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Total Variation

Definition
If f:[a, b] — R, we define the total variation of f on [a, b] C [0, 1] to be

T\/[ab] —sup{Z|fx, f(xi—1)|:a=x<x1<xx<...<x,=b}.

(1)

September 27, 2020 2/14



Total Variation

Definition
If f:[a, b] — R, we define the total variation of f on [a, b] C [0, 1] to be
TV (f —sup{Z]fx, f(xi—1)|:a=x<x1 <x2 <...<xp,=b}.

(1)

We say f is of bounded variation on [a, b] if TV|, 4j(f) < oo;

September 27, 2020 2/14



Total Variation

Definition
If f:[a, b] — R, we define the total variation of f on [a, b] C [0, 1] to be

TV (f —sup{Z]fx, f(xi—1)|:a=x <x1 <x2 <...<x,=b}.

(1)
We say f is of bounded variation on [a, b] if TV, ;j(f) < oo; otherwise
we say f is of unbounded variation on [a, b].

September 27, 2020 2/14



Total Variation

Definition
If f:[a, b] — R, we define the total variation of f on [a, b] C [0, 1] to be

TV (f —sup{Z]fx, f(xi—1)|:a=x <x1 <x2 <...<x,=b}.
(1)

We say f is of bounded variation on [a, b] if TV, ;j(f) < oo; otherwise
we say f is of unbounded variation on [a, b].

Remarks:
(i). If f is monotone increasing, then TV|, ;j(f) = f(b) — f(a).
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Total Variation

Definition
If f:[a, b] — R, we define the total variation of f on [a, b] C [0, 1] to be

TV (f —sup{Z]fx, f(xi—1)|:a=x <x1 <x2 <...<x,=b}.

(1)
We say f is of bounded variation on [a, b] if TV, ;j(f) < oo; otherwise
we say f is of unbounded variation on [a, b].

Remarks:

(i). If f is monotone increasing, then TV|, ;j(f) = f(b) — f(a).

(i) 7_V[a,b](_f) = T\/[a,b](f)'

(iii). If f is the indicator function of the rationals, then f is of unbounded
variation on every (nontrivial) interval.
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Characterization of functions with finite Total Variation

Theorem

f is of bounded variation on an interval if and only if there exist increasing
functions g and h so that f = g — h.

Proof outline: IF:

> g =) — (g = h)(xi-1)| <
i=1
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Characterization of functions with finite Total Variation

Theorem

f is of bounded variation on an interval if and only if there exist increasing
functions g and h so that f = g — h.

Proof outline: IF:

n

D g =hmx) = (g —h(xi-1)l < D lg(xi) — g(xi-1)l +h(xi) — h(xi-1)]
i=1

i=1
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Characterization of functions with finite Total Variation

Theorem

f is of bounded variation on an interval if and only if there exist increasing
functions g and h so that f = g — h.

Proof outline: IF:

ZI g—h)(x)— (g —h(xi-1) < Y lg(xi) — g(xi-1)| +h(x:) — h(xi-1)]

i=1

= g(b) — g(a) + h(b) — h(a)
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Characterization of functions with finite Total Variation

Step 1:
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Characterization of functions with finite Total Variation

Step 1:
TV[a,c](f) = Tv[a,b](f) =+ Tv[b,c](f)'

In particular TV, ,j(f) is an increasing function of x.

Step 2: TVjp () + f(x) is an increasing function of x.
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Step 2: TVjp () + f(x) is an increasing function of x.
subproof: If 0 < x <y <1,
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Characterization of functions with finite Total Variation

Step 1:
TV[a,c](f) = TV[a,b](f) =+ Tv[b,c](f)'

In particular TV, ,j(f) is an increasing function of x.

Step 2: TVjp () + f(x) is an increasing function of x.
subproof: If 0 < x <y <1,

F(x) = F(y) < 1F(x) = F)] < TV (F) = TV]o ) (F) = TVjoq(f)

where the last equality comes from Step 1. Now rewrite. subQED
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Characterization of functions with finite Total Variation

Step 1:
TV[a,c](f) = TV[a,b](f) =+ Tv[b,c](f)'

In particular TV, ,j(f) is an increasing function of x.
Step 2: TVjp () + f(x) is an increasing function of x.
subproof: If 0 < x <y <1,
F(x) = F(y) < If(x) = F) < TV (F) = TV)o ) (F) — TVjo 4(f)
where the last equality comes from Step 1. Now rewrite. subQED
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Characterization of functions with finite Total Variation

Step 1:
TV[a,c](f) = TV[a,b](f) + Tv[b,c](f)'

In particular TV, ,j(f) is an increasing function of x.

Step 2: TVjp () + f(x) is an increasing function of x.
subproof: If 0 < x <y <1,

f(x) = f(y) < 1F(x) = F(¥)| < TV (f) = TVio(f) — TVjoq(f)
where the last equality comes from Step 1. Now rewrite. subQED
Step 3: Note that
TWVox(F) +1(x)  TVpoq(F) — f(x)
2 2 '

The two summands are increasing in x by Step 2,

f(x) =
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Characterization of functions with finite Total Variation

Step 1:
TVia,(F) = TVia(F) + TVip,q(f)-
In particular TV, ,j(f) is an increasing function of x.
Step 2: TVjp () + f(x) is an increasing function of x.
subproof: If 0 < x <y <1,
F(x) = f(y) S F(x) = F(¥)| £ TV (F) = TV)o,1(f) — TVjoq(f)
where the last equality comes from Step 1. Now rewrite. subQED
Step 3: Note that
TWVox(F) +1(x)  TVpoq(F) — f(x)
2 2 ’
The two summands are increasing in x by Step 2, where for the second

term we also use the fact that TVjg q(—f) = TV|g ()
QED

f(x) =
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Signed measures and function of finite Variation
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Signed measures and function of finite Variation

There is a 1-1 correspondence between signed measures and functions of
bounded variation. The bijection is given by 1 a signed measure on [0, 1] is
sent to the bounded variation function

F.(x) :== p([0, x].
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Absolute continuity

Definition
f :[0,1]toR is absolutely continuous if for all € > 0, there exists § > 0 so
that f0<xi <y < <yp<...,xp<y,<1
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Absolute continuity

Definition
f :[0,1]toR is absolutely continuous if for all € > 0, there exists § > 0 so
thatif0<xi <y1 < <y <...,xp <y, <1and

n

> (i —xi) <4,

i=1
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Definition

f :[0,1]toR is absolutely continuous if for all € > 0, there exists § > 0 so
thatif0<xi <y1 < <y <...,xp <y, <1and

then

Absolute continuity

n

> (i —xi) <4,

i=1

n

Do) — )l < e

i=1

September 27, 2020 6/14



Definition

f : [0,1]toR is absolutely continuous if for all ¢ > 0, there exists 6 > 0 so

Absolute continuity

thatif0<xi <y1 < <y <...,xp <y, <1and

then

n

> (i —xi) <4,

i=1

n

S () — Fx0)] < e.

i=1

n = 1 corresponds to uniformity continuity.

September 27, 2020

6/14



Absolute continuity

Definition

f : [0,1]toR is absolutely continuous if for all ¢ > 0, there exists 6 > 0 so

thatif0<xi <y1 < <y <...,xp <y, <1and

n

> (i —xi) <4,

i=1

then

n

D IF(i) = Fxa)l < e

i=1

n = 1 corresponds to uniformity continuity.

The Cantor Ternary function is not absolutely continuous.
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How do our two definitions of absolute continuity relate?
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First, note that f is continuous if and only if uf has no atoms.
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Proposition: Let f be a nonnegative monotone increasing function on [0, 1]
with £(0) = 0. Then f is absolutely continuous if and only if uf < m
where m is Lebesgue measure on [0, 1].

Proof:
First, note that f is continuous if and only if uf has no atoms. If these
equivalent conditions fail, then both sides in the proposition fail.
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How do our two definitions of absolute continuity relate?

Proposition: Let f be a nonnegative monotone increasing function on [0, 1]
with £(0) = 0. Then f is absolutely continuous if and only if uf < m
where m is Lebesgue measure on [0, 1].

Proof:

First, note that f is continuous if and only if uf has no atoms. If these
equivalent conditions fail, then both sides in the proposition fail. Hence we
can assume that f is continuous or equivalently s is continuous (i.e. no
atoms).
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Proof of the equivalence of the two definitions of absolute
continuity
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Proof of the equivalence of the two definitions of absolute
continuity
If uf < m, then f is absolutely continuous.
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Proof of the equivalence of the two definitions of absolute

continuity

If uf < m, then f is absolutely continuous.
Proof: Let € > 0 and choose § > 0 so that

m(A) < § implies that pr(A) < e.
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Proof of the equivalence of the two definitions of absolute
continuity

If uf < m, then f is absolutely continuous.
Proof: Let € > 0 and choose § > 0 so that

m(A) < § implies that pr(A) < e.

Now if 0 <x1 <y1 <x2 <y2 <....% <yn<1lwith> " (yi—x) <9,
then we have that

m({J(xi, i) <6
i=1
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Proof of the equivalence of the two definitions of absolute
continuity

If uf < m, then f is absolutely continuous.
Proof: Let € > 0 and choose § > 0 so that

m(A) < § implies that pr(A) < e.
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Proof of the equivalence of the two definitions of absolute

continuity

If uf < m, then f is absolutely continuous.
Proof: Let € > 0 and choose § > 0 so that

m(A) < § implies that pr(A) < e.
Now if 0 <x1 <y1 <xo<y2 <....%n <yn<1lwith> 7" (yi

then we have that .

m(U(Xi,}/i)) <9

implying that

which is equivalent to

Y1) = f(x)l < e
i—1

—X,') < 5,
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Proof of the equivalence of the two definitions of absolute
continuity
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Proof of the equivalence of the two definitions of absolute
continuity

If f is absolutely continuous, then uf < m.
Proof: Assume that m(A) = 0 for some Borel set A. We need to show that

pr(A) =0.
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Proof of the equivalence of the two definitions of absolute
continuity

If f is absolutely continuous, then uf < m.

Proof: Assume that m(A) = 0 for some Borel set A. We need to show that
wur(A) = 0. Fix € > 0 and choose the corresponding § in the definition of
absolute continuity of .
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Proof of the equivalence of the two definitions of absolute
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If f is absolutely continuous, then uf < m.

Proof: Assume that m(A) = 0 for some Borel set A. We need to show that
wur(A) = 0. Fix € > 0 and choose the corresponding § in the definition of
absolute continuity of f. Let U be an open set containing A with

m(U) < § and write U as a disjoint union of open intervals {(aj, b;)}.
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Proof of the equivalence of the two definitions of absolute
continuity

If f is absolutely continuous, then uf < m.

Proof: Assume that m(A) = 0 for some Borel set A. We need to show that
wur(A) = 0. Fix € > 0 and choose the corresponding § in the definition of
absolute continuity of f. Let U be an open set containing A with

m(U) < § and write U as a disjoint union of open intervals {(aj, b;)}.
Since we have for any N

it follows that

and so ur(UN,(ai, bj)) < e.
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Proof of the equivalence of the two definitions of absolute
continuity

If f is absolutely continuous, then uf < m.

Proof: Assume that m(A) = 0 for some Borel set A. We need to show that
wur(A) = 0. Fix € > 0 and choose the corresponding § in the definition of
absolute continuity of f. Let U be an open set containing A with

m(U) < § and write U as a disjoint union of open intervals {(aj, b;)}.
Since we have for any N

it follows that

D If(bi) — f(a) <€

i=1
and so ,uf(U,{V:l(a,-, bi)) < e. By letting N — oo,
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Proof of the equivalence of the two definitions of absolute
continuity

If f is absolutely continuous, then uf < m.

Proof: Assume that m(A) = 0 for some Borel set A. We need to show that
wur(A) = 0. Fix € > 0 and choose the corresponding § in the definition of
absolute continuity of f. Let U be an open set containing A with

m(U) < § and write U as a disjoint union of open intervals {(aj, b;)}.
Since we have for any N

it follows that

D If(bi) — f(a) <€

i=1
and so ,uf(U,{V:l(a,-, bi)) < €. By letting N — 0o, we have ur(U) <e.
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Proof of the equivalence of the two definitions of absolute
continuity

If f is absolutely continuous, then uf < m.

Proof: Assume that m(A) = 0 for some Borel set A. We need to show that
wur(A) = 0. Fix € > 0 and choose the corresponding § in the definition of
absolute continuity of f. Let U be an open set containing A with
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Proof of the equivalence of the two definitions of absolute
continuity

If f is absolutely continuous, then uf < m.

Proof: Assume that m(A) = 0 for some Borel set A. We need to show that
wur(A) = 0. Fix € > 0 and choose the corresponding § in the definition of
absolute continuity of f. Let U be an open set containing A with

m(U) < § and write U as a disjoint union of open intervals {(aj, b;)}.
Since we have for any N

it follows that

D If(bi) — f(a) <€

i=1
and so ,uf(U,{V:l(a,-, bi)) < €. By letting N — oo, we have us(U) < €. Since
A C U, this gives uf(A) < € and since ¢ is arbitrary, we get pf(A) = 0.
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Finite total variation and absolute continuity

Proposition If £ : [0,1] — R is absolutely continuous, then it has bounded
variation.

Proof:
Let ¢ correspond to € = 1 in the definition of absolute continuity for f.
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Finite total variation and absolute continuity
Proposition If £ : [0,1] — R is absolutely continuous, then it has bounded
variation.

Proof:
Let ¢ correspond to € = 1 in the definition of absolute continuity for f.

Choose N to be an integer larger than 1/6.
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Finite total variation and absolute continuity

Proposition If £ : [0,1] — R is absolutely continuous, then it has bounded
variation.

Proof:

Let ¢ correspond to € = 1 in the definition of absolute continuity for f.
Choose N to be an integer larger than 1/6. Choose an arbitrary partition
OD=xp<x1<x<...<xp,=1
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the sum in the definition of total variation,
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Finite total variation and absolute continuity

Proposition If £ : [0,1] — R is absolutely continuous, then it has bounded
variation.

Proof:

Let § correspond to € = 1 in the definition of absolute continuity for f.
Choose N to be an integer larger than 1/6. Choose an arbitrary partition
0=x0<x1 <x2<...<xp,=1. Since refining a partition only increases
the sum in the definition of total variation, we can assume that

Xxo < x1 < xp < ... < xp contain the points k/N for each integer k.
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Finite total variation and absolute continuity

Proposition If £ : [0,1] — R is absolutely continuous, then it has bounded
variation.

Proof:

Let § correspond to € = 1 in the definition of absolute continuity for f.
Choose N to be an integer larger than 1/6. Choose an arbitrary partition
0=x0<x1 <x2<...<xp,=1. Since refining a partition only increases
the sum in the definition of total variation, we can assume that
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Finite total variation and absolute continuity

Proposition If £ : [0,1] — R is absolutely continuous, then it has bounded
variation.

Proof:

Let § correspond to € = 1 in the definition of absolute continuity for f.
Choose N to be an integer larger than 1/6. Choose an arbitrary partition
0=x0<x1 <x2<...<xp,=1. Since refining a partition only increases
the sum in the definition of total variation, we can assume that

X0 < x1 < xp < ... < xp contain the points k/N for each integer k. Then
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into pieces corresponding to [0,1/N],[1/N,2/N],... . [(N —1)/N,1], the
sum over each piece is at most € = 1
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Finite total variation and absolute continuity

Proposition If £ : [0,1] — R is absolutely continuous, then it has bounded
variation.

Proof:

Let § correspond to € = 1 in the definition of absolute continuity for f.
Choose N to be an integer larger than 1/6. Choose an arbitrary partition
0=x0<x1 <x2<...<xp,=1. Since refining a partition only increases
the sum in the definition of total variation, we can assume that

X0 < x1 < xp < ... < xp contain the points k/N for each integer k. Then
by breaking

Z [f(xi) — f(xi-1)|

into pieces corresponding to [0,1/N],[1/N,2/N],... . [(N —1)/N,1], the
sum over each piece is at most € = 1 since the length of each interval is
less than ¢.
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Finite total variation and absolute continuity

Proposition If £ : [0,1] — R is absolutely continuous, then it has bounded
variation.

Proof:

Let § correspond to € = 1 in the definition of absolute continuity for f.
Choose N to be an integer larger than 1/6. Choose an arbitrary partition
0=x0<x1 <x2<...<xp,=1. Since refining a partition only increases
the sum in the definition of total variation, we can assume that

X0 < x1 < xp < ... < xp contain the points k/N for each integer k. Then
by breaking

Z [f(xi) — f(xi-1)|

into pieces corresponding to [0,1/N],[1/N,2/N],... . [(N —1)/N,1], the
sum over each piece is at most € = 1 since the length of each interval is

less than 4. Since there are N intervals, we get a bound of N on the total
variation.
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Proposition If £ : [0,1] — R is absolutely continuous, then it has bounded
variation.

Proof:

Let § correspond to € = 1 in the definition of absolute continuity for f.
Choose N to be an integer larger than 1/6. Choose an arbitrary partition
0=x0<x1 <x2<...<xp,=1. Since refining a partition only increases
the sum in the definition of total variation, we can assume that

X0 < x1 < xp < ... < xp contain the points k/N for each integer k. Then
by breaking

Z [f(xi) — f(xi-1)|

into pieces corresponding to [0,1/N],[1/N,2/N],... . [(N —1)/N,1], the
sum over each piece is at most € = 1 since the length of each interval is

less than 4. Since there are N intervals, we get a bound of N on the total
variation.

QED (Recall the Cantor Ternary function) September 27, 2020 10/14
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The second fundamental theorem of calculus
Recall that an increasing function has a derivative a.e. One can ask if the

second fundamental theorem of calculus holds.
Question: If f: [0,1] — R is increasing, does

1
/ F(x) = F(1) — £(0)?
0
Note that for the Cantor Ternary function, the LHS is 0 and the RHS is 1.

This is indicative of how this inequality may fail for monotone increasing
functions.

Proposition: If f : [0,1] — R is monotone increasing, then

/1 F(x) < £(1) — £(0).
0
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f(x+ h) —f(x)

b and

Diffpf(x) :=
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Proof of [ /(x) < f(1) — (0)
Extend f to be f(1) to the right of 1. For h € (0,1) and x € [0, 1], let

Diffhf(x) = Fx + hz, — f(x) and Avhf(x) = ;I;/X+h f(t)dt

1
One has / Diff of (x)dx = Avpf(1) — Avpf(0).
0
Now, we have that for a.e. x

. .H — / .
fl)@o Diffp(x) = f'(x)
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Proof of [ /(x) < f(1) — (0)
Extend f to be f(1) to the right of 1. For h € (0,1) and x € [0, 1], let

Diffhf(x) = Fx + hz, — f(x) and Avhf(x) = ;I;/X+h f(t)dt

1
One has / Diff of (x)dx = Avpf(1) — Avpf(0).
0
Now, we have that for a.e. x

lim Diffp(x) = f'(x).
h—0

Also all functions are nonnegative since f is increasing. It then follows from

Fatou's Lemma that
1 1
/ f'(x)dx < Iiminf/ Diff(x)dx
0 0

h—0
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Proof of [ /(x) < f(1) — (0)
Extend f to be f(1) to the right of 1. For h € (0,1) and x € [0, 1], let

Diffhf(x) = Fx + hz, — f(x) and Avhf(x) = ;I;/X+h f(t)dt

1
One has / Diff of (x)dx = Avpf(1) — Avpf(0).
0
Now, we have that for a.e. x

lim Diffp(x) = f'(x).
h—0

Also all functions are nonnegative since f is increasing. It then follows from

Fatou's Lemma that

/1 f'(x)dx < liminf /1 Diff(x)dx = f(1) — £(0).
0 0

h—0

QED

September 27, 2020
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Putting it all together
Theorem

Let f be nonnegative monotone increasing on [0, 1] with f(0) = 0. White

Uf = s + fac-

Then the following hold.

1. The Radon-Nikodym derivative of ji.c with respect to Lebesgue measure
is given by f'.

2.

1
aclO, 1]_/0 f'(x)dx.

3. f is absolutely continuous if and only if fol f'(x)dx = f(1) — £(0). (So
the second fundamental theorem of calculus holds if and only if f is
absolutely continuous.)

4. pr is singular if and only if f'(x) =0 a.e.
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facl0, 1] —/ f'(x)dx.
0
Proof:
We have seen the first statement. Second statement follows.
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Proof of "putting it all together"

1
aclO, 1]—/0 f'(x)dx.

Proof:
We have seen the first statement. Second statement follows.

For the third statement, f is absolutely continuous if and only if ur < m if
and only if puf = pac if and only if pf[0, 1] = ,uaC[O 1] if and only if
f(1) — f(0) = pac[0, 1] if and only if (step 2) fo f'(x)dx = f(1) — £(0).

For the fourth step, p is singular if and only ,c[0, 1] = 0 if and only if
(step 2) fo f'(x)dx = 0 if and only if f'(x) =0 a.e.
QED
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