Class Lectures (for Chapter 9)

Total Variation

Definition

If $f:[a, b] \rightarrow R$, we define the total variation of f on $[a, b] \subseteq[0,1]$

Total Variation

Definition

If $f:[a, b] \rightarrow R$, we define the total variation of f on $[a, b] \subseteq[0,1]$ to be
$T V_{[a, b]}(f):=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|: a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b\right\}$.

Total Variation

Definition

If $f:[a, b] \rightarrow R$, we define the total variation of f on $[a, b] \subseteq[0,1]$ to be
$T V_{[a, b]}(f):=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|: a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b\right\}$.
We say f is of bounded variation on $[a, b]$ if $T V_{[a, b]}(f)<\infty$;

Total Variation

Definition

If $f:[a, b] \rightarrow R$, we define the total variation of f on $[a, b] \subseteq[0,1]$ to be
$T V_{[a, b]}(f):=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|: a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b\right\}$.
We say f is of bounded variation on $[a, b]$ if $T V_{[a, b]}(f)<\infty$; otherwise we say f is of unbounded variation on $[a, b]$.

Total Variation

Definition

If $f:[a, b] \rightarrow R$, we define the total variation of f on $[a, b] \subseteq[0,1]$ to be
$T V_{[a, b]}(f):=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|: a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b\right\}$.
We say f is of bounded variation on $[a, b]$ if $T V_{[a, b]}(f)<\infty$; otherwise we say f is of unbounded variation on $[a, b]$.

Remarks:
(i). If f is monotone increasing, then $T V_{[a, b]}(f)=f(b)-f(a)$.

Total Variation

Definition

If $f:[a, b] \rightarrow R$, we define the total variation of f on $[a, b] \subseteq[0,1]$ to be
$T V_{[a, b]}(f):=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|: a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b\right\}$.
We say f is of bounded variation on $[a, b]$ if $T V_{[a, b]}(f)<\infty$; otherwise we say f is of unbounded variation on $[a, b]$.

Remarks:
(i). If f is monotone increasing, then $T V_{[a, b]}(f)=f(b)-f(a)$.
(ii). $T V_{[a, b]}(-f)=T V_{[a, b]}(f)$.

Total Variation

Definition

If $f:[a, b] \rightarrow R$, we define the total variation of f on $[a, b] \subseteq[0,1]$ to be
$T V_{[a, b]}(f):=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|: a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b\right\}$.
We say f is of bounded variation on $[a, b]$ if $T V_{[a, b]}(f)<\infty$; otherwise we say f is of unbounded variation on $[a, b]$.

Remarks:
(i). If f is monotone increasing, then $T V_{[a, b]}(f)=f(b)-f(a)$.
(ii). $T V_{[a, b]}(-f)=T V_{[a, b]}(f)$.
(iii). If f is the indicator function of the rationals, then f is of unbounded variation on every (nontrivial) interval.

Characterization of functions with finite Total Variation

Characterization of functions with finite Total Variation

Theorem

f is of bounded variation on an interval

Characterization of functions with finite Total Variation

Theorem

f is of bounded variation on an interval if and only if there exist increasing functions g and h so that $f=g-h$.

Characterization of functions with finite Total Variation

Theorem

f is of bounded variation on an interval if and only if there exist increasing functions g and h so that $f=g-h$.

Proof outline:

Characterization of functions with finite Total Variation

Theorem

f is of bounded variation on an interval if and only if there exist increasing functions g and h so that $f=g-h$.

Proof outline: IF:

Characterization of functions with finite Total Variation

Theorem

f is of bounded variation on an interval if and only if there exist increasing functions g and h so that $f=g-h$.

Proof outline: IF:
$\sum_{i=1}^{n}\left|(g-h)\left(x_{i}\right)-(g-h)\left(x_{i-1}\right)\right| \leq$

Characterization of functions with finite Total Variation

Theorem

f is of bounded variation on an interval if and only if there exist increasing functions g and h so that $f=g-h$.

Proof outline: IF:
$\sum_{i=1}^{n}\left|(g-h)\left(x_{i}\right)-(g-h)\left(x_{i-1}\right)\right| \leq \sum_{i=1}^{n}\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right|+\left|h\left(x_{i}\right)-h\left(x_{i-1}\right)\right|$

Characterization of functions with finite Total Variation

Theorem

f is of bounded variation on an interval if and only if there exist increasing functions g and h so that $f=g-h$.

Proof outline: IF:

$$
\begin{gathered}
\sum_{i=1}^{n}\left|(g-h)\left(x_{i}\right)-(g-h)\left(x_{i-1}\right)\right| \leq \sum_{i=1}^{n}\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right|+\left|h\left(x_{i}\right)-h\left(x_{i-1}\right)\right| \\
=g(b)-g(a)+h(b)-h(a)
\end{gathered}
$$

Characterization of functions with finite Total Variation

Characterization of functions with finite Total Variation

Step 1:

$$
T V_{[a, c]}(f)=T V_{[a, b]}(f)+T V_{[b, c]}(f)
$$

Characterization of functions with finite Total Variation

Step 1:

$$
T V_{[a, c]}(f)=T V_{[a, b]}(f)+T V_{[b, c]}(f)
$$

In particular $T V_{[a, x]}(f)$ is an increasing function of x.

Characterization of functions with finite Total Variation

Step 1:

$$
T V_{[a, c]}(f)=T V_{[a, b]}(f)+T V_{[b, c]}(f) .
$$

In particular $T V_{[a, x]}(f)$ is an increasing function of x.
Step 2: $T V_{[0, x]}(f)+f(x)$ is an increasing function of x.

Characterization of functions with finite Total Variation

Step 1:

$$
T V_{[a, c]}(f)=T V_{[a, b]}(f)+T V_{[b, c]}(f)
$$

In particular $T V_{[a, x]}(f)$ is an increasing function of x.
Step 2: $T V_{[0, x]}(f)+f(x)$ is an increasing function of x. subproof: If $0 \leq x<y \leq 1$,

Characterization of functions with finite Total Variation

Step 1:

$$
T V_{[a, c]}(f)=T V_{[a, b]}(f)+T V_{[b, c]}(f)
$$

In particular $T V_{[a, x]}(f)$ is an increasing function of x.
Step 2: $T V_{[0, x]}(f)+f(x)$ is an increasing function of x. subproof: If $0 \leq x<y \leq 1$,

$$
f(x)-f(y) \leq|f(x)-f(y)| \leq T V_{[x, y]}(f)=T V_{[0, y]}(f)-T V_{[0, x]}(f)
$$

where the last equality comes from Step 1. Now rewrite. subQED

Characterization of functions with finite Total Variation

Step 1:

$$
T V_{[a, c]}(f)=T V_{[a, b]}(f)+T V_{[b, c]}(f)
$$

In particular $T V_{[a, x]}(f)$ is an increasing function of x.
Step 2: $T V_{[0, x]}(f)+f(x)$ is an increasing function of x. subproof: If $0 \leq x<y \leq 1$,

$$
f(x)-f(y) \leq|f(x)-f(y)| \leq T V_{[x, y]}(f)=T V_{[0, y]}(f)-T V_{[0, x]}(f)
$$

where the last equality comes from Step 1. Now rewrite. subQED
Step 3: Note that

Characterization of functions with finite Total Variation

Step 1:

$$
T V_{[a, c]}(f)=T V_{[a, b]}(f)+T V_{[b, c]}(f)
$$

In particular $T V_{[a, x]}(f)$ is an increasing function of x.
Step 2: $T V_{[0, x]}(f)+f(x)$ is an increasing function of x. subproof: If $0 \leq x<y \leq 1$,

$$
f(x)-f(y) \leq|f(x)-f(y)| \leq T V_{[x, y]}(f)=T V_{[0, y]}(f)-T V_{[0, x]}(f)
$$

where the last equality comes from Step 1. Now rewrite. subQED
Step 3: Note that

$$
f(x)=\frac{T V_{[0, x]}(f)+f(x)}{2}-\frac{T V_{[0, x]}(f)-f(x)}{2}
$$

Characterization of functions with finite Total Variation

Step 1:

$$
T V_{[a, c]}(f)=T V_{[a, b]}(f)+T V_{[b, c]}(f)
$$

In particular $T V_{[a, x]}(f)$ is an increasing function of x.
Step 2: $T V_{[0, x]}(f)+f(x)$ is an increasing function of x. subproof: If $0 \leq x<y \leq 1$,

$$
f(x)-f(y) \leq|f(x)-f(y)| \leq T V_{[x, y]}(f)=T V_{[0, y]}(f)-T V_{[0, x]}(f)
$$

where the last equality comes from Step 1. Now rewrite. subQED
Step 3: Note that

$$
f(x)=\frac{T V_{[0, x]}(f)+f(x)}{2}-\frac{T V_{[0, x]}(f)-f(x)}{2}
$$

The two summands are increasing in x by Step 2,

Characterization of functions with finite Total Variation

Step 1:

$$
T V_{[a, c]}(f)=T V_{[a, b]}(f)+T V_{[b, c]}(f)
$$

In particular $T V_{[a, x]}(f)$ is an increasing function of x.
Step 2: $T V_{[0, x]}(f)+f(x)$ is an increasing function of x. subproof: If $0 \leq x<y \leq 1$,

$$
f(x)-f(y) \leq|f(x)-f(y)| \leq T V_{[x, y]}(f)=T V_{[0, y]}(f)-T V_{[0, x]}(f)
$$

where the last equality comes from Step 1. Now rewrite. subQED
Step 3: Note that

$$
f(x)=\frac{T V_{[0, x]}(f)+f(x)}{2}-\frac{T V_{[0, x]}(f)-f(x)}{2}
$$

The two summands are increasing in x by Step 2, where for the second term we also use the fact that $T V_{[0, x]}(-f)=T V_{[0, x]}(f)$. QED

Signed measures and function of finite Variation

Signed measures and function of finite Variation

There is a 1-1 correspondence between signed measures and functions of bounded variation. The bijection is given by μ a signed measure on $[0,1]$ is sent to the bounded variation function

$$
F_{\mu}(x):=\mu([0, x] .
$$

Absolute continuity

Absolute continuity

Definition
 $f:[0,1]$ to R is absolutely continuous

Absolute continuity

Definition

$f:[0,1]$ to R is absolutely continuous if for all $\epsilon>0$,

Absolute continuity

Definition

$f:[0,1]$ to R is absolutely continuous if for all $\epsilon>0$, there exists $\delta>0$

Absolute continuity

Definition

$f:[0,1]$ to R is absolutely continuous if for all $\epsilon>0$, there exists $\delta>0$ so that if $0 \leq x_{1}<y_{1}<x_{2}<y_{2}<\ldots, x_{n}<y_{n} \leq 1$

Absolute continuity

Definition

$f:[0,1]$ to R is absolutely continuous if for all $\epsilon>0$, there exists $\delta>0$ so that if $0 \leq x_{1}<y_{1}<x_{2}<y_{2}<\ldots, x_{n}<y_{n} \leq 1$ and

$$
\sum_{i=1}^{n}\left(y_{i}-x_{i}\right)<\delta
$$

Absolute continuity

Definition

$f:[0,1]$ to R is absolutely continuous if for all $\epsilon>0$, there exists $\delta>0$ so that if $0 \leq x_{1}<y_{1}<x_{2}<y_{2}<\ldots, x_{n}<y_{n} \leq 1$ and

$$
\sum_{i=1}^{n}\left(y_{i}-x_{i}\right)<\delta
$$

then

$$
\sum_{i=1}^{n}\left|f\left(y_{i}\right)-f\left(x_{i}\right)\right|<\epsilon
$$

Absolute continuity

Definition

$f:[0,1]$ to R is absolutely continuous if for all $\epsilon>0$, there exists $\delta>0$ so that if $0 \leq x_{1}<y_{1}<x_{2}<y_{2}<\ldots, x_{n}<y_{n} \leq 1$ and

$$
\sum_{i=1}^{n}\left(y_{i}-x_{i}\right)<\delta
$$

then

$$
\sum_{i=1}^{n}\left|f\left(y_{i}\right)-f\left(x_{i}\right)\right|<\epsilon .
$$

$n=1$ corresponds to uniformity continuity.

Absolute continuity

Definition

$f:[0,1]$ to R is absolutely continuous if for all $\epsilon>0$, there exists $\delta>0$ so that if $0 \leq x_{1}<y_{1}<x_{2}<y_{2}<\ldots, x_{n}<y_{n} \leq 1$ and

$$
\sum_{i=1}^{n}\left(y_{i}-x_{i}\right)<\delta
$$

then

$$
\sum_{i=1}^{n}\left|f\left(y_{i}\right)-f\left(x_{i}\right)\right|<\epsilon
$$

$n=1$ corresponds to uniformity continuity.
The Cantor Ternary function is not absolutely continuous.

How do our two definitions of absolute continuity relate?

How do our two definitions of absolute continuity relate?

Proposition: Let f be a nonnegative monotone increasing function on $[0,1]$ with $f(0)=0$.

How do our two definitions of absolute continuity relate?

Proposition: Let f be a nonnegative monotone increasing function on $[0,1]$ with $f(0)=0$. Then f is absolutely continuous if and only if $\mu_{f} \ll m$ where m is Lebesgue measure on $[0,1]$.

How do our two definitions of absolute continuity relate?

Proposition: Let f be a nonnegative monotone increasing function on $[0,1]$ with $f(0)=0$. Then f is absolutely continuous if and only if $\mu_{f} \ll m$ where m is Lebesgue measure on $[0,1]$.

Proof:

How do our two definitions of absolute continuity relate?

Proposition: Let f be a nonnegative monotone increasing function on $[0,1]$ with $f(0)=0$. Then f is absolutely continuous if and only if $\mu_{f} \ll m$ where m is Lebesgue measure on $[0,1]$.

Proof:
First, note that f is continuous if and only if μ_{f} has no atoms.

How do our two definitions of absolute continuity relate?

Proposition: Let f be a nonnegative monotone increasing function on $[0,1]$ with $f(0)=0$. Then f is absolutely continuous if and only if $\mu_{f} \ll m$ where m is Lebesgue measure on $[0,1]$.

Proof:
First, note that f is continuous if and only if μ_{f} has no atoms. If these equivalent conditions fail, then both sides in the proposition fail.

How do our two definitions of absolute continuity relate?

Proposition: Let f be a nonnegative monotone increasing function on $[0,1]$ with $f(0)=0$. Then f is absolutely continuous if and only if $\mu_{f} \ll m$ where m is Lebesgue measure on $[0,1]$.

Proof:
First, note that f is continuous if and only if μ_{f} has no atoms. If these equivalent conditions fail, then both sides in the proposition fail. Hence we can assume that f is continuous or equivalently μ_{f} is continuous (i.e. no atoms).

Proof of the equivalence of the two definitions of absolute continuity

Proof of the equivalence of the two definitions of absolute continuity

If $\mu_{f} \ll m$, then f is absolutely continuous.

Proof of the equivalence of the two definitions of absolute

 continuityIf $\mu_{f} \ll m$, then f is absolutely continuous.
Proof: Let $\epsilon>0$

Proof of the equivalence of the two definitions of absolute

 continuityIf $\mu_{f} \ll m$, then f is absolutely continuous.
Proof: Let $\epsilon>0$ and choose $\delta>0$ so that

$$
m(A)<\delta \text { implies that } \mu_{f}(A)<\epsilon
$$

Proof of the equivalence of the two definitions of absolute

 continuityIf $\mu_{f} \ll m$, then f is absolutely continuous.
Proof: Let $\epsilon>0$ and choose $\delta>0$ so that

$$
m(A)<\delta \text { implies that } \mu_{f}(A)<\epsilon
$$

Now if $0 \leq x_{1}<y_{1}<x_{2}<y_{2}<\ldots, x_{n}<y_{n} \leq 1$ with $\sum_{i=1}^{n}\left(y_{i}-x_{i}\right)<\delta$,

Proof of the equivalence of the two definitions of absolute

 continuityIf $\mu_{f} \ll m$, then f is absolutely continuous.
Proof: Let $\epsilon>0$ and choose $\delta>0$ so that

$$
m(A)<\delta \text { implies that } \mu_{f}(A)<\epsilon
$$

Now if $0 \leq x_{1}<y_{1}<x_{2}<y_{2}<\ldots, x_{n}<y_{n} \leq 1$ with $\sum_{i=1}^{n}\left(y_{i}-x_{i}\right)<\delta$, then we have that

$$
m\left(\bigcup_{i=1}^{n}\left(x_{i}, y_{i}\right)\right)<\delta
$$

Proof of the equivalence of the two definitions of absolute

 continuityIf $\mu_{f} \ll m$, then f is absolutely continuous.
Proof: Let $\epsilon>0$ and choose $\delta>0$ so that

$$
m(A)<\delta \text { implies that } \mu_{f}(A)<\epsilon
$$

Now if $0 \leq x_{1}<y_{1}<x_{2}<y_{2}<\ldots, x_{n}<y_{n} \leq 1$ with $\sum_{i=1}^{n}\left(y_{i}-x_{i}\right)<\delta$, then we have that

$$
m\left(\bigcup_{i=1}^{n}\left(x_{i}, y_{i}\right)\right)<\delta
$$

implying that

$$
\mu_{f}\left(\bigcup_{i=1}^{n}\left(x_{i}, y_{i}\right)\right)<\epsilon
$$

Proof of the equivalence of the two definitions of absolute

 continuityIf $\mu_{f} \ll m$, then f is absolutely continuous.
Proof: Let $\epsilon>0$ and choose $\delta>0$ so that

$$
m(A)<\delta \text { implies that } \mu_{f}(A)<\epsilon
$$

Now if $0 \leq x_{1}<y_{1}<x_{2}<y_{2}<\ldots, x_{n}<y_{n} \leq 1$ with $\sum_{i=1}^{n}\left(y_{i}-x_{i}\right)<\delta$, then we have that

$$
m\left(\bigcup_{i=1}^{n}\left(x_{i}, y_{i}\right)\right)<\delta
$$

implying that

$$
\mu_{f}\left(\bigcup_{i=1}^{n}\left(x_{i}, y_{i}\right)\right)<\epsilon
$$

which is equivalent to

$$
\sum_{i=1}^{n}\left|f\left(y_{i}\right)-f\left(x_{i}\right)\right|<\epsilon
$$

Proof of the equivalence of the two definitions of absolute continuity

Proof of the equivalence of the two definitions of absolute continuity
If f is absolutely continuous, then $\mu_{f} \ll m$.

Proof of the equivalence of the two definitions of absolute

 continuityIf f is absolutely continuous, then $\mu_{f} \ll m$.
Proof: Assume that $m(A)=0$ for some Borel set A.

Proof of the equivalence of the two definitions of absolute continuity
If f is absolutely continuous, then $\mu_{f} \ll m$.
Proof: Assume that $m(A)=0$ for some Borel set A. We need to show that $\mu_{f}(A)=0$.

Proof of the equivalence of the two definitions of absolute

 continuityIf f is absolutely continuous, then $\mu_{f} \ll m$.
Proof: Assume that $m(A)=0$ for some Borel set A. We need to show that $\mu_{f}(A)=0$. Fix $\epsilon>0$ and choose the corresponding δ in the definition of absolute continuity of f.

Proof of the equivalence of the two definitions of absolute

continuity

If f is absolutely continuous, then $\mu_{f} \ll m$.
Proof: Assume that $m(A)=0$ for some Borel set A. We need to show that $\mu_{f}(A)=0$. Fix $\epsilon>0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U)<\delta$ and write U as a disjoint union of open intervals $\left\{\left(a_{i}, b_{i}\right)\right\}$.

Proof of the equivalence of the two definitions of absolute

continuity

If f is absolutely continuous, then $\mu_{f} \ll m$.
Proof: Assume that $m(A)=0$ for some Borel set A. We need to show that $\mu_{f}(A)=0$. Fix $\epsilon>0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U)<\delta$ and write U as a disjoint union of open intervals $\left\{\left(a_{i}, b_{i}\right)\right\}$. Since we have for any N

Proof of the equivalence of the two definitions of absolute

continuity

If f is absolutely continuous, then $\mu_{f} \ll m$.
Proof: Assume that $m(A)=0$ for some Borel set A. We need to show that $\mu_{f}(A)=0$. Fix $\epsilon>0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U)<\delta$ and write U as a disjoint union of open intervals $\left\{\left(a_{i}, b_{i}\right)\right\}$. Since we have for any N

$$
\sum_{i=1}^{N}\left(b_{i}-a_{i}\right)<\delta
$$

Proof of the equivalence of the two definitions of absolute

continuity

If f is absolutely continuous, then $\mu_{f} \ll m$.
Proof: Assume that $m(A)=0$ for some Borel set A. We need to show that $\mu_{f}(A)=0$. Fix $\epsilon>0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U)<\delta$ and write U as a disjoint union of open intervals $\left\{\left(a_{i}, b_{i}\right)\right\}$. Since we have for any N

$$
\sum_{i=1}^{N}\left(b_{i}-a_{i}\right)<\delta
$$

it follows that

$$
\sum_{i=1}^{N}\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right|<\epsilon
$$

Proof of the equivalence of the two definitions of absolute

continuity

If f is absolutely continuous, then $\mu_{f} \ll m$.
Proof: Assume that $m(A)=0$ for some Borel set A. We need to show that $\mu_{f}(A)=0$. Fix $\epsilon>0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U)<\delta$ and write U as a disjoint union of open intervals $\left\{\left(a_{i}, b_{i}\right)\right\}$. Since we have for any N

$$
\sum_{i=1}^{N}\left(b_{i}-a_{i}\right)<\delta
$$

it follows that

$$
\sum_{i=1}^{N}\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right|<\epsilon
$$

and so $\mu_{f}\left(\bigcup_{i=1}^{N}\left(a_{i}, b_{i}\right)\right)<\epsilon$.

Proof of the equivalence of the two definitions of absolute

continuity

If f is absolutely continuous, then $\mu_{f} \ll m$.
Proof: Assume that $m(A)=0$ for some Borel set A. We need to show that $\mu_{f}(A)=0$. Fix $\epsilon>0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U)<\delta$ and write U as a disjoint union of open intervals $\left\{\left(a_{i}, b_{i}\right)\right\}$. Since we have for any N

$$
\sum_{i=1}^{N}\left(b_{i}-a_{i}\right)<\delta
$$

it follows that

$$
\sum_{i=1}^{N}\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right|<\epsilon
$$

and so $\mu_{f}\left(\bigcup_{i=1}^{N}\left(a_{i}, b_{i}\right)\right)<\epsilon$. By letting $N \rightarrow \infty$,

Proof of the equivalence of the two definitions of absolute

continuity

If f is absolutely continuous, then $\mu_{f} \ll m$.
Proof: Assume that $m(A)=0$ for some Borel set A. We need to show that $\mu_{f}(A)=0$. Fix $\epsilon>0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U)<\delta$ and write U as a disjoint union of open intervals $\left\{\left(a_{i}, b_{i}\right)\right\}$. Since we have for any N

$$
\sum_{i=1}^{N}\left(b_{i}-a_{i}\right)<\delta
$$

it follows that

$$
\sum_{i=1}^{N}\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right|<\epsilon
$$

and so $\mu_{f}\left(\bigcup_{i=1}^{N}\left(a_{i}, b_{i}\right)\right)<\epsilon$. By letting $N \rightarrow \infty$, we have $\mu_{f}(U) \leq \epsilon$.

Proof of the equivalence of the two definitions of absolute

continuity

If f is absolutely continuous, then $\mu_{f} \ll m$.
Proof: Assume that $m(A)=0$ for some Borel set A. We need to show that $\mu_{f}(A)=0$. Fix $\epsilon>0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U)<\delta$ and write U as a disjoint union of open intervals $\left\{\left(a_{i}, b_{i}\right)\right\}$. Since we have for any N

$$
\sum_{i=1}^{N}\left(b_{i}-a_{i}\right)<\delta
$$

it follows that

$$
\sum_{i=1}^{N}\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right|<\epsilon
$$

and so $\mu_{f}\left(\bigcup_{i=1}^{N}\left(a_{i}, b_{i}\right)\right)<\epsilon$. By letting $N \rightarrow \infty$, we have $\mu_{f}(U) \leq \epsilon$. Since $A \subseteq U$, this gives $\mu_{f}(A) \leq \epsilon$

Proof of the equivalence of the two definitions of absolute

continuity

If f is absolutely continuous, then $\mu_{f} \ll m$.
Proof: Assume that $m(A)=0$ for some Borel set A. We need to show that $\mu_{f}(A)=0$. Fix $\epsilon>0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U)<\delta$ and write U as a disjoint union of open intervals $\left\{\left(a_{i}, b_{i}\right)\right\}$. Since we have for any N

$$
\sum_{i=1}^{N}\left(b_{i}-a_{i}\right)<\delta
$$

it follows that

$$
\sum_{i=1}^{N}\left|f\left(b_{i}\right)-f\left(a_{i}\right)\right|<\epsilon
$$

and so $\mu_{f}\left(\bigcup_{i=1}^{N}\left(a_{i}, b_{i}\right)\right)<\epsilon$. By letting $N \rightarrow \infty$, we have $\mu_{f}(U) \leq \epsilon$. Since $A \subseteq U$, this gives $\mu_{f}(A) \leq \epsilon$ and since ϵ is arbitrary, we get $\mu_{f}(A)=0$.

Finite total variation and absolute continuity

Proposition If $f:[0,1] \rightarrow R$ is absolutely continuous, then it has bounded variation.

Proof:
Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f.

Finite total variation and absolute continuity

Proposition If $f:[0,1] \rightarrow R$ is absolutely continuous, then it has bounded variation.

Proof:
Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1 / \delta$.

Finite total variation and absolute continuity

Proposition If $f:[0,1] \rightarrow R$ is absolutely continuous, then it has bounded variation.

Proof:
Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1 / \delta$. Choose an arbitrary partition $0=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=1$.

Finite total variation and absolute continuity

Proposition If $f:[0,1] \rightarrow R$ is absolutely continuous, then it has bounded variation.

Proof:
Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1 / \delta$. Choose an arbitrary partition $0=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=1$. Since refining a partition only increases the sum in the definition of total variation,

Finite total variation and absolute continuity

Proposition If $f:[0,1] \rightarrow R$ is absolutely continuous, then it has bounded variation.

Proof:
Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1 / \delta$. Choose an arbitrary partition $0=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=1$. Since refining a partition only increases the sum in the definition of total variation, we can assume that $x_{0}<x_{1}<x_{2}<\ldots<x_{n}$ contain the points k / N for each integer k.

Finite total variation and absolute continuity

Proposition If $f:[0,1] \rightarrow R$ is absolutely continuous, then it has bounded variation.

Proof:
Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1 / \delta$. Choose an arbitrary partition $0=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=1$. Since refining a partition only increases the sum in the definition of total variation, we can assume that $x_{0}<x_{1}<x_{2}<\ldots<x_{n}$ contain the points k / N for each integer k. Then by breaking

$$
\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|
$$

into pieces corresponding to $[0,1 / N],[1 / N, 2 / N], \ldots,[(N-1) / N, 1]$,

Finite total variation and absolute continuity

Proposition If $f:[0,1] \rightarrow R$ is absolutely continuous, then it has bounded variation.

Proof:
Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1 / \delta$. Choose an arbitrary partition $0=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=1$. Since refining a partition only increases the sum in the definition of total variation, we can assume that $x_{0}<x_{1}<x_{2}<\ldots<x_{n}$ contain the points k / N for each integer k. Then by breaking

$$
\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|
$$

into pieces corresponding to $[0,1 / N],[1 / N, 2 / N], \ldots,[(N-1) / N, 1]$, the sum over each piece is at most $\epsilon=1$

Finite total variation and absolute continuity

Proposition If $f:[0,1] \rightarrow R$ is absolutely continuous, then it has bounded variation.

Proof:
Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1 / \delta$. Choose an arbitrary partition $0=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=1$. Since refining a partition only increases the sum in the definition of total variation, we can assume that $x_{0}<x_{1}<x_{2}<\ldots<x_{n}$ contain the points k / N for each integer k. Then by breaking

$$
\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|
$$

into pieces corresponding to $[0,1 / N],[1 / N, 2 / N], \ldots,[(N-1) / N, 1]$, the sum over each piece is at most $\epsilon=1$ since the length of each interval is less than δ.

Finite total variation and absolute continuity

Proposition If $f:[0,1] \rightarrow R$ is absolutely continuous, then it has bounded variation.

Proof:
Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1 / \delta$. Choose an arbitrary partition $0=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=1$. Since refining a partition only increases the sum in the definition of total variation, we can assume that $x_{0}<x_{1}<x_{2}<\ldots<x_{n}$ contain the points k / N for each integer k. Then by breaking

$$
\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|
$$

into pieces corresponding to $[0,1 / N],[1 / N, 2 / N], \ldots,[(N-1) / N, 1]$, the sum over each piece is at most $\epsilon=1$ since the length of each interval is less than δ. Since there are N intervals, we get a bound of N on the total variation.

Finite total variation and absolute continuity

Proposition If $f:[0,1] \rightarrow R$ is absolutely continuous, then it has bounded variation.

Proof:
Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1 / \delta$. Choose an arbitrary partition $0=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=1$. Since refining a partition only increases the sum in the definition of total variation, we can assume that $x_{0}<x_{1}<x_{2}<\ldots<x_{n}$ contain the points k / N for each integer k. Then by breaking

$$
\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|
$$

into pieces corresponding to $[0,1 / N],[1 / N, 2 / N], \ldots,[(N-1) / N, 1]$, the sum over each piece is at most $\epsilon=1$ since the length of each interval is less than δ. Since there are N intervals, we get a bound of N on the total variation.
QED (Recall the Cantor Ternary function)

The second fundamental theorem of calculus

The second fundamental theorem of calculus

Recall that an increasing function has a derivative a.e.

The second fundamental theorem of calculus

Recall that an increasing function has a derivative a.e. One can ask if the second fundamental theorem of calculus holds.

The second fundamental theorem of calculus

Recall that an increasing function has a derivative a.e. One can ask if the second fundamental theorem of calculus holds.
Question: If $f:[0,1] \rightarrow R$ is increasing, does

$$
\int_{0}^{1} f^{\prime}(x)=f(1)-f(0) ?
$$

The second fundamental theorem of calculus

Recall that an increasing function has a derivative a.e. One can ask if the second fundamental theorem of calculus holds.
Question: If $f:[0,1] \rightarrow R$ is increasing, does

$$
\int_{0}^{1} f^{\prime}(x)=f(1)-f(0) ?
$$

The second fundamental theorem of calculus

Recall that an increasing function has a derivative a.e. One can ask if the second fundamental theorem of calculus holds.
Question: If $f:[0,1] \rightarrow R$ is increasing, does

$$
\int_{0}^{1} f^{\prime}(x)=f(1)-f(0) ?
$$

Note that for the Cantor Ternary function, the LHS is 0 and the RHS is 1. This is indicative of how this inequality may fail for monotone increasing functions.

Proposition: If $f:[0,1] \rightarrow R$ is monotone increasing, then

$$
\int_{0}^{1} f^{\prime}(x) \leq f(1)-f(0)
$$

$$
\text { Proof of } \int_{0}^{1} f^{\prime}(x) \leq f(1)-f(0)
$$

Extend f to be $f(1)$ to the right of 1 .

Proof of $\int_{0}^{1} f^{\prime}(x) \leq f(1)-f(0)$

Extend f to be $f(1)$ to the right of 1 . For $h \in(0,1)$ and $x \in[0,1]$,

$$
\text { Proof of } \int_{0}^{1} f^{\prime}(x) \leq f(1)-f(0)
$$

Extend f to be $f(1)$ to the right of 1 . For $h \in(0,1)$ and $x \in[0,1]$, let

$$
\operatorname{Diff}_{h} f(x):=\frac{f(x+h)-f(x)}{h} \text { and }
$$

$$
\text { Proof of } \int_{0}^{1} f^{\prime}(x) \leq f(1)-f(0)
$$

Extend f to be $f(1)$ to the right of 1 . For $h \in(0,1)$ and $x \in[0,1]$, let

$$
\operatorname{Diff}_{h} f(x):=\frac{f(x+h)-f(x)}{h} \text { and } \operatorname{Av}_{h} f(x):=\frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

$$
\text { Proof of } \int_{0}^{1} f^{\prime}(x) \leq f(1)-f(0)
$$

Extend f to be $f(1)$ to the right of 1 . For $h \in(0,1)$ and $x \in[0,1]$, let

$$
\operatorname{Diff}_{h} f(x):=\frac{f(x+h)-f(x)}{h} \text { and } \operatorname{Av}_{h} f(x):=\frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

One has $\int_{0}^{1} \operatorname{Diff}_{h} f(x) d x=\operatorname{Av}_{h} f(1)-\operatorname{Av}_{h} f(0)$.

$$
\text { Proof of } \int_{0}^{1} f^{\prime}(x) \leq f(1)-f(0)
$$

Extend f to be $f(1)$ to the right of 1 . For $h \in(0,1)$ and $x \in[0,1]$, let

$$
\operatorname{Diff}_{h} f(x):=\frac{f(x+h)-f(x)}{h} \text { and } \operatorname{Av}_{h} f(x):=\frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

$$
\text { One has } \int_{0}^{1} \operatorname{Diff}_{h} f(x) d x=\operatorname{Av}_{h} f(1)-\operatorname{Av}_{h} f(0)
$$

Now, we have that for a.e. x

$$
\lim _{h \rightarrow 0} \operatorname{Diff}_{h}(x)=f^{\prime}(x)
$$

$$
\text { Proof of } \int_{0}^{1} f^{\prime}(x) \leq f(1)-f(0)
$$

Extend f to be $f(1)$ to the right of 1 . For $h \in(0,1)$ and $x \in[0,1]$, let

$$
\operatorname{Diff}_{h} f(x):=\frac{f(x+h)-f(x)}{h} \text { and } \operatorname{Av}_{h} f(x):=\frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

$$
\text { One has } \int_{0}^{1} \operatorname{Diff}_{h} f(x) d x=\operatorname{Av}_{h} f(1)-\operatorname{Av}_{h} f(0)
$$

Now, we have that for a.e. x

$$
\lim _{h \rightarrow 0} \operatorname{Diff}_{h}(x)=f^{\prime}(x)
$$

Also all functions are nonnegative since f is increasing.

$$
\text { Proof of } \int_{0}^{1} f^{\prime}(x) \leq f(1)-f(0)
$$

Extend f to be $f(1)$ to the right of 1 . For $h \in(0,1)$ and $x \in[0,1]$, let

$$
\operatorname{Diff}_{h} f(x):=\frac{f(x+h)-f(x)}{h} \text { and } \operatorname{Av}_{h} f(x):=\frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

$$
\text { One has } \int_{0}^{1} \operatorname{Diff}_{h} f(x) d x=\operatorname{Av}_{h} f(1)-\operatorname{Av}_{h} f(0)
$$

Now, we have that for a.e. x

$$
\lim _{h \rightarrow 0} \operatorname{Diff}_{h}(x)=f^{\prime}(x)
$$

Also all functions are nonnegative since f is increasing. It then follows from Fatou's Lemma that

$$
\text { Proof of } \int_{0}^{1} f^{\prime}(x) \leq f(1)-f(0)
$$

Extend f to be $f(1)$ to the right of 1 . For $h \in(0,1)$ and $x \in[0,1]$, let

$$
\operatorname{Diff}_{h} f(x):=\frac{f(x+h)-f(x)}{h} \text { and } \operatorname{Av}_{h} f(x):=\frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

$$
\text { One has } \int_{0}^{1} \operatorname{Diff}_{h} f(x) d x=\operatorname{Av}_{h} f(1)-\operatorname{Av}_{h} f(0)
$$

Now, we have that for a.e. x

$$
\lim _{h \rightarrow 0} \operatorname{Diff}_{h}(x)=f^{\prime}(x)
$$

Also all functions are nonnegative since f is increasing. It then follows from Fatou's Lemma that

$$
\int_{0}^{1} f^{\prime}(x) d x \leq \liminf _{h \rightarrow 0} \int_{0}^{1} \operatorname{Diff}_{h}(x) d x
$$

$$
\text { Proof of } \int_{0}^{1} f^{\prime}(x) \leq f(1)-f(0)
$$

Extend f to be $f(1)$ to the right of 1 . For $h \in(0,1)$ and $x \in[0,1]$, let

$$
\operatorname{Diff}_{h} f(x):=\frac{f(x+h)-f(x)}{h} \text { and } \operatorname{Av}_{h} f(x):=\frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

$$
\text { One has } \int_{0}^{1} \operatorname{Diff}_{h} f(x) d x=\operatorname{Av}_{h} f(1)-\operatorname{Av}_{h} f(0)
$$

Now, we have that for a.e. x

$$
\lim _{h \rightarrow 0} \operatorname{Diff}_{h}(x)=f^{\prime}(x)
$$

Also all functions are nonnegative since f is increasing. It then follows from Fatou's Lemma that

$$
\int_{0}^{1} f^{\prime}(x) d x \leq \liminf _{h \rightarrow 0} \int_{0}^{1} \operatorname{Diff}_{h}(x) d x=f(1)-f(0)
$$

QED

Putting it all together

Theorem

Putting it all together

Theorem
Let f be nonnegative monotone increasing on $[0,1]$ with $f(0)=0$.

Putting it all together

Theorem
Let f be nonnegative monotone increasing on $[0,1]$ with $f(0)=0$. Write

$$
\mu_{f}=\mu_{s}+\mu_{a c} .
$$

Putting it all together

Theorem

Let f be nonnegative monotone increasing on $[0,1]$ with $f(0)=0$. Write

$$
\mu_{f}=\mu_{s}+\mu_{a c} .
$$

Then the following hold.

Putting it all together

Theorem

Let f be nonnegative monotone increasing on $[0,1]$ with $f(0)=0$. Write

$$
\mu_{f}=\mu_{s}+\mu_{a c} .
$$

Then the following hold.

1. The Radon-Nikodym derivative of μ_{ac} with respect to Lebesgue measure is given by f^{\prime}.

Putting it all together

Theorem

Let f be nonnegative monotone increasing on $[0,1]$ with $f(0)=0$. Write

$$
\mu_{f}=\mu_{s}+\mu_{a c} .
$$

Then the following hold.

1. The Radon-Nikodym derivative of μ_{ac} with respect to Lebesgue measure is given by f^{\prime}.
2.

$$
\mu_{a c}[0,1]=\int_{0}^{1} f^{\prime}(x) d x
$$

Putting it all together

Theorem

Let f be nonnegative monotone increasing on $[0,1]$ with $f(0)=0$. Write

$$
\mu_{f}=\mu_{s}+\mu_{\mathrm{ac}} .
$$

Then the following hold.

1. The Radon-Nikodym derivative of μ_{ac} with respect to Lebesgue measure is given by f^{\prime}.
2.

$$
\mu_{a c}[0,1]=\int_{0}^{1} f^{\prime}(x) d x
$$

3. f is absolutely continuous if and only if $\int_{0}^{1} f^{\prime}(x) d x=f(1)-f(0)$.

Putting it all together

Theorem

Let f be nonnegative monotone increasing on $[0,1]$ with $f(0)=0$. Write

$$
\mu_{f}=\mu_{s}+\mu_{a c} .
$$

Then the following hold.

1. The Radon-Nikodym derivative of μ_{ac} with respect to Lebesgue measure is given by f^{\prime}.
2.

$$
\mu_{a c}[0,1]=\int_{0}^{1} f^{\prime}(x) d x
$$

3. f is absolutely continuous if and only if $\int_{0}^{1} f^{\prime}(x) d x=f(1)-f(0)$. (So the second fundamental theorem of calculus holds if and only if f is absolutely continuous.)

Putting it all together

Theorem

Let f be nonnegative monotone increasing on $[0,1]$ with $f(0)=0$. Write

$$
\mu_{f}=\mu_{s}+\mu_{\mathrm{ac}} .
$$

Then the following hold.

1. The Radon-Nikodym derivative of μ_{ac} with respect to Lebesgue measure is given by f^{\prime}.
2.

$$
\mu_{a c}[0,1]=\int_{0}^{1} f^{\prime}(x) d x
$$

3. f is absolutely continuous if and only if $\int_{0}^{1} f^{\prime}(x) d x=f(1)-f(0)$. (So the second fundamental theorem of calculus holds if and only if f is absolutely continuous.)
4. μ_{f} is singular if and only if $f^{\prime}(x)=0$ a.e.

Proof of "putting it all together"

$$
\mu_{a c}[0,1]=\int_{0}^{1} f^{\prime}(x) d x
$$

Proof of "putting it all together"

$$
\mu_{a c}[0,1]=\int_{0}^{1} f^{\prime}(x) d x
$$

Proof:
We have seen the first statement.

Proof of "putting it all together"

$$
\mu_{\mathrm{ac}}[0,1]=\int_{0}^{1} f^{\prime}(x) d x
$$

Proof:
We have seen the first statement. Second statement follows.

Proof of "putting it all together"

$$
\mu_{a c}[0,1]=\int_{0}^{1} f^{\prime}(x) d x
$$

Proof:
We have seen the first statement. Second statement follows.
For the third statement, f is absolutely continuous

Proof of "putting it all together"

$$
\mu_{a c}[0,1]=\int_{0}^{1} f^{\prime}(x) d x
$$

Proof:
We have seen the first statement. Second statement follows.
For the third statement, f is absolutely continuous if and only if $\mu_{f} \ll m$

Proof of "putting it all together"

$$
\mu_{a c}[0,1]=\int_{0}^{1} f^{\prime}(x) d x
$$

Proof:
We have seen the first statement. Second statement follows.
For the third statement, f is absolutely continuous if and only if $\mu_{f} \ll m$ if and only if $\mu_{f}=\mu_{a c}$

Proof of "putting it all together"

$$
\mu_{a c}[0,1]=\int_{0}^{1} f^{\prime}(x) d x
$$

Proof:
We have seen the first statement. Second statement follows.
For the third statement, f is absolutely continuous if and only if $\mu_{f} \ll m$ if and only if $\mu_{f}=\mu_{a c}$ if and only if $\mu_{f}[0,1]=\mu_{a c}[0,1]$

Proof of "putting it all together"

$$
\mu_{a c}[0,1]=\int_{0}^{1} f^{\prime}(x) d x
$$

Proof:
We have seen the first statement. Second statement follows.
For the third statement, f is absolutely continuous if and only if $\mu_{f} \ll m$ if and only if $\mu_{f}=\mu_{a c}$ if and only if $\mu_{f}[0,1]=\mu_{a c}[0,1]$ if and only if $f(1)-f(0)=\mu_{\mathrm{ac}}[0,1]$

Proof of "putting it all together"

$$
\mu_{a c}[0,1]=\int_{0}^{1} f^{\prime}(x) d x
$$

Proof:
We have seen the first statement. Second statement follows.
For the third statement, f is absolutely continuous if and only if $\mu_{f} \ll m$ if and only if $\mu_{f}=\mu_{a c}$ if and only if $\mu_{f}[0,1]=\mu_{a c}[0,1]$ if and only if $f(1)-f(0)=\mu_{a c}[0,1]$ if and only if (step 2) $\int_{0}^{1} f^{\prime}(x) d x=f(1)-f(0)$.

For the fourth step,

Proof of "putting it all together"

$$
\mu_{a c}[0,1]=\int_{0}^{1} f^{\prime}(x) d x
$$

Proof:
We have seen the first statement. Second statement follows.
For the third statement, f is absolutely continuous if and only if $\mu_{f} \ll m$ if and only if $\mu_{f}=\mu_{a c}$ if and only if $\mu_{f}[0,1]=\mu_{a c}[0,1]$ if and only if $f(1)-f(0)=\mu_{\mathrm{ac}}[0,1]$ if and only if (step 2) $\int_{0}^{1} f^{\prime}(x) d x=f(1)-f(0)$.
For the fourth step, μ_{f} is singular

Proof of "putting it all together"

$$
\mu_{a c}[0,1]=\int_{0}^{1} f^{\prime}(x) d x
$$

Proof:
We have seen the first statement. Second statement follows.
For the third statement, f is absolutely continuous if and only if $\mu_{f} \ll m$ if and only if $\mu_{f}=\mu_{a c}$ if and only if $\mu_{f}[0,1]=\mu_{a c}[0,1]$ if and only if $f(1)-f(0)=\mu_{\mathrm{ac}}[0,1]$ if and only if (step 2) $\int_{0}^{1} f^{\prime}(x) d x=f(1)-f(0)$.
For the fourth step, μ_{f} is singular if and only $\mu_{\mathrm{ac}}[0,1]=0$

Proof of "putting it all together"

$$
\mu_{a c}[0,1]=\int_{0}^{1} f^{\prime}(x) d x
$$

Proof:
We have seen the first statement. Second statement follows.
For the third statement, f is absolutely continuous if and only if $\mu_{f} \ll m$ if and only if $\mu_{f}=\mu_{a c}$ if and only if $\mu_{f}[0,1]=\mu_{a c}[0,1]$ if and only if $f(1)-f(0)=\mu_{a c}[0,1]$ if and only if (step 2) $\int_{0}^{1} f^{\prime}(x) d x=f(1)-f(0)$.

For the fourth step, μ_{f} is singular if and only $\mu_{a c}[0,1]=0$ if and only if $\left(\right.$ step 2) $\int_{0}^{1} f^{\prime}(x) d x=0$

Proof of "putting it all together"

$$
\mu_{a c}[0,1]=\int_{0}^{1} f^{\prime}(x) d x
$$

Proof:
We have seen the first statement. Second statement follows.
For the third statement, f is absolutely continuous if and only if $\mu_{f} \ll m$ if and only if $\mu_{f}=\mu_{a c}$ if and only if $\mu_{f}[0,1]=\mu_{a c}[0,1]$ if and only if $f(1)-f(0)=\mu_{a c}[0,1]$ if and only if (step 2) $\int_{0}^{1} f^{\prime}(x) d x=f(1)-f(0)$.

For the fourth step, μ_{f} is singular if and only $\mu_{a c}[0,1]=0$ if and only if (step 2) $\int_{0}^{1} f^{\prime}(x) d x=0$ if and only if $f^{\prime}(x)=0$ a.e. QED

