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Riemann Integral

Loose idea: Take a very fine partition 0 = a0 < a1 < . . . < an of [0, 1] use
the Riemann sum

n∑
i=1

f (ai )(ai − ai−1)

to estimate
∫
f (x)dx .

• f is Riemann integrable (RI) if, as maxi=1,...n{|ai − ai−1|} of the
partitions goes to 0, all the Riemann sums should have a single limit.
• If Q are the rationals in [0, 1], then IQ is not Riemann integrable.
• Calculus course: A continuous function on [0, 1] is Riemann integrable.
• More advanced theorem due to Lebesgue.

Theorem

If f is a bounded function, then f is RI if and only if the set
{x : f is not continuous at x} has Lebesgue measure 0.
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Idea of the Lebesgue Integral (partition the y -axis!)
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Idea of the Lebesgue Integral (partition the y -axis!)

Instead of breaking up the x-axis, we break up the y -axis.

If f takes values in [0, 1], we partition [0, 1] in the y -axis into
0 = a0 < a1 < a2 < . . . < an = 1 and approximate “the integral” by

n−1∑
i=0

aim({x : f (x) ∈ [ai , ai+1)})

where m is Lebesgue measure. The last interval is taken closed.

What happens with IQ? Only is the first term and the last term giving

0m([0, 1]\Q) + an−1m(Q) = 0.

The structure of the domain is irrelevant which allows us to do this on a
general measure space.
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Measurable functions

Definition
If (X ,M) is a measurable space, a mapping f : X → R is called
measurable if for all B ∈ B (recall that B is the collection of Borel sets in
R), we have that (see picture)

f −1(B) := {x ∈ X : f (x) ∈ B} ∈ M.

f : (X ,M)→ R := R ∪ {−∞,∞} is measurability if for all B ∈ B,

{x ∈ X : f (x) ∈ B} ∈ M

and
{x ∈ X : f (x) =∞} ∈M, {x ∈ X : f (x) = −∞} ∈M.

September 9, 2020 5 / 38



Measurable functions

Definition
If (X ,M) is a measurable space, a mapping f : X → R is called
measurable if for all B ∈ B (recall that B is the collection of Borel sets in
R), we have that (see picture)

f −1(B) := {x ∈ X : f (x) ∈ B} ∈ M.

f : (X ,M)→ R := R ∪ {−∞,∞} is measurability if for all B ∈ B,

{x ∈ X : f (x) ∈ B} ∈ M

and
{x ∈ X : f (x) =∞} ∈M, {x ∈ X : f (x) = −∞} ∈M.

September 9, 2020 5 / 38



Measurable functions

September 9, 2020 6 / 38



Measurable functions
Proposition If (X ,M) is a measurable space and f : X → R is a mapping,
Then f : X → R is measurable if for all open intervals I

f −1(I ) ∈M.

Proof:
Let

F := {E ∈ B : f −1(E ) ∈M}

The set of open intervals are contained in F by assumption.
If we show that F is a σ-algebra , then F = B and done.

1. X , ∅ ∈ F .
2.

E ∈ F → f −1(E ) ∈M→ (f −1(E ))c ∈M→ f −1(E c) ∈M→ E c ∈ F

noting that (f −1(E ))c = f −1(E c) (Check this!).
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Measurable functions

3.

E1,E2, . . . ∈ F → f −1(E1), f
−1(E2), . . . ∈M →

⋃
i

(f −1(Ei )) ∈M

→ f −1(
⋃
i

Ei ) ∈M→
⋃
i

Ei ∈ F

noting that
⋃

i (f
−1(Ei )) = f −1(

⋃
i Ei ) (Check this!).

QED

The exact same proof shows that to show that f is measurable, it is
enough to check that for all c

f −1(c ,∞) = {x : f (x) > c} ∈ M.
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Measurable functions are closed under addition

Proposition If f , g : (X ,M) :→ R are measurable, then f + g is
measurable.

Proof:
For all a ∈ R , we have

{x : (f + g)(x) > a} =
⋃
q∈Q

({x : f (x) > q} ∩ {x : g(x) > a− q}) . (1)

⊇ is trivial. To see the opposite containment, if x ∈ LHS, choose q ∈ Q
so that

0 < f (x)− q < f (x) + g(x)− a.

Now, f , g being measurable implies each of the terms in the union are in
M and since we have a countable union, the RHS and hence the LHS
belongs toM. QED
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Measurable functions are closed under multiplication

Proposition If f , g : (X ,M) :→ R are measurable, then fg is measurable.

Proof:
One first observes that

fg = 1/2[(f + g)2 − f 2 − g2].

Using the first part, one just needs to show that if h is measurable, then h2

is measurable.
{x : h2(x) ≥ c} = X if c ≤ 0

and

{x : h2(x) ≥ c} = {x : h(x) ≥ c1/2} ∪ {x : h(x) ≤ −c1/2} if c > 0.

QED
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Sups are measurable

Proposition:
If f1, f2, . . . is a sequence of measurable functions, then supj fj is
measurable.

Of course

(sup
j

fj)(x) := sup
j
(fj(x)).

The same result holds for inf j fj defined in the obvious way.

Proof:

{x ∈ X : (sup
j

fj)(x) > a} =
⋃
j

{x ∈ X : fj(x) > a}.

QED
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Proposition: If f1, f2, . . . is a sequence of measurable functions, then
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Of course

(lim sup
j

fj)(x) := lim sup
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(fj(x)).

In particular, if (fk) converges to the function f∞ pointwise, then f∞ is
measurable.

Proof:
One notes first that

lim sup
j

fj = inf
k
(sup
n≥k

fn).

Apply the previous proposition twice.
QED
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Simple functions

Definition

A simple function on (X ,M) is a function of the form

f (x) =
n∑

i=1

ci IEi

where c1, . . . , cn are real numbers, E1, . . . ,En are disjoint sets inM and IEi

is the indicator function of Ei which means it is 1 on Ei and 0 otherwise.

Theorem

(Folland Theorem 2.10) If (X ,M) is a measurable space and
f : X → [0,∞] is measurable, then there exists a sequence (φn) of simple
functions such that 0 ≤ φ1 ≤ φ2 ≤ . . . so that φn approaches f pointwise.
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The Lebesgue Integral

L+((X ,M,m)) := {f : X → [0,∞], f is measurable}

Step 1: Definition of the integral for nonnegative simple functions

Definition
If φ is a simple function in L+((X ,M,m)),

φ(x) =
n∑

i=1

ci IEi
(ci ≥ 0∀i),

then we define the integral of φ by∫
φ(x) dm(x) :=

n∑
i=1

cim(Ei ).

September 9, 2020 14 / 38



The Lebesgue Integral

L+((X ,M,m)) := {f : X → [0,∞], f is measurable}

Step 1: Definition of the integral for nonnegative simple functions

Definition
If φ is a simple function in L+((X ,M,m)),

φ(x) =
n∑

i=1

ci IEi
(ci ≥ 0∀i),

then we define the integral of φ by∫
φ(x) dm(x) :=

n∑
i=1

cim(Ei ).

September 9, 2020 14 / 38



The Lebesgue Integral

L+((X ,M,m)) := {f : X → [0,∞], f is measurable}

Step 1: Definition of the integral for nonnegative simple functions

Definition
If φ is a simple function in L+((X ,M,m)),

φ(x) =
n∑

i=1

ci IEi
(ci ≥ 0∀i),

then we define the integral of φ by∫
φ(x) dm(x) :=

n∑
i=1

cim(Ei ).

September 9, 2020 14 / 38



The Lebesgue Integral

L+((X ,M,m)) := {f : X → [0,∞], f is measurable}

Step 1: Definition of the integral for nonnegative simple functions

Definition
If φ is a simple function in L+((X ,M,m)),

φ(x) =
n∑

i=1

ci IEi
(ci ≥ 0∀i),

then we define the integral of φ by∫
φ(x) dm(x) :=

n∑
i=1

cim(Ei ).

September 9, 2020 14 / 38



The Lebesgue Integral

L+((X ,M,m)) := {f : X → [0,∞], f is measurable}

Step 1: Definition of the integral for nonnegative simple functions

Definition
If φ is a simple function in L+((X ,M,m)),

φ(x) =
n∑

i=1

ci IEi
(ci ≥ 0∀i),

then we define the integral of φ by∫
φ(x) dm(x) :=

n∑
i=1

cim(Ei ).

September 9, 2020 14 / 38



The Lebesgue Integral

L+((X ,M,m)) := {f : X → [0,∞], f is measurable}

Step 1: Definition of the integral for nonnegative simple functions

Definition
If φ is a simple function in L+((X ,M,m)),

φ(x) =
n∑

i=1

ci IEi
(ci ≥ 0∀i),

then we define the integral of φ by∫
φ(x) dm(x) :=

n∑
i=1

cim(Ei ).

September 9, 2020 14 / 38



The Lebesgue Integral
Definition
If φ is a simple function in L+((X ,M,m)) and A ∈M,

we define
∫
A
φ(x) dm(x) :=

∫
φ(x)IA dm(x).

Proposition (Proposition 2.13 in Folland)
Let φ and ψ be simple nonnegative functions. Then the following hold.
a.

∫
cφ(x) dm(x) = c

∫
φ(x) dm(x) ∀c ≥ 0.

b.
∫
(φ(x) + ψ(x)) dm(x) =

∫
φ(x) dm(x) +

∫
ψ(x) dm(x).

c. φ ≤ ψ implies that
∫
φ(x) dm(x) ≤

∫
ψ(x) dm(x).

d. The mapping fromM to [0,∞] given by A→
∫
A φ(x) dm(x) is a

measure onM. (We call this measure φm.).

See the lecture notes for the proof. Part d takes one measure m and gives
us a new measure φm. Note that m(A) = 0 implies that φm(A) = 0.
IMPORTANT!
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The Lebesgue Integral
Step 2. Definition of the integral for nonnegative measurable functions

Definition
If f ∈ L+((X ,M,m)), we define∫

f (x)dm(x) := sup{
∫
φ dm : 0 ≤ φ ≤ f , φ simple }.

This integral is certainly allowed to be ∞.
Properties:
• f ≤ g →

∫
fdm ≤

∫
gdm (immediate)

• For c ≥ 0,
∫
cfdm = c

∫
fdm (fairly easy)

•
∫
(f + g)dm =

∫
fdm +

∫
gdm (requires some work and we will return

to)
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Monotone Convergence Theorem (MCT): Our first limit
theorem

Theorem

(Monotone Convergence Theorem) Let (fn) be in L+((X ,M,m)) satisfying

0 ≤ f1 ≤ f2 ≤ f3 . . . (meaning that these inequalities hold for every x)

and define f by
f (x) := lim

n→∞
fn(x) = sup

n
fn(x).

Then ∫
fdm = lim

n→∞

∫
fndm.

Proof:∫
fndm is increasing and hence has a limit.

∫
fdm ≥

∫
fndm for every n

and so ∫
fdm ≥ lim

n→∞

∫
fndm.
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Monotone Convergence Theorem: Our first limit theorem

For the reverse inequality, we need to show, for every simple function φ
with 0 ≤ φ ≤ f , ∫

φ dm ≤ lim
n→∞

∫
fndm. (2)

Let α < 1 and let En := {x : fn(x) ≥ αφ(x)}. Note that E1 ⊆ E2 ⊆ E3 . . .
and X =

⋃
n En. We now have for every n∫

fndm ≥
∫

fnIEndm ≥
∫
αφIEndm = α

∫
En

φ dm.

Let n→∞ (using earlier proposition), we obtain

lim
n→∞

∫
fndm ≥ α

∫
φ dm.

Since this inequality holds for every α < 1, we obtain (2).
QED
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Corollary 1 of the MCT

Corollary
(Linearity)

If f1 and f2 and in L+((X ,M,m)), then∫
(f + g)dm =

∫
fdm +

∫
gdm.

Proof:
. Choose φn and ψn to be simple functions increasing upward to f1 and f2
respectively. Then φn + ψn is a sequence of simple functions increasing
upward to f1 + f2.∫

f1 + f2 dm = lim
n→∞

∫
φn +ψn dm = lim

n→∞

∫
φn +

∫
ψndm =

∫
f1 +

∫
f2

where the MCT was used in the outer most equalities.
QED
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Corollary 2 of the MCT

Corollary
If f1, f2 . . . in L+((X ,M,m)), then∫

(
∞∑
i=1

fi )dm =
∞∑
i=1

(

∫
fidm)

Proof:
By the previous corollary, we have that for every N,∫

(
N∑
i=1

fi )dm =
N∑
i=1

(

∫
fidm).

Let N →∞ using MCT on LHS.
QED
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An elementary (believable) fact

Proposition If f ∈ L+((X ,M,m)), then∫
fdm = 0 if and only if f = 0 a.e.

Proof (of only if):
By contradiction, we assume that m(x : f (x) > 0) > 0. Letting
En := {x : f (x) > 1/n}, we have E1 ⊆ E2 ⊆ E3 . . . and⋃

n En = {x : f (x) > 0}. By continuity from below yields that there exists
N with m(EN) > 0.

Now consider the nonnegative simple function

φ :=
1
N
IEN
.

We have φ ≤ f and so∫
f dm ≥

∫
φdm =

1
N
m(EN) > 0.

QED
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Fatou’s Lemma: Our second limit theorem

Theorem

(Fatou’s Lemma)
If f1, f2 . . . in L+((X ,M,m)), then∫

lim inf
n→∞

fn dm ≤ lim inf
n→∞

∫
fn dm.

• Very important in analysis.
• Very important in probability.
• Even if all limits exist, one might have strict inequality. Recall our

example of functions which converge to 0 for all x but the integrals
are all 1.
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Fatou’s Lemma: Our second limit theorem

Proof:
Fix an integer k . Now for all j ≥ k , we have

inf
n≥k

fn ≤ fj

and hence ∫
inf
n≥k

fn ≤
∫

fj .

Since this is true for all j ≥ k , we have∫
inf
n≥k

fndm ≤ lim inf
n→∞

∫
fndm. (3)

We have what we want on the RHS and now we take k →∞. Note that
infn≥k fn is an increasing sequence in k and converges to lim inf fn. Hence
by the MCT, the LHS converges, as k →∞, to

∫
lim infn→∞ fndm.

QED
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Definition of the Lebesgue Integral for all measurable
functions

Let
f +(x) = max{f (x), 0}, f −(x) = max{−f (x), 0}

and note that both f +, f − are nonnegative, f = f + − f − and
|f | = f + + f −.

Definition
(Definition of the integral for general measurable functions) If
f : (X ,M,m)→ R , define∫

f (x)dm(x) :=

∫
f +(x)dm(x)−

∫
f −(x)dm(x)

provided that at least one of the two terms on the RHS is finite.
(Otherwise, the integral is not defined).
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Definition of the Lebesgue Integral for all measurable
functions

Definition
If
∫
fdm is defined and finite, we say that f is Lebesgue integrable. (This

is the same as having
∫
|f |dm being finite.)

Notation: We let

L1((X ,M,m)) := {f : (X ,M,m)→ R :

∫
|f |dm <∞}

and more generally, for p ≥ 1, we let

Lp((X ,M,m)) := {f : (X ,M,m)→ R :

∫
|f |pdm <∞}.

(Lp are Banach spaces and L2 is a Hilbert space.)
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An illustrative example

Example: Is f (x) = (sin x)/x integrable on (0,∞) with Lebesgue measure?

lim
N→∞

∫ N

0

sin x

x
dx exists and is finite (and even is π/2).

Does that answer our question?
No. (sin x)/x is not integrable on (0,∞) since one can check that∫ ∞

0
|sin x

x
|dx =∞.

Similar to the cancellation in a conditionally but not absolutely convergent
sequence such as

∞∑
n=1

(−1)n

n
.

This requires an order of the domain.
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Lebesgue Dominated Convergence Theorem: Our third limit
theorem

Theorem

(Lebesgue Dominated Convergence Theorem)
Let (fn) be a sequence of functions in L1((X ,M,m)) which converges
pointwise to a function f . Assume that there exists g ∈ L1((X ,M,m))
such that for all n

|fn| ≤ g .

Then f ∈ L1((X ,M,m)) and∫
fdm = lim

n→∞

∫
fndm.
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Lebesgue Dominated Convergence Theorem: Our third limit
theorem

Proof:
Since |fn| ≤ g for all n and fn → f , we also have |f | ≤ g and hence
f ∈ L1((X ,M,m)). Observe that for all n

g + fn ≥ 0 and g − fn ≥ 0 and hence

g + f ≥ 0 and g − f ≥ 0.

Applying Fatou’s Lemma to (g + fn) (and using linearity twice), we get∫
g dm+

∫
fdm =

∫
g+f dm ≤ lim inf

n→∞

∫
g+fndm =

∫
g dm+lim inf

n→∞

∫
fndm.

Subtracting
∫
gdm from both sides gives∫

f dm ≤ lim inf
n→∞

∫
fndm.
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An example on how one shows a set is measurable

Lemma
If the sequence (fn) and f are measurable functions on (X ,M,m), then

{x : fn(x)→ f (x)} ∈ M.

Proof:
Untangling what the definition of a limit is (and thinking a bit), it is not
hard to see that the set above is the same as

∞⋂
m=1

∞⋃
k=1

∞⋂
n=k

{x : |fn(x)− f (x)| < 1/m}.

This belongs toM since the events on the RHS do and then we are
applying countable set operations.
QED
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Different notions of convergence

Definition
If the sequence (fn) and f are measurable functions on (X ,M,m), then we
say
(i) fn converges to f a.e. if

m({x : fn(x) 6→ f (x)}) = 0

(ii) fn converges to f in measure if for every ε > 0,

lim
n→∞

m({x : |fn(x)− f (x)| ≥ ε}) = 0.
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Different notions of convergence

m({x : fn(x) 6→ f (x)}) = 0,

for every ε, lim
n→∞

m({x : |fn(x)− f (x)| ≥ ε}) = 0.

• There is an example where convergence a.e. occurs but not
convergence in measure.
• Convergence a.e. implies convergence in measure if the measure space

is finite.
• Convergence in measure, does not imply convergence a.e. even if the

measure space is finite.
• Convergence in measure implies that there exists a subsequence for

which one has convergence a.e.
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Different notions of convergence

Proof:
1. On [0,∞) with Lebesgue measure, let fn = I[n,n+1]. Check fn goes to 0
for every x but not in measure.
2. Fix ε > 0. Let

EN = {x : |fn(x)− f (x)| ≥ ε some n ≥ N}.

Observe that E1 ⊇ E2 ⊇ E3 . . . and that⋂
k

Ek ⊆ {x : fn(x) 6→ f (x)}

and hence by assumption m(
⋂

k Ek) = 0. By continuity from above (which
requires that the measure space be finite!), we get

m({x : |fN(x)− f (x)| ≥ ε}) ≤ m(EN)→ 0 as n→∞.

3. This is best described by a picture. See the (admittedly terrible) picture.
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Different notions of convergence

4. Assume (fn) converges to f in measure. Then for each integer k , we can
choose nk so that

m({x : |fnk (x)− f (x)| ≥ 1
k
}) ≤ 1

2k

and we can assume the nk ’s are increasing in k . Letting

Bk := {x : |fnk (x)− f (x)| ≥ 1
k
},

we have∑
k

m(Bk) <∞ and hence from the Borel-Cantelli Lemma, we have

m(Bk i.o.) = 0.

Now, if x is not in (Bk i.o.), meaning x ∈ Bk for only finitely many k , then
|fnk (x)− f (x)| ≥ 1

k for only finitely many k and hence

fnk (x)→ f (x).

QED
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Markov’s inequality

Theorem

(Markov’s Inequality) Let f be a nonnegative measurable function on
(X ,M,m). Then for every α > 0, one has

m({x : f (x) ≥ α}) ≤
∫
fdm

α
.

Proof:
We have ∫

fdm =

∫
fI{x :f (x)≥α}dm +

∫
fI{x :f (x)<α}dm

≥
∫
αI{x :f (x)≥α}dm = αm({x : f (x) ≥ α}).

QED
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Chebyshev’s Inequality

Theorem

(Chebyshev’s Inequality) Let f be a measurable function on (X ,M,m)
with

∫
|f |dm <∞. Then for any α > 0, one has

m({x : |f (x)−
∫

fdm| ≥ α}) ≤
∫
(f −

∫
f dm)2dm

α2

Proof:
Apply Markov’s inequality to the nonnegative function (f (x)−

∫
fdm)2.

QED
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