Class Lectures (for Chapter 4)

Riemann Integral

Riemann Integral

Loose idea: Take a very fine partition $0=a_{0}<a_{1}<\ldots<a_{n}$ of $[0,1]$ use the Riemann sum

$$
\sum_{i=1}^{n} f\left(a_{i}\right)\left(a_{i}-a_{i-1}\right)
$$

to estimate $\int f(x) d x$.

Riemann Integral

Loose idea: Take a very fine partition $0=a_{0}<a_{1}<\ldots<a_{n}$ of [0, 1] use the Riemann sum

$$
\sum_{i=1}^{n} f\left(a_{i}\right)\left(a_{i}-a_{i-1}\right)
$$

to estimate $\int f(x) d x$.

- f is Riemann integrable (RI) if, as $\max _{i=1, \ldots n}\left\{\left|a_{i}-a_{i-1}\right|\right\}$ of the partitions goes to 0 , all the Riemann sums should have a single limit.

Riemann Integral

Loose idea: Take a very fine partition $0=a_{0}<a_{1}<\ldots<a_{n}$ of $[0,1]$ use the Riemann sum

$$
\sum_{i=1}^{n} f\left(a_{i}\right)\left(a_{i}-a_{i-1}\right)
$$

to estimate $\int f(x) d x$.

- f is Riemann integrable (RI) if, as $\max _{i=1, \ldots n}\left\{\left|a_{i}-a_{i-1}\right|\right\}$ of the partitions goes to 0 , all the Riemann sums should have a single limit.
- If Q are the rationals in $[0,1]$, then I_{Q} is not Riemann integrable.

Riemann Integral

Loose idea: Take a very fine partition $0=a_{0}<a_{1}<\ldots<a_{n}$ of $[0,1]$ use the Riemann sum

$$
\sum_{i=1}^{n} f\left(a_{i}\right)\left(a_{i}-a_{i-1}\right)
$$

to estimate $\int f(x) d x$.

- f is Riemann integrable (RI) if, as $\max _{i=1, \ldots n}\left\{\left|a_{i}-a_{i-1}\right|\right\}$ of the partitions goes to 0 , all the Riemann sums should have a single limit.
- If Q are the rationals in $[0,1]$, then I_{Q} is not Riemann integrable.
- Calculus course: A continuous function on $[0,1]$ is Riemann integrable.

Riemann Integral

Loose idea: Take a very fine partition $0=a_{0}<a_{1}<\ldots<a_{n}$ of [0, 1] use the Riemann sum

$$
\sum_{i=1}^{n} f\left(a_{i}\right)\left(a_{i}-a_{i-1}\right)
$$

to estimate $\int f(x) d x$.

- f is Riemann integrable (RI) if, as $\max _{i=1, \ldots n}\left\{\left|a_{i}-a_{i-1}\right|\right\}$ of the partitions goes to 0 , all the Riemann sums should have a single limit.
- If Q are the rationals in $[0,1]$, then I_{Q} is not Riemann integrable.
- Calculus course: A continuous function on $[0,1]$ is Riemann integrable.
- More advanced theorem due to Lebesgue.

Riemann Integral

Loose idea: Take a very fine partition $0=a_{0}<a_{1}<\ldots<a_{n}$ of [0, 1] use the Riemann sum

$$
\sum_{i=1}^{n} f\left(a_{i}\right)\left(a_{i}-a_{i-1}\right)
$$

to estimate $\int f(x) d x$.

- f is Riemann integrable (RI) if, as $\max _{i=1, \ldots n}\left\{\left|a_{i}-a_{i-1}\right|\right\}$ of the partitions goes to 0 , all the Riemann sums should have a single limit.
- If Q are the rationals in $[0,1]$, then I_{Q} is not Riemann integrable.
- Calculus course: A continuous function on $[0,1]$ is Riemann integrable.
- More advanced theorem due to Lebesgue.

Theorem

If f is a bounded function, then f is $R I$ if and only if the set $\{x: f$ is not continuous at $x\}$ has Lebesgue measure 0 .

Idea of the Lebesgue Integral (partition the y-axis!)

Idea of the Lebesgue Integral (partition the y-axis!)

Idea of the Lebesgue Integral (partition the y-axis!)

 Instead of breaking up the x-axis, we break up the y-axis.
Idea of the Lebesgue Integral (partition the y-axis!)

Instead of breaking up the x-axis, we break up the y-axis.
If f takes values in $[0,1]$, we partition $[0,1]$ in the y-axis into $0=a_{0}<a_{1}<a_{2}<\ldots<a_{n}=1$

Idea of the Lebesgue Integral (partition the y-axis!)

Instead of breaking up the x-axis, we break up the y-axis.
If f takes values in $[0,1]$, we partition $[0,1]$ in the y-axis into $0=a_{0}<a_{1}<a_{2}<\ldots<a_{n}=1$ and approximate "the integral" by

$$
\sum_{i=0}^{n-1} a_{i} m\left(\left\{x: f(x) \in\left[a_{i}, a_{i+1}\right)\right\}\right)
$$

where m is Lebesgue measure.

Idea of the Lebesgue Integral (partition the y-axis!)

Instead of breaking up the x-axis, we break up the y-axis.
If f takes values in $[0,1]$, we partition $[0,1]$ in the y-axis into $0=a_{0}<a_{1}<a_{2}<\ldots<a_{n}=1$ and approximate "the integral" by

$$
\sum_{i=0}^{n-1} a_{i} m\left(\left\{x: f(x) \in\left[a_{i}, a_{i+1}\right)\right\}\right)
$$

where m is Lebesgue measure. The last interval is taken closed.

Idea of the Lebesgue Integral (partition the y-axis!)

Instead of breaking up the x-axis, we break up the y-axis.
If f takes values in $[0,1]$, we partition $[0,1]$ in the y-axis into $0=a_{0}<a_{1}<a_{2}<\ldots<a_{n}=1$ and approximate "the integral" by

$$
\sum_{i=0}^{n-1} a_{i} m\left(\left\{x: f(x) \in\left[a_{i}, a_{i+1}\right)\right\}\right)
$$

where m is Lebesgue measure. The last interval is taken closed.
What happens with I_{Q} ? Only is the first term and the last term giving

$$
0 m([0,1] \backslash Q)+a_{n-1} m(Q)=0
$$

Idea of the Lebesgue Integral (partition the y-axis!)

Instead of breaking up the x-axis, we break up the y-axis.
If f takes values in $[0,1]$, we partition $[0,1]$ in the y-axis into $0=a_{0}<a_{1}<a_{2}<\ldots<a_{n}=1$ and approximate "the integral" by

$$
\sum_{i=0}^{n-1} a_{i} m\left(\left\{x: f(x) \in\left[a_{i}, a_{i+1}\right)\right\}\right)
$$

where m is Lebesgue measure. The last interval is taken closed.
What happens with I_{Q} ? Only is the first term and the last term giving

$$
0 m([0,1] \backslash Q)+a_{n-1} m(Q)=0
$$

The structure of the domain is irrelevant which allows us to do this on a general measure space.

Measurable functions

Definition

If (X, \mathcal{M}) is a measurable space, a mapping $f: X \rightarrow R$ is called measurable if for all $B \in \mathcal{B}$ (recall that \mathcal{B} is the collection of Borel sets in R), we have that (see picture)

$$
f^{-1}(B):=\{x \in X: f(x) \in B\} \in \mathcal{M}
$$

Measurable functions

Definition

If (X, \mathcal{M}) is a measurable space, a mapping $f: X \rightarrow R$ is called measurable if for all $B \in \mathcal{B}$ (recall that \mathcal{B} is the collection of Borel sets in R), we have that (see picture)

$$
f^{-1}(B):=\{x \in X: f(x) \in B\} \in \mathcal{M}
$$

$f:(X, \mathcal{M}) \rightarrow \bar{R}:=R \cup\{-\infty, \infty\}$ is measurability if for all $B \in \mathcal{B}$,

$$
\{x \in X: f(x) \in B\} \in \mathcal{M}
$$

and

$$
\{x \in X: f(x)=\infty\} \in \mathcal{M},\{x \in X: f(x)=-\infty\} \in \mathcal{M}
$$

Measurable functions

Measurable functions

Proposition If (X, \mathcal{M}) is a measurable space and $f: X \rightarrow R$ is a mapping, Then $f: X \rightarrow R$ is measurable if for all open intervals I

$$
f^{-1}(I) \in \mathcal{M}
$$

Measurable functions

Proposition If (X, \mathcal{M}) is a measurable space and $f: X \rightarrow R$ is a mapping, Then $f: X \rightarrow R$ is measurable if for all open intervals I

$$
f^{-1}(I) \in \mathcal{M} .
$$

Proof:

Measurable functions

Proposition If (X, \mathcal{M}) is a measurable space and $f: X \rightarrow R$ is a mapping, Then $f: X \rightarrow R$ is measurable if for all open intervals I

$$
f^{-1}(I) \in \mathcal{M}
$$

Proof:
Let

$$
\mathcal{F}:=\left\{E \in \mathcal{B}: f^{-1}(E) \in \mathcal{M}\right\}
$$

Measurable functions

Proposition If (X, \mathcal{M}) is a measurable space and $f: X \rightarrow R$ is a mapping, Then $f: X \rightarrow R$ is measurable if for all open intervals I

$$
f^{-1}(I) \in \mathcal{M}
$$

Proof:
Let

$$
\mathcal{F}:=\left\{E \in \mathcal{B}: f^{-1}(E) \in \mathcal{M}\right\}
$$

The set of open intervals are contained in \mathcal{F} by assumption.

Measurable functions

Proposition If (X, \mathcal{M}) is a measurable space and $f: X \rightarrow R$ is a mapping, Then $f: X \rightarrow R$ is measurable if for all open intervals I

$$
f^{-1}(I) \in \mathcal{M}
$$

Proof:
Let

$$
\mathcal{F}:=\left\{E \in \mathcal{B}: f^{-1}(E) \in \mathcal{M}\right\}
$$

The set of open intervals are contained in \mathcal{F} by assumption. If we show that \mathcal{F} is a σ-algebra, then $\mathcal{F}=\mathcal{B}$ and done.

Measurable functions

Proposition If (X, \mathcal{M}) is a measurable space and $f: X \rightarrow R$ is a mapping, Then $f: X \rightarrow R$ is measurable if for all open intervals I

$$
f^{-1}(I) \in \mathcal{M}
$$

Proof:
Let

$$
\mathcal{F}:=\left\{E \in \mathcal{B}: f^{-1}(E) \in \mathcal{M}\right\}
$$

The set of open intervals are contained in \mathcal{F} by assumption. If we show that \mathcal{F} is a σ-algebra, then $\mathcal{F}=\mathcal{B}$ and done. 1. $X, \emptyset \in \mathcal{F}$.

Measurable functions

Proposition If (X, \mathcal{M}) is a measurable space and $f: X \rightarrow R$ is a mapping, Then $f: X \rightarrow R$ is measurable if for all open intervals I

$$
f^{-1}(I) \in \mathcal{M} .
$$

Proof:
Let

$$
\mathcal{F}:=\left\{E \in \mathcal{B}: f^{-1}(E) \in \mathcal{M}\right\}
$$

The set of open intervals are contained in \mathcal{F} by assumption. If we show that \mathcal{F} is a σ-algebra, then $\mathcal{F}=\mathcal{B}$ and done.

1. $X, \emptyset \in \mathcal{F}$.
2.

$$
E \in \mathcal{F} \rightarrow f^{-1}(E) \in \mathcal{M} \rightarrow\left(f^{-1}(E)\right)^{c} \in \mathcal{M} \rightarrow f^{-1}\left(E^{c}\right) \in \mathcal{M} \rightarrow E^{c} \in \mathcal{F}
$$

noting that $\left(f^{-1}(E)\right)^{c}=f^{-1}\left(E^{c}\right)$ (Check this!).

Measurable functions

3.

$$
\begin{aligned}
E_{1}, E_{2}, \ldots \in \mathcal{F} & \rightarrow f^{-1}\left(E_{1}\right), f^{-1}\left(E_{2}\right), \ldots \in \mathcal{M} \rightarrow \bigcup_{i}\left(f^{-1}\left(E_{i}\right)\right) \in \mathcal{M} \\
& \rightarrow f^{-1}\left(\bigcup_{i} E_{i}\right) \in \mathcal{M} \rightarrow \bigcup_{i} E_{i} \in \mathcal{F}
\end{aligned}
$$

noting that $\bigcup_{i}\left(f^{-1}\left(E_{i}\right)\right)=f^{-1}\left(\bigcup_{i} E_{i}\right)$ (Check this!). QED

Measurable functions

3.

$$
\begin{aligned}
E_{1}, E_{2}, \ldots \in \mathcal{F} & \rightarrow f^{-1}\left(E_{1}\right), f^{-1}\left(E_{2}\right), \ldots \in \mathcal{M} \rightarrow \bigcup_{i}\left(f^{-1}\left(E_{i}\right)\right) \in \mathcal{M} \\
& \rightarrow f^{-1}\left(\bigcup_{i} E_{i}\right) \in \mathcal{M} \rightarrow \bigcup_{i} E_{i} \in \mathcal{F}
\end{aligned}
$$

noting that $\bigcup_{i}\left(f^{-1}\left(E_{i}\right)\right)=f^{-1}\left(\bigcup_{i} E_{i}\right)$ (Check this!). QED
The exact same proof shows that to show that f is measurable, it is enough to check that for all c

$$
f^{-1}(c, \infty)=\{x: f(x)>c\} \in \mathcal{M}
$$

Measurable functions are closed under addition

Proposition If $f, g:(X, \mathcal{M}): \rightarrow R$ are measurable, then $f+g$ is measurable.

Measurable functions are closed under addition

Proposition If $f, g:(X, \mathcal{M}): \rightarrow R$ are measurable, then $f+g$ is measurable.

Proof:

Measurable functions are closed under addition

Proposition If $f, g:(X, \mathcal{M}): \rightarrow R$ are measurable, then $f+g$ is measurable.

Proof:
For all $a \in R$, we have

$$
\begin{equation*}
\{x:(f+g)(x)>a\}=\bigcup_{q \in Q}(\{x: f(x)>q\} \cap\{x: g(x)>a-q\}) . \tag{1}
\end{equation*}
$$

Measurable functions are closed under addition

Proposition If $f, g:(X, \mathcal{M}): \rightarrow R$ are measurable, then $f+g$ is measurable.

Proof:
For all $a \in R$, we have

$$
\begin{equation*}
\{x:(f+g)(x)>a\}=\bigcup_{q \in Q}(\{x: f(x)>q\} \cap\{x: g(x)>a-q\}) \tag{1}
\end{equation*}
$$

\supseteq is trivial.

Measurable functions are closed under addition

Proposition If $f, g:(X, \mathcal{M}): \rightarrow R$ are measurable, then $f+g$ is measurable.

Proof:
For all $a \in R$, we have

$$
\begin{equation*}
\{x:(f+g)(x)>a\}=\bigcup_{q \in Q}(\{x: f(x)>q\} \cap\{x: g(x)>a-q\}) \tag{1}
\end{equation*}
$$

\supseteq is trivial. To see the opposite containment, if $x \in$ LHS, choose $q \in Q$ so that

$$
0<f(x)-q<f(x)+g(x)-a .
$$

Measurable functions are closed under addition

Proposition If $f, g:(X, \mathcal{M}): \rightarrow R$ are measurable, then $f+g$ is measurable.

Proof:
For all $a \in R$, we have

$$
\begin{equation*}
\{x:(f+g)(x)>a\}=\bigcup_{q \in Q}(\{x: f(x)>q\} \cap\{x: g(x)>a-q\}) \tag{1}
\end{equation*}
$$

\supseteq is trivial. To see the opposite containment, if $x \in$ LHS, choose $q \in Q$ so that

$$
0<f(x)-q<f(x)+g(x)-a .
$$

Now, f, g being measurable implies each of the terms in the union are in \mathcal{M} and since we have a countable union, the RHS and hence the LHS belongs to \mathcal{M}. QED

Measurable functions are closed under multiplication

Proposition If $f, g:(X, \mathcal{M}): \rightarrow R$ are measurable, then $f g$ is measurable.

Measurable functions are closed under multiplication

Proposition If $f, g:(X, \mathcal{M}): \rightarrow R$ are measurable, then $f g$ is measurable. Proof:

Measurable functions are closed under multiplication

Proposition If $f, g:(X, \mathcal{M}): \rightarrow R$ are measurable, then $f g$ is measurable.
Proof:
One first observes that

$$
f g=1 / 2\left[(f+g)^{2}-f^{2}-g^{2}\right]
$$

Measurable functions are closed under multiplication

Proposition If $f, g:(X, \mathcal{M}): \rightarrow R$ are measurable, then $f g$ is measurable.
Proof:
One first observes that

$$
f g=1 / 2\left[(f+g)^{2}-f^{2}-g^{2}\right]
$$

Using the first part, one just needs to show that if h is measurable, then h^{2} is measurable.

Measurable functions are closed under multiplication

Proposition If $f, g:(X, \mathcal{M}): \rightarrow R$ are measurable, then $f g$ is measurable.
Proof:
One first observes that

$$
f g=1 / 2\left[(f+g)^{2}-f^{2}-g^{2}\right]
$$

Using the first part, one just needs to show that if h is measurable, then h^{2} is measurable.

$$
\left\{x: h^{2}(x) \geq c\right\}=X \text { if } c \leq 0
$$

Measurable functions are closed under multiplication

Proposition If $f, g:(X, \mathcal{M}): \rightarrow R$ are measurable, then $f g$ is measurable.
Proof:
One first observes that

$$
f g=1 / 2\left[(f+g)^{2}-f^{2}-g^{2}\right]
$$

Using the first part, one just needs to show that if h is measurable, then h^{2} is measurable.

$$
\left\{x: h^{2}(x) \geq c\right\}=X \text { if } c \leq 0
$$

and

$$
\left\{x: h^{2}(x) \geq c\right\}=\left\{x: h(x) \geq c^{1 / 2}\right\} \cup\left\{x: h(x) \leq-c^{1 / 2}\right\} \text { if } c>0
$$

QED

Sups are measurable

Proposition:
If f_{1}, f_{2}, \ldots is a sequence of measurable functions, then $\sup _{j} f_{j}$ is measurable.

Sups are measurable

Proposition:
If f_{1}, f_{2}, \ldots is a sequence of measurable functions, then $\sup _{j} f_{j}$ is measurable. Of course

$$
\left.\sup _{j} f_{j}\right)(x):=\sup _{j}\left(f_{j}(x)\right) .
$$

Sups are measurable

Proposition:
If f_{1}, f_{2}, \ldots is a sequence of measurable functions, then $\sup _{j} f_{j}$ is measurable. Of course

$$
\left.\sup _{j} f_{j}\right)(x):=\sup _{j}\left(f_{j}(x)\right)
$$

The same result holds for $\inf _{j} f_{j}$ defined in the obvious way.

Sups are measurable

Proposition:
If f_{1}, f_{2}, \ldots is a sequence of measurable functions, then $\sup _{j} f_{j}$ is measurable. Of course

$$
\left.\sup _{j} f_{j}\right)(x):=\sup _{j}\left(f_{j}(x)\right)
$$

The same result holds for $\inf _{j} f_{j}$ defined in the obvious way. Proof:

Sups are measurable

Proposition:
If f_{1}, f_{2}, \ldots is a sequence of measurable functions, then $\sup _{j} f_{j}$ is measurable. Of course

$$
\left(\sup _{j} f_{j}\right)(x):=\sup _{j}\left(f_{j}(x)\right)
$$

The same result holds for $\inf _{j} f_{j}$ defined in the obvious way.
Proof:

$$
\left\{x \in X:\left(\sup _{j} f_{j}\right)(x)>a\right\}=\bigcup_{j}\left\{x \in X: f_{j}(x)>a\right\}
$$

QED

Limsups are measurable

Proposition: If f_{1}, f_{2}, \ldots is a sequence of measurable functions, then $\lim \sup _{j} f_{j}$ is measurable.

Limsups are measurable

Proposition: If f_{1}, f_{2}, \ldots is a sequence of measurable functions, then $\lim \sup _{j} f_{j}$ is measurable. Of course
$\left(\limsup _{j} f_{j}\right)(x):=\underset{j}{\limsup }\left(f_{j}(x)\right)$.

Limsups are measurable

Proposition: If f_{1}, f_{2}, \ldots is a sequence of measurable functions, then $\lim \sup _{j} f_{j}$ is measurable. Of course

$$
\left(\limsup _{j} f_{j}\right)(x):=\underset{j}{\lim \sup }\left(f_{j}(x)\right)
$$

In particular, if $\left(f_{k}\right)$ converges to the function f_{∞} pointwise, then f_{∞} is measurable.

Limsups are measurable

Proposition: If f_{1}, f_{2}, \ldots is a sequence of measurable functions, then $\lim \sup _{j} f_{j}$ is measurable. Of course

$$
\left(\limsup _{j} f_{j}\right)(x):=\underset{j}{\lim \sup }\left(f_{j}(x)\right)
$$

In particular, if $\left(f_{k}\right)$ converges to the function f_{∞} pointwise, then f_{∞} is measurable.

Proof:

Limsups are measurable

Proposition: If f_{1}, f_{2}, \ldots is a sequence of measurable functions, then $\lim \sup _{j} f_{j}$ is measurable. Of course

$$
\left(\limsup _{j} f_{j}\right)(x):=\limsup _{j}\left(f_{j}(x)\right)
$$

In particular, if $\left(f_{k}\right)$ converges to the function f_{∞} pointwise, then f_{∞} is measurable.

Proof:
One notes first that

$$
\limsup _{j} f_{j}=\inf _{k}\left(\sup _{n \geq k} f_{n}\right) .
$$

Limsups are measurable

Proposition: If f_{1}, f_{2}, \ldots is a sequence of measurable functions, then $\lim \sup _{j} f_{j}$ is measurable. Of course

$$
\left(\limsup _{j} f_{j}\right)(x):=\limsup _{j}\left(f_{j}(x)\right)
$$

In particular, if $\left(f_{k}\right)$ converges to the function f_{∞} pointwise, then f_{∞} is measurable.

Proof:
One notes first that

$$
\limsup _{j} f_{j}=\inf _{k}\left(\sup _{n \geq k} f_{n}\right) .
$$

Apply the previous proposition twice. QED

Simple functions

Definition

Simple functions

Definition

A simple function on (X, \mathcal{M}) is a function of the form

$$
f(x)=\sum_{i=1}^{n} c_{i} I_{E_{i}}
$$

Simple functions

Definition

A simple function on (X, \mathcal{M}) is a function of the form

$$
f(x)=\sum_{i=1}^{n} c_{i} / E_{i}
$$

where c_{1}, \ldots, c_{n} are real numbers,

Simple functions

Definition

A simple function on (X, \mathcal{M}) is a function of the form

$$
f(x)=\sum_{i=1}^{n} c_{i} / E_{i}
$$

where c_{1}, \ldots, c_{n} are real numbers, E_{1}, \ldots, E_{n} are disjoint sets in \mathcal{M}

Simple functions

Definition

A simple function on (X, \mathcal{M}) is a function of the form

$$
f(x)=\sum_{i=1}^{n} c_{i} I_{E_{i}}
$$

where c_{1}, \ldots, c_{n} are real numbers, E_{1}, \ldots, E_{n} are disjoint sets in \mathcal{M} and $I_{E_{i}}$ is the indicator function of E_{i} which means it is 1 on E_{i} and 0 otherwise.

Simple functions

Definition

A simple function on (X, \mathcal{M}) is a function of the form

$$
f(x)=\sum_{i=1}^{n} c_{i} I_{E_{i}}
$$

where c_{1}, \ldots, c_{n} are real numbers, E_{1}, \ldots, E_{n} are disjoint sets in \mathcal{M} and $I_{E_{i}}$ is the indicator function of E_{i} which means it is 1 on E_{i} and 0 otherwise.

Theorem

(Folland Theorem 2.10) If (X, \mathcal{M}) is a measurable space and $f: X \rightarrow[0, \infty]$ is measurable,

Simple functions

Definition

A simple function on (X, \mathcal{M}) is a function of the form

$$
f(x)=\sum_{i=1}^{n} c_{i} I_{E_{i}}
$$

where c_{1}, \ldots, c_{n} are real numbers, E_{1}, \ldots, E_{n} are disjoint sets in \mathcal{M} and $I_{E_{i}}$ is the indicator function of E_{i} which means it is 1 on E_{i} and 0 otherwise.

Theorem

(Folland Theorem 2.10) If (X, \mathcal{M}) is a measurable space and $f: X \rightarrow[0, \infty]$ is measurable, then there exists a sequence $\left(\phi_{n}\right)$ of simple functions such that $0 \leq \phi_{1} \leq \phi_{2} \leq \ldots$ so that ϕ_{n} approaches f pointwise.

The Lebesgue Integral

The Lebesgue Integral

$$
L^{+}((X, \mathcal{M}, m)):=\{f: X \rightarrow[0, \infty], f \text { is measurable }\}
$$

The Lebesgue Integral

$$
L^{+}((X, \mathcal{M}, m)):=\{f: X \rightarrow[0, \infty], f \text { is measurable }\}
$$

Step 1: Definition of the integral for nonnegative simple functions

The Lebesgue Integral

$L^{+}((X, \mathcal{M}, m)):=\{f: X \rightarrow[0, \infty], f$ is measurable $\}$

Step 1: Definition of the integral for nonnegative simple functions

Definition

If ϕ is a simple function in $L^{+}((X, \mathcal{M}, m))$,

The Lebesgue Integral

$L^{+}((X, \mathcal{M}, m)):=\{f: X \rightarrow[0, \infty], f$ is measurable $\}$

Step 1: Definition of the integral for nonnegative simple functions

Definition

If ϕ is a simple function in $L^{+}((X, \mathcal{M}, m))$,

$$
\phi(x)=\sum_{i=1}^{n} c_{i} I_{E_{i}}\left(c_{i} \geq 0 \forall i\right)
$$

then we define the integral of ϕ by

$$
\int \phi(x) d m(x):=
$$

The Lebesgue Integral

$L^{+}((X, \mathcal{M}, m)):=\{f: X \rightarrow[0, \infty], f$ is measurable $\}$

Step 1: Definition of the integral for nonnegative simple functions

Definition

If ϕ is a simple function in $L^{+}((X, \mathcal{M}, m))$,

$$
\phi(x)=\sum_{i=1}^{n} c_{i} I_{E_{i}}\left(c_{i} \geq 0 \forall i\right)
$$

then we define the integral of ϕ by

$$
\int \phi(x) d m(x):=\sum_{i=1}^{n} c_{i} m\left(E_{i}\right)
$$

The Lebesgue Integral

Definition
 If ϕ is a simple function in $L^{+}((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

The Lebesgue Integral

Definition

If ϕ is a simple function in $L^{+}((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

$$
\text { we define } \int_{A} \phi(x) d m(x):=\int \phi(x) I_{A} d m(x)
$$

The Lebesgue Integral

Definition

If ϕ is a simple function in $L^{+}((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

$$
\text { we define } \int_{A} \phi(x) d m(x):=\int \phi(x) I_{A} d m(x) \text {. }
$$

Proposition (Proposition 2.13 in Folland)
Let ϕ and ψ be simple nonnegative functions. Then the following hold.

The Lebesgue Integral

Definition

If ϕ is a simple function in $L^{+}((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

$$
\text { we define } \int_{A} \phi(x) d m(x):=\int \phi(x) I_{A} d m(x) \text {. }
$$

Proposition (Proposition 2.13 in Folland)
Let ϕ and ψ be simple nonnegative functions. Then the following hold.
a. $\int c \phi(x) d m(x)=c \int \phi(x) d m(x) \forall c \geq 0$.

The Lebesgue Integral

Definition

If ϕ is a simple function in $L^{+}((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

$$
\text { we define } \int_{A} \phi(x) d m(x):=\int \phi(x) I_{A} d m(x)
$$

Proposition (Proposition 2.13 in Folland)
Let ϕ and ψ be simple nonnegative functions. Then the following hold.
a. $\int c \phi(x) d m(x)=c \int \phi(x) d m(x) \quad \forall c \geq 0$.
b. $\int(\phi(x)+\psi(x)) d m(x)=\int \phi(x) d m(x)+\int \psi(x) d m(x)$.

The Lebesgue Integral

Definition

If ϕ is a simple function in $L^{+}((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

$$
\text { we define } \int_{A} \phi(x) d m(x):=\int \phi(x) I_{A} d m(x)
$$

Proposition (Proposition 2.13 in Folland)
Let ϕ and ψ be simple nonnegative functions. Then the following hold.
a. $\int c \phi(x) d m(x)=c \int \phi(x) d m(x) \quad \forall c \geq 0$.
b. $\int(\phi(x)+\psi(x)) d m(x)=\int \phi(x) d m(x)+\int \psi(x) d m(x)$.
c. $\phi \leq \psi$ implies that $\int \phi(x) d m(x) \leq \int \psi(x) d m(x)$.

The Lebesgue Integral

Definition

If ϕ is a simple function in $L^{+}((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

$$
\text { we define } \int_{A} \phi(x) d m(x):=\int \phi(x) I_{A} d m(x)
$$

Proposition (Proposition 2.13 in Folland)
Let ϕ and ψ be simple nonnegative functions. Then the following hold.
a. $\int c \phi(x) d m(x)=c \int \phi(x) d m(x) \quad \forall c \geq 0$.
b. $\int(\phi(x)+\psi(x)) d m(x)=\int \phi(x) d m(x)+\int \psi(x) d m(x)$.
c. $\phi \leq \psi$ implies that $\int \phi(x) d m(x) \leq \int \psi(x) d m(x)$.
d. The mapping from \mathcal{M} to $[0, \infty]$ given by $A \rightarrow \int_{A} \phi(x) d m(x)$ is a measure on \mathcal{M}. (We call this measure ϕm.).

The Lebesgue Integral

Definition

If ϕ is a simple function in $L^{+}((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

$$
\text { we define } \int_{A} \phi(x) d m(x):=\int \phi(x) I_{A} d m(x)
$$

Proposition (Proposition 2.13 in Folland)
Let ϕ and ψ be simple nonnegative functions. Then the following hold.
a. $\int c \phi(x) d m(x)=c \int \phi(x) d m(x) \quad \forall c \geq 0$.
b. $\int(\phi(x)+\psi(x)) d m(x)=\int \phi(x) d m(x)+\int \psi(x) d m(x)$.
c. $\phi \leq \psi$ implies that $\int \phi(x) d m(x) \leq \int \psi(x) d m(x)$.
d. The mapping from \mathcal{M} to $[0, \infty]$ given by $A \rightarrow \int_{A} \phi(x) d m(x)$ is a measure on \mathcal{M}. (We call this measure ϕm.).
See the lecture notes for the proof.

The Lebesgue Integral

Definition

If ϕ is a simple function in $L^{+}((X, \mathcal{M}, m))$ and $A \in \mathcal{M}$,

$$
\text { we define } \int_{A} \phi(x) d m(x):=\int \phi(x) I_{A} d m(x) \text {. }
$$

Proposition (Proposition 2.13 in Folland)
Let ϕ and ψ be simple nonnegative functions. Then the following hold.
a. $\int c \phi(x) d m(x)=c \int \phi(x) d m(x) \quad \forall c \geq 0$.
b. $\int(\phi(x)+\psi(x)) d m(x)=\int \phi(x) d m(x)+\int \psi(x) d m(x)$.
c. $\phi \leq \psi$ implies that $\int \phi(x) d m(x) \leq \int \psi(x) d m(x)$.
d. The mapping from \mathcal{M} to $[0, \infty]$ given by $A \rightarrow \int_{A} \phi(x) d m(x)$ is a measure on \mathcal{M}. (We call this measure ϕm.).
See the lecture notes for the proof. Part d takes one measure m and gives us a new measure ϕm. Note that $m(A)=0$ implies that $\phi m(A)=0$. IMPORTANT!

The Lebesgue Integral

Step 2. Definition of the integral for nonnegative measurable functions

The Lebesgue Integral

Step 2. Definition of the integral for nonnegative measurable functions

Definition

If $f \in L^{+}((X, \mathcal{M}, m))$, we define

$$
\int f(x) d m(x):=
$$

The Lebesgue Integral

Step 2. Definition of the integral for nonnegative measurable functions
Definition
If $f \in L^{+}((X, \mathcal{M}, m))$, we define

$$
\int f(x) d m(x):=\sup \left\{\int \phi d m: 0 \leq \phi \leq f, \phi \text { simple }\right\} .
$$

The Lebesgue Integral

Step 2. Definition of the integral for nonnegative measurable functions

Definition

If $f \in L^{+}((X, \mathcal{M}, m))$, we define

$$
\int f(x) d m(x):=\sup \left\{\int \phi d m: 0 \leq \phi \leq f, \phi \text { simple }\right\} .
$$

This integral is certainly allowed to be ∞.
Properties:

The Lebesgue Integral

Step 2. Definition of the integral for nonnegative measurable functions

Definition

If $f \in L^{+}((X, \mathcal{M}, m))$, we define

$$
\int f(x) d m(x):=\sup \left\{\int \phi d m: 0 \leq \phi \leq f, \phi \text { simple }\right\} .
$$

This integral is certainly allowed to be ∞.
Properties:

- $f \leq g \rightarrow \int f d m \leq \int g d m$ (immediate)

The Lebesgue Integral

Step 2. Definition of the integral for nonnegative measurable functions

Definition

If $f \in L^{+}((X, \mathcal{M}, m))$, we define

$$
\int f(x) d m(x):=\sup \left\{\int \phi d m: 0 \leq \phi \leq f, \phi \text { simple }\right\} .
$$

This integral is certainly allowed to be ∞.
Properties:

- $f \leq g \rightarrow \int f d m \leq \int g d m$ (immediate)
- For $c \geq 0, \int c f d m=c \int f d m$ (fairly easy)

The Lebesgue Integral

Step 2. Definition of the integral for nonnegative measurable functions

Definition

If $f \in L^{+}((X, \mathcal{M}, m))$, we define

$$
\int f(x) d m(x):=\sup \left\{\int \phi d m: 0 \leq \phi \leq f, \phi \text { simple }\right\} .
$$

This integral is certainly allowed to be ∞.
Properties:

- $f \leq g \rightarrow \int f d m \leq \int g d m$ (immediate)
- For $c \geq 0, \int c f d m=c \int f d m$ (fairly easy)
- $\int(f+g) d m=\int f d m+\int g d m$ (requires some work and we will return to)

Monotone Convergence Theorem (MCT): Our first limit theorem

Monotone Convergence Theorem (MCT): Our first limit theorem

Theorem

(Monotone Convergence Theorem) Let $\left(f_{n}\right)$ be in $L^{+}((X, \mathcal{M}, m))$ satisfying $0 \leq f_{1} \leq f_{2} \leq f_{3} \ldots$ (meaning that these inequalities hold for every x)

Monotone Convergence Theorem (MCT): Our first limit theorem

Theorem

(Monotone Convergence Theorem) Let $\left(f_{n}\right)$ be in $L^{+}((X, \mathcal{M}, m))$ satisfying $0 \leq f_{1} \leq f_{2} \leq f_{3} \ldots$ (meaning that these inequalities hold for every x) and define f by

$$
f(x):=\lim _{n \rightarrow \infty} f_{n}(x)=\sup _{n} f_{n}(x) .
$$

Monotone Convergence Theorem (MCT): Our first limit theorem

Theorem

(Monotone Convergence Theorem) Let $\left(f_{n}\right)$ be in $L^{+}((X, \mathcal{M}, m))$ satisfying $0 \leq f_{1} \leq f_{2} \leq f_{3} \ldots$ (meaning that these inequalities hold for every x) and define f by

$$
f(x):=\lim _{n \rightarrow \infty} f_{n}(x)=\sup _{n} f_{n}(x) .
$$

Then

$$
\int f d m=\lim _{n \rightarrow \infty} \int f_{n} d m
$$

Monotone Convergence Theorem (MCT): Our first limit theorem

Theorem

(Monotone Convergence Theorem) Let $\left(f_{n}\right)$ be in $L^{+}((X, \mathcal{M}, m))$ satisfying $0 \leq f_{1} \leq f_{2} \leq f_{3} \ldots$ (meaning that these inequalities hold for every x) and define f by

$$
f(x):=\lim _{n \rightarrow \infty} f_{n}(x)=\sup _{n} f_{n}(x) .
$$

Then

$$
\int f d m=\lim _{n \rightarrow \infty} \int f_{n} d m
$$

Proof:

Monotone Convergence Theorem (MCT): Our first limit theorem

Theorem

(Monotone Convergence Theorem) Let $\left(f_{n}\right)$ be in $L^{+}((X, \mathcal{M}, m))$ satisfying $0 \leq f_{1} \leq f_{2} \leq f_{3} \ldots$ (meaning that these inequalities hold for every x) and define f by

$$
f(x):=\lim _{n \rightarrow \infty} f_{n}(x)=\sup _{n} f_{n}(x) .
$$

Then

$$
\int f d m=\lim _{n \rightarrow \infty} \int f_{n} d m
$$

Proof:
$\int f_{n} d m$ is increasing and hence has a limit.

Monotone Convergence Theorem (MCT): Our first limit theorem

Theorem

(Monotone Convergence Theorem) Let $\left(f_{n}\right)$ be in $L^{+}((X, \mathcal{M}, m))$ satisfying $0 \leq f_{1} \leq f_{2} \leq f_{3} \ldots$ (meaning that these inequalities hold for every x) and define f by

$$
f(x):=\lim _{n \rightarrow \infty} f_{n}(x)=\sup _{n} f_{n}(x) .
$$

Then

$$
\int f d m=\lim _{n \rightarrow \infty} \int f_{n} d m
$$

Proof:
$\int f_{n} d m$ is increasing and hence has a limit. $\int f d m \geq \int f_{n} d m$ for every n

Monotone Convergence Theorem (MCT): Our first limit theorem

Theorem

(Monotone Convergence Theorem) Let $\left(f_{n}\right)$ be in $L^{+}((X, \mathcal{M}, m))$ satisfying $0 \leq f_{1} \leq f_{2} \leq f_{3} \ldots$ (meaning that these inequalities hold for every x) and define f by

$$
f(x):=\lim _{n \rightarrow \infty} f_{n}(x)=\sup _{n} f_{n}(x) .
$$

Then

$$
\int f d m=\lim _{n \rightarrow \infty} \int f_{n} d m
$$

Proof:
$\int f_{n} d m$ is increasing and hence has a limit. $\int f d m \geq \int f_{n} d m$ for every n and so

$$
\int f d m \geq \lim _{n \rightarrow \infty} \int f_{n} d m
$$

Monotone Convergence Theorem: Our first limit theorem

Monotone Convergence Theorem: Our first limit theorem

 For the reverse inequality, we need to show, for every simple function ϕ with $0 \leq \phi \leq f$,$$
\begin{equation*}
\int \phi d m \leq \lim _{n \rightarrow \infty} \int f_{n} d m \tag{2}
\end{equation*}
$$

Monotone Convergence Theorem: Our first limit theorem

 For the reverse inequality, we need to show, for every simple function ϕ with $0 \leq \phi \leq f$,$$
\begin{equation*}
\int \phi d m \leq \lim _{n \rightarrow \infty} \int f_{n} d m \tag{2}
\end{equation*}
$$

Let $\alpha<1$

Monotone Convergence Theorem: Our first limit theorem

 For the reverse inequality, we need to show, for every simple function ϕ with $0 \leq \phi \leq f$,$$
\begin{equation*}
\int \phi d m \leq \lim _{n \rightarrow \infty} \int f_{n} d m . \tag{2}
\end{equation*}
$$

Let $\alpha<1$ and let $E_{n}:=\left\{x: f_{n}(x) \geq \alpha \phi(x)\right\}$.

Monotone Convergence Theorem: Our first limit theorem

 For the reverse inequality, we need to show, for every simple function ϕ with $0 \leq \phi \leq f$,$$
\begin{equation*}
\int \phi d m \leq \lim _{n \rightarrow \infty} \int f_{n} d m . \tag{2}
\end{equation*}
$$

Let $\alpha<1$ and let $E_{n}:=\left\{x: f_{n}(x) \geq \alpha \phi(x)\right\}$. Note that $E_{1} \subseteq E_{2} \subseteq E_{3} \ldots$

Monotone Convergence Theorem: Our first limit theorem

 For the reverse inequality, we need to show, for every simple function ϕ with $0 \leq \phi \leq f$,$$
\begin{equation*}
\int \phi d m \leq \lim _{n \rightarrow \infty} \int f_{n} d m . \tag{2}
\end{equation*}
$$

Let $\alpha<1$ and let $E_{n}:=\left\{x: f_{n}(x) \geq \alpha \phi(x)\right\}$. Note that $E_{1} \subseteq E_{2} \subseteq E_{3} \ldots$ and $X=\bigcup_{n} E_{n}$.

Monotone Convergence Theorem: Our first limit theorem

 For the reverse inequality, we need to show, for every simple function ϕ with $0 \leq \phi \leq f$,$$
\begin{equation*}
\int \phi d m \leq \lim _{n \rightarrow \infty} \int f_{n} d m \tag{2}
\end{equation*}
$$

Let $\alpha<1$ and let $E_{n}:=\left\{x: f_{n}(x) \geq \alpha \phi(x)\right\}$. Note that $E_{1} \subseteq E_{2} \subseteq E_{3} \ldots$ and $X=\bigcup_{n} E_{n}$. We now have for every n

$$
\int f_{n} d m \geq \int f_{n} I_{E_{n}} d m \geq \int \alpha \phi I_{E_{n}} d m=\alpha \int_{E_{n}} \phi d m
$$

Monotone Convergence Theorem: Our first limit theorem

 For the reverse inequality, we need to show, for every simple function ϕ with $0 \leq \phi \leq f$,$$
\begin{equation*}
\int \phi d m \leq \lim _{n \rightarrow \infty} \int f_{n} d m \tag{2}
\end{equation*}
$$

Let $\alpha<1$ and let $E_{n}:=\left\{x: f_{n}(x) \geq \alpha \phi(x)\right\}$. Note that $E_{1} \subseteq E_{2} \subseteq E_{3} \ldots$ and $X=\bigcup_{n} E_{n}$. We now have for every n

$$
\int f_{n} d m \geq \int f_{n} I_{E_{n}} d m \geq \int \alpha \phi I_{E_{n}} d m=\alpha \int_{E_{n}} \phi d m
$$

Let $n \rightarrow \infty$ (using earlier proposition),

Monotone Convergence Theorem: Our first limit theorem

For the reverse inequality, we need to show, for every simple function ϕ with $0 \leq \phi \leq f$,

$$
\begin{equation*}
\int \phi d m \leq \lim _{n \rightarrow \infty} \int f_{n} d m \tag{2}
\end{equation*}
$$

Let $\alpha<1$ and let $E_{n}:=\left\{x: f_{n}(x) \geq \alpha \phi(x)\right\}$. Note that $E_{1} \subseteq E_{2} \subseteq E_{3} \ldots$ and $X=\bigcup_{n} E_{n}$. We now have for every n

$$
\int f_{n} d m \geq \int f_{n} I_{E_{n}} d m \geq \int \alpha \phi I_{E_{n}} d m=\alpha \int_{E_{n}} \phi d m
$$

Let $n \rightarrow \infty$ (using earlier proposition), we obtain

$$
\lim _{n \rightarrow \infty} \int f_{n} d m \geq \alpha \int \phi d m
$$

Monotone Convergence Theorem: Our first limit theorem

For the reverse inequality, we need to show, for every simple function ϕ with $0 \leq \phi \leq f$,

$$
\begin{equation*}
\int \phi d m \leq \lim _{n \rightarrow \infty} \int f_{n} d m . \tag{2}
\end{equation*}
$$

Let $\alpha<1$ and let $E_{n}:=\left\{x: f_{n}(x) \geq \alpha \phi(x)\right\}$. Note that $E_{1} \subseteq E_{2} \subseteq E_{3} \ldots$ and $X=\bigcup_{n} E_{n}$. We now have for every n

$$
\int f_{n} d m \geq \int f_{n} I_{E_{n}} d m \geq \int \alpha \phi I_{E_{n}} d m=\alpha \int_{E_{n}} \phi d m
$$

Let $n \rightarrow \infty$ (using earlier proposition), we obtain

$$
\lim _{n \rightarrow \infty} \int f_{n} d m \geq \alpha \int \phi d m
$$

Since this inequality holds for every $\alpha<1$, we obtain (2). QED

Corollary 1 of the MCT

Corollary

(Linearity)

Corollary 1 of the MCT

Corollary

(Linearity) If f_{1} and f_{2} and in $L^{+}((X, \mathcal{M}, m))$, then

$$
\int(f+g) d m=\int f d m+\int g d m .
$$

Corollary 1 of the MCT

Corollary

(Linearity) If f_{1} and f_{2} and in $L^{+}((X, \mathcal{M}, m))$, then

$$
\int(f+g) d m=\int f d m+\int g d m .
$$

Proof:

Corollary 1 of the MCT

Corollary

(Linearity) If f_{1} and f_{2} and in $L^{+}((X, \mathcal{M}, m))$, then

$$
\int(f+g) d m=\int f d m+\int g d m .
$$

Proof:
Choose ϕ_{n} and ψ_{n} to be simple functions increasing upward to f_{1} and f_{2} respectively.

Corollary 1 of the MCT

Corollary

(Linearity) If f_{1} and f_{2} and in $L^{+}((X, \mathcal{M}, m))$, then

$$
\int(f+g) d m=\int f d m+\int g d m .
$$

Proof:

Choose ϕ_{n} and ψ_{n} to be simple functions increasing upward to f_{1} and f_{2} respectively. Then $\phi_{n}+\psi_{n}$ is a sequence of simple functions increasing upward to $f_{1}+f_{2}$.

Corollary 1 of the MCT

Corollary

(Linearity) If f_{1} and f_{2} and in $L^{+}((X, \mathcal{M}, m))$, then

$$
\int(f+g) d m=\int f d m+\int g d m .
$$

Proof:

Choose ϕ_{n} and ψ_{n} to be simple functions increasing upward to f_{1} and f_{2} respectively. Then $\phi_{n}+\psi_{n}$ is a sequence of simple functions increasing upward to $f_{1}+f_{2}$.
$\int f_{1}+f_{2} d m=\lim _{n \rightarrow \infty} \int \phi_{n}+\psi_{n} d m=\lim _{n \rightarrow \infty} \int \phi_{n}+\int \psi_{n} d m=\int f_{1}+\int f_{2}$
where the MCT was used in the outer most equalities. QED

Corollary 2 of the MCT

Corollary 2 of the MCT

Corollary

If $f_{1}, f_{2} \ldots$ in $L^{+}((X, \mathcal{M}, m))$, then

$$
\int\left(\sum_{i=1}^{\infty} f_{i}\right) d m=\sum_{i=1}^{\infty}\left(\int f_{i} d m\right)
$$

Corollary 2 of the MCT

Corollary

If $f_{1}, f_{2} \ldots$ in $L^{+}((X, \mathcal{M}, m))$, then

$$
\int\left(\sum_{i=1}^{\infty} f_{i}\right) d m=\sum_{i=1}^{\infty}\left(\int f_{i} d m\right)
$$

Proof:

By the previous corollary, we have that for every N,

$$
\int\left(\sum_{i=1}^{N} f_{i}\right) d m=\sum_{i=1}^{N}\left(\int f_{i} d m\right)
$$

Corollary 2 of the MCT

Corollary

If $f_{1}, f_{2} \ldots$ in $L^{+}((X, \mathcal{M}, m))$, then

$$
\int\left(\sum_{i=1}^{\infty} f_{i}\right) d m=\sum_{i=1}^{\infty}\left(\int f_{i} d m\right)
$$

Proof:
By the previous corollary, we have that for every N,

$$
\int\left(\sum_{i=1}^{N} f_{i}\right) d m=\sum_{i=1}^{N}\left(\int f_{i} d m\right)
$$

Let $N \rightarrow \infty$ using MCT on LHS.
QED

An elementary (believable) fact

An elementary (believable) fact

Proposition If $f \in L^{+}((X, \mathcal{M}, m))$, then

$$
\int f d m=0 \text { if and only if } f=0 \text { a.e. }
$$

An elementary (believable) fact

Proposition If $f \in L^{+}((X, \mathcal{M}, m))$, then

$$
\int f d m=0 \text { if and only if } f=0 \text { a.e. }
$$

Proof (of only if):

An elementary (believable) fact

Proposition If $f \in L^{+}((X, \mathcal{M}, m))$, then

$$
\int f d m=0 \text { if and only if } f=0 \text { a.e. }
$$

Proof (of only if):
By contradiction, we assume that $m(x: f(x)>0)>0$.

An elementary (believable) fact

Proposition If $f \in L^{+}((X, \mathcal{M}, m))$, then

$$
\int f d m=0 \text { if and only if } f=0 \text { a.e. }
$$

Proof (of only if):
By contradiction, we assume that $m(x: f(x)>0)>0$. Letting $E_{n}:=\{x: f(x)>1 / n\}$, we have $E_{1} \subseteq E_{2} \subseteq E_{3} \ldots$

An elementary (believable) fact

Proposition If $f \in L^{+}((X, \mathcal{M}, m))$, then

$$
\int f d m=0 \text { if and only if } f=0 \text { a.e. }
$$

Proof (of only if):
By contradiction, we assume that $m(x: f(x)>0)>0$. Letting $E_{n}:=\{x: f(x)>1 / n\}$, we have $E_{1} \subseteq E_{2} \subseteq E_{3} \ldots$ and $\bigcup_{n} E_{n}=\{x: f(x)>0\}$. By continuity from below yields that there exists N with $m\left(E_{N}\right)>0$.

An elementary (believable) fact

Proposition If $f \in L^{+}((X, \mathcal{M}, m))$, then

$$
\int f d m=0 \text { if and only if } f=0 \text { a.e. }
$$

Proof (of only if):
By contradiction, we assume that $m(x: f(x)>0)>0$. Letting $E_{n}:=\{x: f(x)>1 / n\}$, we have $E_{1} \subseteq E_{2} \subseteq E_{3} \ldots$ and $\bigcup_{n} E_{n}=\{x: f(x)>0\}$. By continuity from below yields that there exists N with $m\left(E_{N}\right)>0$.
Now consider the nonnegative simple function

$$
\phi:=\frac{1}{N} I_{E_{N}} .
$$

An elementary (believable) fact

Proposition If $f \in L^{+}((X, \mathcal{M}, m))$, then

$$
\int f d m=0 \text { if and only if } f=0 \text { a.e. }
$$

Proof (of only if):
By contradiction, we assume that $m(x: f(x)>0)>0$. Letting $E_{n}:=\{x: f(x)>1 / n\}$, we have $E_{1} \subseteq E_{2} \subseteq E_{3} \ldots$ and $\bigcup_{n} E_{n}=\{x: f(x)>0\}$. By continuity from below yields that there exists N with $m\left(E_{N}\right)>0$.
Now consider the nonnegative simple function

$$
\phi:=\frac{1}{N} I_{E_{N}} .
$$

We have $\phi \leq f$

An elementary (believable) fact

Proposition If $f \in L^{+}((X, \mathcal{M}, m))$, then

$$
\int f d m=0 \text { if and only if } f=0 \text { a.e. }
$$

Proof (of only if):
By contradiction, we assume that $m(x: f(x)>0)>0$. Letting $E_{n}:=\{x: f(x)>1 / n\}$, we have $E_{1} \subseteq E_{2} \subseteq E_{3} \ldots$ and $\bigcup_{n} E_{n}=\{x: f(x)>0\}$. By continuity from below yields that there exists N with $m\left(E_{N}\right)>0$.
Now consider the nonnegative simple function

$$
\phi:=\frac{1}{N} I_{E_{N}} .
$$

We have $\phi \leq f$ and so

$$
\int f d m \geq \int \phi d m=\frac{1}{N} m\left(E_{N}\right)>0
$$

Fatou's Lemma: Our second limit theorem

Fatou's Lemma: Our second limit theorem

Theorem
(Fatou's Lemma)

Fatou's Lemma: Our second limit theorem

Theorem

(Fatou's Lemma)
If $f_{1}, f_{2} \ldots$ in $L^{+}((X, \mathcal{M}, m))$,

Fatou's Lemma: Our second limit theorem

Theorem

(Fatou's Lemma)
If $f_{1}, f_{2} \ldots$ in $L^{+}((X, \mathcal{M}, m))$, then

$$
\int \liminf _{n \rightarrow \infty} f_{n} d m \leq \liminf _{n \rightarrow \infty} \int f_{n} d m .
$$

Fatou's Lemma: Our second limit theorem

Theorem

(Fatou's Lemma)
If $f_{1}, f_{2} \ldots$ in $L^{+}((X, \mathcal{M}, m))$, then

$$
\int \liminf _{n \rightarrow \infty} f_{n} d m \leq \liminf _{n \rightarrow \infty} \int f_{n} d m .
$$

- Very important in analysis.

Fatou's Lemma: Our second limit theorem

Theorem

(Fatou's Lemma)
If $f_{1}, f_{2} \ldots$ in $L^{+}((X, \mathcal{M}, m))$, then

$$
\int \liminf _{n \rightarrow \infty} f_{n} d m \leq \liminf _{n \rightarrow \infty} \int f_{n} d m .
$$

- Very important in analysis.
- Very important in probability.

Fatou's Lemma: Our second limit theorem

Theorem

(Fatou's Lemma)
If $f_{1}, f_{2} \ldots$ in $L^{+}((X, \mathcal{M}, m))$, then

$$
\int \liminf _{n \rightarrow \infty} f_{n} d m \leq \liminf _{n \rightarrow \infty} \int f_{n} d m .
$$

- Very important in analysis.
- Very important in probability.
- Even if all limits exist, one might have strict inequality.

Fatou's Lemma: Our second limit theorem

Theorem

(Fatou's Lemma)
If $f_{1}, f_{2} \ldots$ in $L^{+}((X, \mathcal{M}, m))$, then

$$
\int \liminf _{n \rightarrow \infty} f_{n} d m \leq \liminf _{n \rightarrow \infty} \int f_{n} d m .
$$

- Very important in analysis.
- Very important in probability.
- Even if all limits exist, one might have strict inequality. Recall our example of functions which converge to 0 for all x but the integrals are all 1.

Fatou's Lemma: Our second limit theorem

Fatou's Lemma: Our second limit theorem

Proof:

Fatou's Lemma: Our second limit theorem

Proof:
Fix an integer k.

Fatou's Lemma: Our second limit theorem

Proof:
Fix an integer k. Now for all $j \geq k$, we have

$$
\inf _{n \geq k} f_{n} \leq f_{j}
$$

Fatou's Lemma: Our second limit theorem

Proof:
Fix an integer k. Now for all $j \geq k$, we have

$$
\inf _{n \geq k} f_{n} \leq f_{j}
$$

and hence

$$
\int \inf _{n \geq k} f_{n} \leq \int f_{j}
$$

Fatou's Lemma: Our second limit theorem

Proof:
Fix an integer k. Now for all $j \geq k$, we have

$$
\inf _{n \geq k} f_{n} \leq f_{j}
$$

and hence

$$
\int \inf _{n \geq k} f_{n} \leq \int f_{j}
$$

Since this is true for all $j \geq k$, we have

$$
\begin{equation*}
\int \inf _{n \geq k} f_{n} d m \leq \liminf _{n \rightarrow \infty} \int f_{n} d m \tag{3}
\end{equation*}
$$

Fatou's Lemma: Our second limit theorem

Proof:
Fix an integer k. Now for all $j \geq k$, we have

$$
\inf _{n \geq k} f_{n} \leq f_{j}
$$

and hence

$$
\int \inf _{n \geq k} f_{n} \leq \int f_{j}
$$

Since this is true for all $j \geq k$, we have

$$
\begin{equation*}
\int \inf _{n \geq k} f_{n} d m \leq \liminf _{n \rightarrow \infty} \int f_{n} d m \tag{3}
\end{equation*}
$$

We have what we want on the RHS and now we take $k \rightarrow \infty$.

Fatou's Lemma: Our second limit theorem

Proof:
Fix an integer k. Now for all $j \geq k$, we have

$$
\inf _{n \geq k} f_{n} \leq f_{j}
$$

and hence

$$
\int \inf _{n \geq k} f_{n} \leq \int f_{j}
$$

Since this is true for all $j \geq k$, we have

$$
\begin{equation*}
\int \inf _{n \geq k} f_{n} d m \leq \liminf _{n \rightarrow \infty} \int f_{n} d m \tag{3}
\end{equation*}
$$

We have what we want on the RHS and now we take $k \rightarrow \infty$. Note that $\inf _{n \geq k} f_{n}$ is an increasing sequence in k

Fatou's Lemma: Our second limit theorem

Proof:
Fix an integer k. Now for all $j \geq k$, we have

$$
\inf _{n \geq k} f_{n} \leq f_{j}
$$

and hence

$$
\int \inf _{n \geq k} f_{n} \leq \int f_{j}
$$

Since this is true for all $j \geq k$, we have

$$
\begin{equation*}
\int \inf _{n \geq k} f_{n} d m \leq \liminf _{n \rightarrow \infty} \int f_{n} d m \tag{3}
\end{equation*}
$$

We have what we want on the RHS and now we take $k \rightarrow \infty$. Note that $\inf _{n \geq k} f_{n}$ is an increasing sequence in k and converges to $\lim \inf f_{n}$.

Fatou's Lemma: Our second limit theorem

Proof:
Fix an integer k. Now for all $j \geq k$, we have

$$
\inf _{n \geq k} f_{n} \leq f_{j}
$$

and hence

$$
\int \inf _{n \geq k} f_{n} \leq \int f_{j}
$$

Since this is true for all $j \geq k$, we have

$$
\begin{equation*}
\int \inf _{n \geq k} f_{n} d m \leq \liminf _{n \rightarrow \infty} \int f_{n} d m \tag{3}
\end{equation*}
$$

We have what we want on the RHS and now we take $k \rightarrow \infty$. Note that $\inf _{n \geq k} f_{n}$ is an increasing sequence in k and converges to $\lim \inf f_{n}$. Hence by the MCT, the LHS converges, as $k \rightarrow \infty$, to $\int \lim \inf _{n \rightarrow \infty} f_{n} d m$. QED

Definition of the Lebesgue Integral for all measurable functions

Definition of the Lebesgue Integral for all measurable functions

Let

$$
f^{+}(x)=\max \{f(x), 0\}, f^{-}(x)=\max \{-f(x), 0\}
$$

Definition of the Lebesgue Integral for all measurable functions

Let

$$
f^{+}(x)=\max \{f(x), 0\}, \quad f^{-}(x)=\max \{-f(x), 0\}
$$

and note that both f^{+}, f^{-}are nonnegative, $f=f^{+}-f^{-}$and $|f|=f^{+}+f^{-}$.

Definition of the Lebesgue Integral for all measurable functions

Let

$$
f^{+}(x)=\max \{f(x), 0\}, \quad f^{-}(x)=\max \{-f(x), 0\}
$$

and note that both f^{+}, f^{-}are nonnegative, $f=f^{+}-f^{-}$and $|f|=f^{+}+f^{-}$.

Definition

(Definition of the integral for general measurable functions)

Definition of the Lebesgue Integral for all measurable functions

Let

$$
f^{+}(x)=\max \{f(x), 0\}, \quad f^{-}(x)=\max \{-f(x), 0\}
$$

and note that both f^{+}, f^{-}are nonnegative, $f=f^{+}-f^{-}$and $|f|=f^{+}+f^{-}$.

Definition

(Definition of the integral for general measurable functions) If $f:(X, \mathcal{M}, m) \rightarrow \bar{R}$, define

$$
\int f(x) d m(x):=\int f^{+}(x) d m(x)-\int f^{-}(x) d m(x)
$$

Definition of the Lebesgue Integral for all measurable functions

Let

$$
f^{+}(x)=\max \{f(x), 0\}, \quad f^{-}(x)=\max \{-f(x), 0\}
$$

and note that both f^{+}, f^{-}are nonnegative, $f=f^{+}-f^{-}$and $|f|=f^{+}+f^{-}$.

Definition

(Definition of the integral for general measurable functions) If $f:(X, \mathcal{M}, m) \rightarrow \bar{R}$, define

$$
\int f(x) d m(x):=\int f^{+}(x) d m(x)-\int f^{-}(x) d m(x)
$$

provided that at least one of the two terms on the RHS is finite.

Definition of the Lebesgue Integral for all measurable functions

Let

$$
f^{+}(x)=\max \{f(x), 0\}, \quad f^{-}(x)=\max \{-f(x), 0\}
$$

and note that both f^{+}, f^{-}are nonnegative, $f=f^{+}-f^{-}$and $|f|=f^{+}+f^{-}$.

Definition

(Definition of the integral for general measurable functions) If $f:(X, \mathcal{M}, m) \rightarrow \bar{R}$, define

$$
\int f(x) d m(x):=\int f^{+}(x) d m(x)-\int f^{-}(x) d m(x)
$$

provided that at least one of the two terms on the RHS is finite. (Otherwise, the integral is not defined).

Definition of the Lebesgue Integral for all measurable functions

Definition of the Lebesgue Integral for all measurable functions

Definition of the Lebesgue Integral for all measurable functions

Definition

If $\int f d m$ is defined and finite, we say that f is Lebesgue integrable. (This is the same as having $\int|f| d m$ being finite.)

Definition of the Lebesgue Integral for all measurable functions

Definition

If $\int f d m$ is defined and finite, we say that f is Lebesgue integrable. (This is the same as having $\int|f| d m$ being finite.)

Notation:

Definition of the Lebesgue Integral for all measurable functions

Definition

If $\int f d m$ is defined and finite, we say that f is Lebesgue integrable. (This is the same as having $\int|f| d m$ being finite.)

Notation: We let

$$
L^{1}((X, \mathcal{M}, m)):=\left\{f:(X, \mathcal{M}, m) \rightarrow \bar{R}: \int|f| d m<\infty\right\}
$$

Definition of the Lebesgue Integral for all measurable functions

Definition

If $\int f d m$ is defined and finite, we say that f is Lebesgue integrable. (This is the same as having $\int|f| d m$ being finite.)

Notation: We let

$$
L^{1}((X, \mathcal{M}, m)):=\left\{f:(X, \mathcal{M}, m) \rightarrow \bar{R}: \int|f| d m<\infty\right\}
$$

and more generally, for $p \geq 1$, we let

$$
L^{p}((X, \mathcal{M}, m)):=\left\{f:(X, \mathcal{M}, m) \rightarrow \bar{R}: \int|f|^{p} d m<\infty\right\} .
$$

Definition of the Lebesgue Integral for all measurable functions

Definition

If $\int f d m$ is defined and finite, we say that f is Lebesgue integrable. (This is the same as having $\int|f| d m$ being finite.)

Notation: We let

$$
L^{1}((X, \mathcal{M}, m)):=\left\{f:(X, \mathcal{M}, m) \rightarrow \bar{R}: \int|f| d m<\infty\right\}
$$

and more generally, for $p \geq 1$, we let

$$
L^{p}((X, \mathcal{M}, m)):=\left\{f:(X, \mathcal{M}, m) \rightarrow \bar{R}: \int|f|^{p} d m<\infty\right\} .
$$

(L^{p} are Banach spaces and L^{2} is a Hilbert space.)

An illustrative example

An illustrative example

Example: Is $f(x)=(\sin x) / x$ integrable on $(0, \infty)$ with Lebesgue measure?

An illustrative example

Example: Is $f(x)=(\sin x) / x$ integrable on $(0, \infty)$ with Lebesgue measure?

$$
\lim _{N \rightarrow \infty} \int_{0}^{N} \frac{\sin x}{x} d x \text { exists and is finite (and even is } \pi / 2 \text {). }
$$

An illustrative example

Example: Is $f(x)=(\sin x) / x$ integrable on $(0, \infty)$ with Lebesgue measure?

$$
\lim _{N \rightarrow \infty} \int_{0}^{N} \frac{\sin x}{x} d x \text { exists and is finite (and even is } \pi / 2 \text {). }
$$

Does that answer our question?

An illustrative example

Example: Is $f(x)=(\sin x) / x$ integrable on $(0, \infty)$ with Lebesgue measure?

$$
\lim _{N \rightarrow \infty} \int_{0}^{N} \frac{\sin x}{x} d x \text { exists and is finite (and even is } \pi / 2 \text {). }
$$

Does that answer our question?
No. $(\sin x) / x$ is not integrable on $(0, \infty)$ since one can check that

$$
\int_{0}^{\infty}\left|\frac{\sin x}{x}\right| d x=\infty
$$

An illustrative example

Example: Is $f(x)=(\sin x) / x$ integrable on $(0, \infty)$ with Lebesgue measure?

$$
\lim _{N \rightarrow \infty} \int_{0}^{N} \frac{\sin x}{x} d x \text { exists and is finite (and even is } \pi / 2 \text {). }
$$

Does that answer our question?
No. $(\sin x) / x$ is not integrable on $(0, \infty)$ since one can check that

$$
\int_{0}^{\infty}\left|\frac{\sin x}{x}\right| d x=\infty
$$

Similar to the cancellation in a conditionally but not absolutely convergent sequence such as

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

An illustrative example

Example: Is $f(x)=(\sin x) / x$ integrable on $(0, \infty)$ with Lebesgue measure?

$$
\lim _{N \rightarrow \infty} \int_{0}^{N} \frac{\sin x}{x} d x \text { exists and is finite (and even is } \pi / 2 \text {). }
$$

Does that answer our question?
No. $(\sin x) / x$ is not integrable on $(0, \infty)$ since one can check that

$$
\int_{0}^{\infty}\left|\frac{\sin x}{x}\right| d x=\infty
$$

Similar to the cancellation in a conditionally but not absolutely convergent sequence such as

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

This requires an order of the domain.

Lebesgue Dominated Convergence Theorem: Our third limit theorem

Lebesgue Dominated Convergence Theorem: Our third limit theorem

Theorem

(Lebesgue Dominated Convergence Theorem)

Lebesgue Dominated Convergence Theorem: Our third limit theorem

Theorem

(Lebesgue Dominated Convergence Theorem)
Let $\left(f_{n}\right)$ be a sequence of functions in $L^{1}((X, \mathcal{M}, m))$ which converges pointwise to a function f.

Lebesgue Dominated Convergence Theorem: Our third limit theorem

Theorem

(Lebesgue Dominated Convergence Theorem)
Let $\left(f_{n}\right)$ be a sequence of functions in $L^{1}((X, \mathcal{M}, m))$ which converges pointwise to a function f. Assume that there exists $g \in L^{1}((X, \mathcal{M}, m))$ such that for all n

$$
\left|f_{n}\right| \leq g .
$$

Lebesgue Dominated Convergence Theorem: Our third limit theorem

Theorem

(Lebesgue Dominated Convergence Theorem)
Let $\left(f_{n}\right)$ be a sequence of functions in $L^{1}((X, \mathcal{M}, m))$ which converges pointwise to a function f. Assume that there exists $g \in L^{1}((X, \mathcal{M}, m))$ such that for all n

$$
\left|f_{n}\right| \leq g .
$$

Then $f \in L^{1}((X, \mathcal{M}, m))$

Lebesgue Dominated Convergence Theorem: Our third limit theorem

Theorem

(Lebesgue Dominated Convergence Theorem)
Let $\left(f_{n}\right)$ be a sequence of functions in $L^{1}((X, \mathcal{M}, m))$ which converges pointwise to a function f. Assume that there exists $g \in L^{1}((X, \mathcal{M}, m))$ such that for all n

$$
\left|f_{n}\right| \leq g .
$$

Then $f \in L^{1}((X, \mathcal{M}, m))$ and

$$
\int f d m=\lim _{n \rightarrow \infty} \int f_{n} d m
$$

Lebesgue Dominated Convergence Theorem: Our third limit theorem

Lebesgue Dominated Convergence Theorem: Our third limit theorem

Proof:

Lebesgue Dominated Convergence Theorem: Our third limit

 theoremProof:
Since $\left|f_{n}\right| \leq g$ for all n and $f_{n} \rightarrow f$, we also have $|f| \leq g$

Lebesgue Dominated Convergence Theorem: Our third limit

 theoremProof:
Since $\left|f_{n}\right| \leq g$ for all n and $f_{n} \rightarrow f$, we also have $|f| \leq g$ and hence $f \in L^{1}((X, \mathcal{M}, m))$.

Lebesgue Dominated Convergence Theorem: Our third limit

 theoremProof:
Since $\left|f_{n}\right| \leq g$ for all n and $f_{n} \rightarrow f$, we also have $|f| \leq g$ and hence $f \in L^{1}((X, \mathcal{M}, m))$. Observe that for all n

$$
g+f_{n} \geq 0 \text { and } g-f_{n} \geq 0 \text { and hence }
$$

Lebesgue Dominated Convergence Theorem: Our third limit

 theoremProof:
Since $\left|f_{n}\right| \leq g$ for all n and $f_{n} \rightarrow f$, we also have $|f| \leq g$ and hence $f \in L^{1}((X, \mathcal{M}, m))$. Observe that for all n

$$
g+f_{n} \geq 0 \text { and } g-f_{n} \geq 0 \text { and hence }
$$

$$
g+f \geq 0 \text { and } g-f \geq 0
$$

Lebesgue Dominated Convergence Theorem: Our third limit

 theoremProof:
Since $\left|f_{n}\right| \leq g$ for all n and $f_{n} \rightarrow f$, we also have $|f| \leq g$ and hence $f \in L^{1}((X, \mathcal{M}, m))$. Observe that for all n

$$
g+f_{n} \geq 0 \text { and } g-f_{n} \geq 0 \text { and hence }
$$

$$
g+f \geq 0 \text { and } g-f \geq 0
$$

Applying Fatou's Lemma to $\left(g+f_{n}\right)$ (and using linearity twice),

Lebesgue Dominated Convergence Theorem: Our third limit

 theoremProof:
Since $\left|f_{n}\right| \leq g$ for all n and $f_{n} \rightarrow f$, we also have $|f| \leq g$ and hence $f \in L^{1}((X, \mathcal{M}, m))$. Observe that for all n

$$
g+f_{n} \geq 0 \text { and } g-f_{n} \geq 0 \text { and hence }
$$

$$
g+f \geq 0 \text { and } g-f \geq 0
$$

Applying Fatou's Lemma to $\left(g+f_{n}\right)$ (and using linearity twice), we get
$\int g d m+\int f d m=\int g+f d m \leq \liminf _{n \rightarrow \infty} \int g+f_{n} d m=\int g d m+\liminf _{n \rightarrow \infty} \int f_{n} d d^{\prime}$

Lebesgue Dominated Convergence Theorem: Our third limit

 theoremProof:
Since $\left|f_{n}\right| \leq g$ for all n and $f_{n} \rightarrow f$, we also have $|f| \leq g$ and hence $f \in L^{1}((X, \mathcal{M}, m))$. Observe that for all n

$$
g+f_{n} \geq 0 \text { and } g-f_{n} \geq 0 \text { and hence }
$$

$$
g+f \geq 0 \text { and } g-f \geq 0
$$

Applying Fatou's Lemma to $\left(g+f_{n}\right)$ (and using linearity twice), we get
$\int g d m+\int f d m=\int g+f d m \leq \liminf _{n \rightarrow \infty} \int g+f_{n} d m=\int g d m+\liminf _{n \rightarrow \infty} \int f_{n} d l^{\prime}$
Subtracting $\int g d m$ from both sides gives

$$
\int f d m \leq \liminf _{n \rightarrow \infty} \int f_{n} d m
$$

Lebesgue Dominated Convergence Theorem: Our third limit theorem

Lebesgue Dominated Convergence Theorem: Our third limit

 theoremSimilarly, we have
$\int g d m-\int f d m=\int g-f d m \leq \liminf _{n \rightarrow \infty} \int g-f_{n} d m=\int g d m-\limsup _{n \rightarrow \infty} \int f_{n} d$

Lebesgue Dominated Convergence Theorem: Our third limit

 theoremSimilarly, we have
$\int g d m-\int f d m=\int g-f d m \leq \liminf _{n \rightarrow \infty} \int g-f_{n} d m=\int g d m-\limsup _{n \rightarrow \infty} \int f_{n} d$
Subtracting $\int g d m$ from both sides gives

$$
\int f d m \geq \lim \sup \int f_{n} d m
$$

Lebesgue Dominated Convergence Theorem: Our third limit

 theoremSimilarly, we have
$\int g d m-\int f d m=\int g-f d m \leq \liminf _{n \rightarrow \infty} \int g-f_{n} d m=\int g d m-\limsup _{n \rightarrow \infty} \int f_{n} d$
Subtracting $\int g d m$ from both sides gives

$$
\int f d m \geq \limsup \int f_{n} d m
$$

So we have

$$
\int f d m \leq \lim \inf \int f_{n} d m \leq \lim \sup \int f_{n} d m \leq \int f d m
$$

Lebesgue Dominated Convergence Theorem: Our third limit

 theoremSimilarly, we have
$\int g d m-\int f d m=\int g-f d m \leq \liminf _{n \rightarrow \infty} \int g-f_{n} d m=\int g d m-\limsup _{n \rightarrow \infty} \int f_{n} d$
Subtracting $\int g d m$ from both sides gives

$$
\int f d m \geq \lim \sup \int f_{n} d m
$$

So we have

$$
\int f d m \leq \liminf \int f_{n} d m \leq \lim \sup \int f_{n} d m \leq \int f d m .
$$

Hence the limit of $\int f_{n} d m$ exists and is $\int f d m$ as claimed. QED

An example on how one shows a set is measurable

An example on how one shows a set is measurable
Lemma
If the sequence $\left(f_{n}\right)$ and f are measurable functions on (X, \mathcal{M}, m), then

$$
\left\{x: f_{n}(x) \rightarrow f(x)\right\} \in \mathcal{M}
$$

An example on how one shows a set is measurable

Lemma
If the sequence $\left(f_{n}\right)$ and f are measurable functions on (X, \mathcal{M}, m), then

$$
\left\{x: f_{n}(x) \rightarrow f(x)\right\} \in \mathcal{M}
$$

Proof:

An example on how one shows a set is measurable

Lemma

If the sequence $\left(f_{n}\right)$ and f are measurable functions on (X, \mathcal{M}, m), then

$$
\left\{x: f_{n}(x) \rightarrow f(x)\right\} \in \mathcal{M}
$$

Proof:

Untangling what the definition of a limit is (and thinking a bit), it is not hard to see that the set above is the same as

$$
\bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty}\left\{x:\left|f_{n}(x)-f(x)\right|<1 / m\right\}
$$

An example on how one shows a set is measurable

Lemma

If the sequence $\left(f_{n}\right)$ and f are measurable functions on (X, \mathcal{M}, m), then

$$
\left\{x: f_{n}(x) \rightarrow f(x)\right\} \in \mathcal{M}
$$

Proof:
Untangling what the definition of a limit is (and thinking a bit), it is not hard to see that the set above is the same as

$$
\bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty}\left\{x:\left|f_{n}(x)-f(x)\right|<1 / m\right\}
$$

This belongs to \mathcal{M} since the events on the RHS do and then we are applying countable set operations.
QED

Different notions of convergence

Different notions of convergence

Definition

If the sequence $\left(f_{n}\right)$ and f are measurable functions on (X, \mathcal{M}, m), then we say

Different notions of convergence

Definition

If the sequence $\left(f_{n}\right)$ and f are measurable functions on (X, \mathcal{M}, m), then we say
(i) f_{n} converges to f a.e. if

Different notions of convergence

Definition

If the sequence $\left(f_{n}\right)$ and f are measurable functions on (X, \mathcal{M}, m), then we say
(i) f_{n} converges to f a.e. if

$$
m\left(\left\{x: f_{n}(x) \nrightarrow f(x)\right\}\right)=0
$$

Different notions of convergence

Definition

If the sequence $\left(f_{n}\right)$ and f are measurable functions on (X, \mathcal{M}, m), then we say
(i) f_{n} converges to f a.e. if

$$
m\left(\left\{x: f_{n}(x) \nrightarrow f(x)\right\}\right)=0
$$

(ii) f_{n} converges to f in measure if for every $\epsilon>0$,

Different notions of convergence

Definition

If the sequence $\left(f_{n}\right)$ and f are measurable functions on (X, \mathcal{M}, m), then we say
(i) f_{n} converges to f a.e. if

$$
m\left(\left\{x: f_{n}(x) \nrightarrow f(x)\right\}\right)=0
$$

(ii) f_{n} converges to f in measure if for every $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} m\left(\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)=0 .
$$

Different notions of convergence

Different notions of convergence

$$
m\left(\left\{x: f_{n}(x) \nrightarrow f(x)\right\}\right)=0,
$$

for every $\epsilon, \lim _{n \rightarrow \infty} m\left(\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)=0$.

Different notions of convergence

$$
\begin{aligned}
& \quad m\left(\left\{x: f_{n}(x) \nrightarrow f(x)\right\}\right)=0, \\
& \text { for every } \epsilon, \lim _{n \rightarrow \infty} m\left(\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)=0 .
\end{aligned}
$$

- There is an example where convergence a.e. occurs but not convergence in measure.

Different notions of convergence

$$
\begin{gathered}
m\left(\left\{x: f_{n}(x) \nrightarrow f(x)\right\}\right)=0, \\
\text { for every } \epsilon, \lim _{n \rightarrow \infty} m\left(\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)=0 .
\end{gathered}
$$

- There is an example where convergence a.e. occurs but not convergence in measure.
- Convergence a.e. implies convergence in measure if the measure space is finite.

Different notions of convergence

$$
\begin{aligned}
& \quad m\left(\left\{x: f_{n}(x) \nrightarrow f(x)\right\}\right)=0, \\
& \text { for every } \epsilon, \lim _{n \rightarrow \infty} m\left(\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)=0 .
\end{aligned}
$$

- There is an example where convergence a.e. occurs but not convergence in measure.
- Convergence a.e. implies convergence in measure if the measure space is finite.
- Convergence in measure, does not imply convergence a.e. even if the measure space is finite.

Different notions of convergence

$$
\begin{gathered}
m\left(\left\{x: f_{n}(x) \nrightarrow f(x)\right\}\right)=0, \\
\text { for every } \epsilon, \lim _{n \rightarrow \infty} m\left(\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon\right\}\right)=0 .
\end{gathered}
$$

- There is an example where convergence a.e. occurs but not convergence in measure.
- Convergence a.e. implies convergence in measure if the measure space is finite.
- Convergence in measure, does not imply convergence a.e. even if the measure space is finite.
- Convergence in measure implies that there exists a subsequence for which one has convergence a.e.

Different notions of convergence

Different notions of convergence

Proof:

Different notions of convergence

Proof:

1. On $[0, \infty)$ with Lebesgue measure, let $f_{n}=I_{[n, n+1]}$. Check f_{n} goes to 0 for every x but not in measure.

Different notions of convergence

Proof:

1. On $[0, \infty)$ with Lebesgue measure, let $f_{n}=I_{[n, n+1]}$. Check f_{n} goes to 0 for every x but not in measure.
2. Fix $\epsilon>0$.

Different notions of convergence

Proof:

1. On $[0, \infty)$ with Lebesgue measure, let $f_{n}=I_{[n, n+1]}$. Check f_{n} goes to 0 for every x but not in measure.
2. Fix $\epsilon>0$. Let

$$
E_{N}=\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon \text { some } n \geq N\right\} .
$$

Different notions of convergence

Proof:

1. On $[0, \infty)$ with Lebesgue measure, let $f_{n}=I_{[n, n+1]}$. Check f_{n} goes to 0 for every x but not in measure.
2. Fix $\epsilon>0$. Let

$$
E_{N}=\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon \text { some } n \geq N\right\} .
$$

Observe that $E_{1} \supseteq E_{2} \supseteq E_{3} \ldots$

Different notions of convergence

Proof:

1. On $[0, \infty)$ with Lebesgue measure, let $f_{n}=I_{[n, n+1]}$. Check f_{n} goes to 0 for every x but not in measure.
2. Fix $\epsilon>0$. Let

$$
E_{N}=\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon \text { some } n \geq N\right\} .
$$

Observe that $E_{1} \supseteq E_{2} \supseteq E_{3} \ldots$ and that

$$
\bigcap_{k} E_{k} \subseteq\left\{x: f_{n}(x) \nrightarrow f(x)\right\}
$$

Different notions of convergence

Proof:

1. On $[0, \infty)$ with Lebesgue measure, let $f_{n}=l_{[n, n+1]}$. Check f_{n} goes to 0 for every x but not in measure.
2. Fix $\epsilon>0$. Let

$$
E_{N}=\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon \text { some } n \geq N\right\} .
$$

Observe that $E_{1} \supseteq E_{2} \supseteq E_{3} \ldots$ and that

$$
\bigcap_{k} E_{k} \subseteq\left\{x: f_{n}(x) \nrightarrow f(x)\right\}
$$

and hence by assumption $m\left(\bigcap_{k} E_{k}\right)=0$.

Different notions of convergence

Proof:

1. On $[0, \infty)$ with Lebesgue measure, let $f_{n}=l_{[n, n+1]}$. Check f_{n} goes to 0 for every x but not in measure.
2. Fix $\epsilon>0$. Let

$$
E_{N}=\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon \text { some } n \geq N\right\} .
$$

Observe that $E_{1} \supseteq E_{2} \supseteq E_{3} \ldots$ and that

$$
\bigcap_{k} E_{k} \subseteq\left\{x: f_{n}(x) \nrightarrow f(x)\right\}
$$

and hence by assumption $m\left(\bigcap_{k} E_{k}\right)=0$. By continuity from above (which requires that the measure space be finite!),

Different notions of convergence

Proof:

1. On $[0, \infty)$ with Lebesgue measure, let $f_{n}=l_{[n, n+1]}$. Check f_{n} goes to 0 for every x but not in measure.
2. Fix $\epsilon>0$. Let

$$
E_{N}=\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon \text { some } n \geq N\right\} .
$$

Observe that $E_{1} \supseteq E_{2} \supseteq E_{3} \ldots$ and that

$$
\bigcap_{k} E_{k} \subseteq\left\{x: f_{n}(x) \nrightarrow f(x)\right\}
$$

and hence by assumption $m\left(\bigcap_{k} E_{k}\right)=0$. By continuity from above (which requires that the measure space be finite!), we get

$$
m\left(\left\{x:\left|f_{N}(x)-f(x)\right| \geq \epsilon\right\}\right) \leq m\left(E_{N}\right) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Different notions of convergence

Proof:

1. On $[0, \infty)$ with Lebesgue measure, let $f_{n}=l_{[n, n+1]}$. Check f_{n} goes to 0 for every x but not in measure.
2. Fix $\epsilon>0$. Let

$$
E_{N}=\left\{x:\left|f_{n}(x)-f(x)\right| \geq \epsilon \text { some } n \geq N\right\} .
$$

Observe that $E_{1} \supseteq E_{2} \supseteq E_{3} \ldots$ and that

$$
\bigcap_{k} E_{k} \subseteq\left\{x: f_{n}(x) \nrightarrow f(x)\right\}
$$

and hence by assumption $m\left(\bigcap_{k} E_{k}\right)=0$. By continuity from above (which requires that the measure space be finite!), we get

$$
m\left(\left\{x:\left|f_{N}(x)-f(x)\right| \geq \epsilon\right\}\right) \leq m\left(E_{N}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

3. This is best described by a picture. See the (admittedly terrible) picture.

Different notions of convergence

Different notions of convergence

Different notions of convergence

Different notions of convergence

4. Assume $\left(f_{n}\right)$ converges to f in measure.

Different notions of convergence

4. Assume $\left(f_{n}\right)$ converges to f in measure. Then for each integer k, we can choose n_{k} so that

$$
m\left(\left\{x:\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}\right\}\right) \leq \frac{1}{2^{k}}
$$

Different notions of convergence

4. Assume $\left(f_{n}\right)$ converges to f in measure. Then for each integer k, we can choose n_{k} so that

$$
m\left(\left\{x:\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}\right\}\right) \leq \frac{1}{2^{k}}
$$

and we can assume the n_{k} 's are increasing in k.

Different notions of convergence

4. Assume $\left(f_{n}\right)$ converges to f in measure. Then for each integer k, we can choose n_{k} so that

$$
m\left(\left\{x:\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}\right\}\right) \leq \frac{1}{2^{k}}
$$

and we can assume the n_{k} 's are increasing in k. Letting

$$
B_{k}:=\left\{x:\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}\right\}
$$

Different notions of convergence

4. Assume $\left(f_{n}\right)$ converges to f in measure. Then for each integer k, we can choose n_{k} so that

$$
m\left(\left\{x:\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}\right\}\right) \leq \frac{1}{2^{k}}
$$

and we can assume the n_{k} 's are increasing in k. Letting

$$
B_{k}:=\left\{x:\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}\right\}
$$

we have

$$
\sum_{k} m\left(B_{k}\right)<\infty
$$

Different notions of convergence

4. Assume $\left(f_{n}\right)$ converges to f in measure. Then for each integer k, we can choose n_{k} so that

$$
m\left(\left\{x:\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}\right\}\right) \leq \frac{1}{2^{k}}
$$

and we can assume the n_{k} 's are increasing in k. Letting

$$
B_{k}:=\left\{x:\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}\right\},
$$

we have
$\sum_{k} m\left(B_{k}\right)<\infty$ and hence from the Borel-Cantelli Lemma, we have

$$
m\left(B_{k} \text { i.o. }\right)=0 .
$$

Different notions of convergence

4. Assume $\left(f_{n}\right)$ converges to f in measure. Then for each integer k, we can choose n_{k} so that

$$
m\left(\left\{x:\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}\right\}\right) \leq \frac{1}{2^{k}}
$$

and we can assume the n_{k} 's are increasing in k. Letting

$$
B_{k}:=\left\{x:\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}\right\},
$$

we have

$$
\begin{aligned}
& \sum_{k} m\left(B_{k}\right)<\infty \text { and hence from the Borel-Cantelli Lemma, we have } \\
& \qquad m\left(B_{k} \text { i.o. }\right)=0 .
\end{aligned}
$$

Now, if x is not in (B_{k} i.o.),

Different notions of convergence

4. Assume $\left(f_{n}\right)$ converges to f in measure. Then for each integer k, we can choose n_{k} so that

$$
m\left(\left\{x:\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}\right\}\right) \leq \frac{1}{2^{k}}
$$

and we can assume the n_{k} 's are increasing in k. Letting

$$
B_{k}:=\left\{x:\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}\right\},
$$

we have

$$
\sum_{k} m\left(B_{k}\right)<\infty \text { and hence from the Borel-Cantelli Lemma, we have }
$$

$$
m\left(B_{k} \text { i.o. }\right)=0 .
$$

Now, if x is not in (B_{k} i.o.), meaning $x \in B_{k}$ for only finitely many k,

Different notions of convergence

4. Assume $\left(f_{n}\right)$ converges to f in measure. Then for each integer k, we can choose n_{k} so that

$$
m\left(\left\{x:\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}\right\}\right) \leq \frac{1}{2^{k}}
$$

and we can assume the n_{k} 's are increasing in k. Letting

$$
B_{k}:=\left\{x:\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}\right\},
$$

we have
$\sum_{k} m\left(B_{k}\right)<\infty$ and hence from the Borel-Cantelli Lemma, we have

$$
m\left(B_{k} \text { i.o. }\right)=0 .
$$

Now, if x is not in (B_{k} i.o.), meaning $x \in B_{k}$ for only finitely many k, then $\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}$ for only finitely many k

Different notions of convergence

4. Assume $\left(f_{n}\right)$ converges to f in measure. Then for each integer k, we can choose n_{k} so that

$$
m\left(\left\{x:\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}\right\}\right) \leq \frac{1}{2^{k}}
$$

and we can assume the n_{k} 's are increasing in k. Letting

$$
B_{k}:=\left\{x:\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}\right\},
$$

we have
$\sum_{k} m\left(B_{k}\right)<\infty$ and hence from the Borel-Cantelli Lemma, we have

$$
m\left(B_{k} \text { i.o. }\right)=0 .
$$

Now, if x is not in (B_{k} i.o.), meaning $x \in B_{k}$ for only finitely many k, then $\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{1}{k}$ for only finitely many k and hence

$$
f_{n_{k}}(x) \rightarrow f(x) .
$$

Markov's inequality

Markov's inequality

Theorem

(Markov's Inequality)

Markov's inequality

Theorem

(Markov's Inequality) Let f be a nonnegative measurable function on (X, \mathcal{M}, m).

Markov's inequality

Theorem

(Markov's Inequality) Let f be a nonnegative measurable function on (X, \mathcal{M}, m). Then for every $\alpha>0$,

Markov's inequality

Theorem

(Markov's Inequality) Let f be a nonnegative measurable function on (X, \mathcal{M}, m). Then for every $\alpha>0$, one has

$$
m(\{x: f(x) \geq \alpha\}) \leq \frac{\int f d m}{\alpha}
$$

Markov's inequality

Theorem

(Markov's Inequality) Let f be a nonnegative measurable function on (X, \mathcal{M}, m). Then for every $\alpha>0$, one has

$$
m(\{x: f(x) \geq \alpha\}) \leq \frac{\int f d m}{\alpha}
$$

Proof:

Markov's inequality

Theorem

(Markov's Inequality) Let f be a nonnegative measurable function on (X, \mathcal{M}, m). Then for every $\alpha>0$, one has

$$
m(\{x: f(x) \geq \alpha\}) \leq \frac{\int f d m}{\alpha}
$$

Proof:
We have

$$
\int f d m=
$$

Markov's inequality

Theorem

(Markov's Inequality) Let f be a nonnegative measurable function on (X, \mathcal{M}, m). Then for every $\alpha>0$, one has

$$
m(\{x: f(x) \geq \alpha\}) \leq \frac{\int f d m}{\alpha}
$$

Proof:
We have

$$
\int f d m=\int f l_{\{x: f(x) \geq \alpha\}} d m+\int f l_{\{x: f(x)<\alpha\}} d m
$$

Markov's inequality

Theorem

(Markov's Inequality) Let f be a nonnegative measurable function on (X, \mathcal{M}, m). Then for every $\alpha>0$, one has

$$
m(\{x: f(x) \geq \alpha\}) \leq \frac{\int f d m}{\alpha}
$$

Proof:
We have

$$
\begin{aligned}
& \int f d m=\int f I_{\{x: f(x) \geq \alpha\}} d m+\int f I_{\{x: f(x)<\alpha\}} d m \\
& \geq \int \alpha I_{\{x: f(x) \geq \alpha\}} d m=
\end{aligned}
$$

Markov's inequality

Theorem

(Markov's Inequality) Let f be a nonnegative measurable function on (X, \mathcal{M}, m). Then for every $\alpha>0$, one has

$$
m(\{x: f(x) \geq \alpha\}) \leq \frac{\int f d m}{\alpha}
$$

Proof:
We have

$$
\begin{aligned}
& \int f d m=\int f I_{\{x: f(x) \geq \alpha\}} d m+\int f I_{\{x: f(x)<\alpha\}} d m \\
& \geq \int \alpha I_{\{x: f(x) \geq \alpha\}} d m=\alpha m(\{x: f(x) \geq \alpha\})
\end{aligned}
$$

QED

Chebyshev's Inequality

Chebyshev's Inequality

Theorem

(Chebyshev's Inequality)

Chebyshev's Inequality

Theorem

(Chebyshev's Inequality) Let f be a measurable function on (X, \mathcal{M}, m) with $\int|f| d m<\infty$.

Chebyshev's Inequality

Theorem

(Chebyshev's Inequality) Let f be a measurable function on (X, \mathcal{M}, m) with $\int|f| d m<\infty$. Then for any $\alpha>0$,

Chebyshev's Inequality

Theorem

(Chebyshev's Inequality) Let f be a measurable function on (X, \mathcal{M}, m) with $\int|f| d m<\infty$. Then for any $\alpha>0$, one has

$$
m\left(\left\{x:\left|f(x)-\int f d m\right| \geq \alpha\right\}\right) \leq \frac{\int\left(f-\int f d m\right)^{2} d m}{\alpha^{2}}
$$

Chebyshev's Inequality

Theorem

(Chebyshev's Inequality) Let f be a measurable function on (X, \mathcal{M}, m) with $\int|f| d m<\infty$. Then for any $\alpha>0$, one has

$$
m\left(\left\{x:\left|f(x)-\int f d m\right| \geq \alpha\right\}\right) \leq \frac{\int\left(f-\int f d m\right)^{2} d m}{\alpha^{2}}
$$

Proof:

Chebyshev's Inequality

Theorem

(Chebyshev's Inequality) Let f be a measurable function on (X, \mathcal{M}, m) with $\int|f| d m<\infty$. Then for any $\alpha>0$, one has

$$
m\left(\left\{x:\left|f(x)-\int f d m\right| \geq \alpha\right\}\right) \leq \frac{\int\left(f-\int f d m\right)^{2} d m}{\alpha^{2}}
$$

Proof:
Apply Markov's inequality to the nonnegative function $\left(f(x)-\int f d m\right)^{2}$. QED

