epsilon > 0$. Let

$$E_N = \{x : |f_n(x) - f(x)| \ge \epsilon \text{ some } n \ge N\}.$$

Observe that $E_1 \supseteq E_2 \supseteq E_3 \dots$ and that

$$\bigcap_k E_k \subseteq \{x : f_n(x) \not\to f(x)\}$$

and hence by assumption $m(\bigcap_k E_k) = 0$. By continuity from above (which requires that the measure space be finite!),

Proof:

1. On $[0,\infty)$ with Lebesgue measure, let $f_n = I_{[n,n+1]}$. Check f_n goes to 0 for every x but not in measure.

2. Fix $\epsilon > 0$. Let

$$E_N = \{x : |f_n(x) - f(x)| \ge \epsilon \text{ some } n \ge N\}.$$

Observe that $E_1 \supseteq E_2 \supseteq E_3 \dots$ and that

$$\bigcap_k E_k \subseteq \{x : f_n(x) \not\to f(x)\}$$

and hence by assumption $m(\bigcap_k E_k) = 0$. By continuity from above (which requires that the measure space be finite!), we get

$$m(\{x: |f_N(x) - f(x)| \ge \epsilon\}) \le m(E_N) \to 0 \text{ as } n \to \infty.$$

Proof:

1. On $[0,\infty)$ with Lebesgue measure, let $f_n = I_{[n,n+1]}$. Check f_n goes to 0 for every x but not in measure.

2. Fix $\epsilon > 0$. Let

$$E_N = \{x : |f_n(x) - f(x)| \ge \epsilon \text{ some } n \ge N\}.$$

Observe that $E_1 \supseteq E_2 \supseteq E_3 \dots$ and that

$$\bigcap_k E_k \subseteq \{x : f_n(x) \not\to f(x)\}$$

and hence by assumption $m(\bigcap_k E_k) = 0$. By continuity from above (which requires that the measure space be finite!), we get

$$m(\{x: |f_N(x) - f(x)| \ge \epsilon\}) \le m(E_N) \to 0$$
 as $n \to \infty$.

3. This is best described by a picture. See the (admittedly terrible) picture.

September 9, 2020 35 / 38

4. Assume (f_n) converges to f in measure.

4. Assume (f_n) converges to f in measure. Then for each integer k, we can choose n_k so that

$$m(\{x: |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\}) \le \frac{1}{2^k}$$

4. Assume (f_n) converges to f in measure. Then for each integer k, we can choose n_k so that

$$m(\{x: |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\}) \le \frac{1}{2^k}$$

and we can assume the n_k 's are increasing in k.

4. Assume (f_n) converges to f in measure. Then for each integer k, we can choose n_k so that

$$m(\{x: |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\}) \le \frac{1}{2^k}$$

and we can assume the n_k 's are increasing in k. Letting

$$B_k := \{x : |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\},$$

4. Assume (f_n) converges to f in measure. Then for each integer k, we can choose n_k so that

$$m(\{x: |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\}) \le \frac{1}{2^k}$$

and we can assume the n_k 's are increasing in k. Letting

$$B_k := \{x : |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\},$$

we have

$$\sum_{k} m(B_k) < \infty$$

4. Assume (f_n) converges to f in measure. Then for each integer k, we can choose n_k so that

$$m(\{x: |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\}) \le \frac{1}{2^k}$$

and we can assume the n_k 's are increasing in k. Letting

$$B_k := \{x : |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\},$$

we have

 $\sum_{k} m(B_k) < \infty$ and hence from the Borel-Cantelli Lemma, we have

$$m(B_k \text{ i.o.}) = 0.$$

4. Assume (f_n) converges to f in measure. Then for each integer k, we can choose n_k so that

$$m(\{x: |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\}) \le \frac{1}{2^k}$$

and we can assume the n_k 's are increasing in k. Letting

$$B_k := \{x : |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\},$$

we have

 $\sum_{k} m(B_k) < \infty$ and hence from the Borel-Cantelli Lemma, we have

$$m(B_k \text{ i.o.}) = 0.$$

Now, if x is not in $(B_k \text{ i.o.})$,

4. Assume (f_n) converges to f in measure. Then for each integer k, we can choose n_k so that

$$m(\{x: |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\}) \le \frac{1}{2^k}$$

and we can assume the n_k 's are increasing in k. Letting

$$B_k := \{x : |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\},$$

we have

 $\sum_{k} m(B_k) < \infty$ and hence from the Borel-Cantelli Lemma, we have

 $m(B_k \text{ i.o.}) = 0.$

Now, if x is not in $(B_k \text{ i.o.})$, meaning $x \in B_k$ for only finitely many k,

4. Assume (f_n) converges to f in measure. Then for each integer k, we can choose n_k so that

$$m(\{x: |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\}) \le \frac{1}{2^k}$$

and we can assume the n_k 's are increasing in k. Letting

$$B_k := \{x : |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\},$$

we have

 $\sum_{k} m(B_k) < \infty$ and hence from the Borel-Cantelli Lemma, we have

$$m(B_k \text{ i.o.}) = 0.$$

Now, if x is not in $(B_k \text{ i.o.})$, meaning $x \in B_k$ for only finitely many k, then $|f_{n_k}(x) - f(x)| \ge \frac{1}{k}$ for only finitely many k

Different notions of convergence

4. Assume (f_n) converges to f in measure. Then for each integer k, we can choose n_k so that

$$m(\{x: |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\}) \le \frac{1}{2^k}$$

and we can assume the n_k 's are increasing in k. Letting

$$B_k := \{x : |f_{n_k}(x) - f(x)| \ge \frac{1}{k}\},$$

we have

 $\sum_{k} m(B_k) < \infty$ and hence from the Borel-Cantelli Lemma, we have

$$m(B_k \text{ i.o.}) = 0.$$

Now, if x is not in $(B_k \text{ i.o.})$, meaning $x \in B_k$ for only finitely many k, then $|f_{n_k}(x) - f(x)| \ge \frac{1}{k}$ for only finitely many k and hence

$$f_{n_k}(x) \to f(x).$$

Theorem

(Markov's Inequality)

Theorem

(Markov's Inequality) Let f be a nonnegative measurable function on (X, \mathcal{M}, m) .

Theorem

(Markov's Inequality) Let f be a nonnegative measurable function on (X, \mathcal{M}, m) . Then for every $\alpha > 0$,

Theorem

(Markov's Inequality) Let f be a nonnegative measurable function on (X, \mathcal{M}, m) . Then for every $\alpha > 0$, one has

$$m(\{x: f(x) \ge \alpha\}) \le \frac{\int f dm}{\alpha}.$$

Theorem

(Markov's Inequality) Let f be a nonnegative measurable function on (X, \mathcal{M}, m) . Then for every $\alpha > 0$, one has

$$m(\{x: f(x) \ge \alpha\}) \le \frac{\int f dm}{\alpha}.$$

Proof:

Theorem

(Markov's Inequality) Let f be a nonnegative measurable function on (X, \mathcal{M}, m) . Then for every $\alpha > 0$, one has

$$m(\{x: f(x) \ge \alpha\}) \le \frac{\int f dm}{\alpha}.$$

Proof: We have

$$\int f dm =$$

Theorem

(Markov's Inequality) Let f be a nonnegative measurable function on (X, \mathcal{M}, m) . Then for every $\alpha > 0$, one has

$$m(\{x: f(x) \ge \alpha\}) \le \frac{\int f dm}{\alpha}.$$

Proof: We have

$$\int f dm = \int f I_{\{x:f(x) \ge \alpha\}} dm + \int f I_{\{x:f(x) < \alpha\}} dm$$

Theorem

(Markov's Inequality) Let f be a nonnegative measurable function on (X, \mathcal{M}, m) . Then for every $\alpha > 0$, one has

$$m(\{x: f(x) \ge \alpha\}) \le \frac{\int f dm}{\alpha}.$$

Proof: We have

$$\int f dm = \int f I_{\{x:f(x) \ge \alpha\}} dm + \int f I_{\{x:f(x) < \alpha\}} dm$$
$$\geq \int \alpha I_{\{x:f(x) \ge \alpha\}} dm =$$

Theorem

(Markov's Inequality) Let f be a nonnegative measurable function on (X, \mathcal{M}, m) . Then for every $\alpha > 0$, one has

$$m(\{x: f(x) \ge \alpha\}) \le \frac{\int f dm}{\alpha}.$$

Proof: We have

$$\int f dm = \int f I_{\{x:f(x) \ge \alpha\}} dm + \int f I_{\{x:f(x) < \alpha\}} dm$$
$$\geq \int \alpha I_{\{x:f(x) \ge \alpha\}} dm = \alpha m(\{x:f(x) \ge \alpha\}).$$

QED

Theorem

(Chebyshev's Inequality)

Theorem

(Chebyshev's Inequality) Let f be a measurable function on (X, \mathcal{M}, m) with $\int |f| dm < \infty$.

Theorem

(Chebyshev's Inequality) Let f be a measurable function on (X, \mathcal{M}, m) with $\int |f| dm < \infty$. Then for any $\alpha > 0$,

Theorem

(Chebyshev's Inequality) Let f be a measurable function on (X, \mathcal{M}, m) with $\int |f| dm < \infty$. Then for any $\alpha > 0$, one has

$$m(\{x: |f(x) - \int f dm| \ge \alpha\}) \le \frac{\int (f - \int f dm)^2 dm}{\alpha^2}$$

Theorem

(Chebyshev's Inequality) Let f be a measurable function on (X, \mathcal{M}, m) with $\int |f| dm < \infty$. Then for any $\alpha > 0$, one has

$$m(\{x: |f(x) - \int f dm| \ge \alpha\}) \le \frac{\int (f - \int f dm)^2 dm}{\alpha^2}$$

Proof:

Theorem

(Chebyshev's Inequality) Let f be a measurable function on (X, \mathcal{M}, m) with $\int |f| dm < \infty$. Then for any $\alpha > 0$, one has

$$m(\{x: |f(x) - \int f dm| \ge \alpha\}) \le \frac{\int (f - \int f dm)^2 dm}{\alpha^2}$$

Proof:

Apply Markov's inequality to the nonnegative function $(f(x) - \int f dm)^2$. QED