Class Lectures (for Chapter 9)

Definition

If $f:[a,b]\to R$, we define the **total variation** of f on $[a,b]\subseteq [0,1]$

Definition

If $f:[a,b]\to R$, we define the **total variation** of f on $[a,b]\subseteq [0,1]$ to be

$$TV_{[a,b]}(f) := \sup\{\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| : a = x_0 < x_1 < x_2 < \ldots < x_n = b\}.$$

Definition

If $f:[a,b]\to R$, we define the **total variation** of f on $[a,b]\subseteq [0,1]$ to be

$$TV_{[a,b]}(f) := \sup\{\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| : a = x_0 < x_1 < x_2 < \ldots < x_n = b\}.$$

We say f is of bounded variation on [a, b] if $TV_{[a,b]}(f) < \infty$;

Definition

If $f:[a,b]\to R$, we define the **total variation** of f on $[a,b]\subseteq [0,1]$ to be

$$TV_{[a,b]}(f) := \sup\{\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| : a = x_0 < x_1 < x_2 < \dots < x_n = b\}.$$
(1)

We say f is of bounded variation on [a, b] if $TV_{[a,b]}(f) < \infty$; otherwise we say f is of unbounded variation on [a, b].

Definition

If $f:[a,b]\to R$, we define the **total variation** of f on $[a,b]\subseteq [0,1]$ to be

$$TV_{[a,b]}(f) := \sup \{ \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| : a = x_0 < x_1 < x_2 < \dots < x_n = b \}.$$
(1)

We say f is of bounded variation on [a, b] if $TV_{[a,b]}(f) < \infty$; otherwise we say f is of unbounded variation on [a, b].

Remarks:

(i). If f is monotone increasing, then $TV_{[a,b]}(f) = f(b) - f(a)$.

Definition

If $f:[a,b]\to R$, we define the **total variation** of f on $[a,b]\subseteq [0,1]$ to be

$$TV_{[a,b]}(f) := \sup\{\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| : a = x_0 < x_1 < x_2 < \ldots < x_n = b\}.$$
(1)

We say f is of bounded variation on [a, b] if $TV_{[a,b]}(f) < \infty$; otherwise we say f is of unbounded variation on [a, b].

Remarks:

- (i). If f is monotone increasing, then $TV_{[a,b]}(f) = f(b) f(a)$.
- (ii). $TV_{[a,b]}(-f) = TV_{[a,b]}(f)$.

Definition

If $f:[a,b]\to R$, we define the **total variation** of f on $[a,b]\subseteq [0,1]$ to be

$$TV_{[a,b]}(f) := \sup\{\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| : a = x_0 < x_1 < x_2 < \ldots < x_n = b\}.$$
(1)

We say f is of bounded variation on [a, b] if $TV_{[a,b]}(f) < \infty$; otherwise we say f is of unbounded variation on [a, b].

Remarks:

- (i). If f is monotone increasing, then $TV_{[a,b]}(f) = f(b) f(a)$.
- (ii). $TV_{[a,b]}(-f) = TV_{[a,b]}(f)$.
- (iii). If f is the indicator function of the rationals, then f is of unbounded variation on every (nontrivial) interval.

Theorem

f is of bounded variation on an interval

Theorem

f is of bounded variation on an interval if and only if there exist increasing functions g and h so that f = g - h.

Theorem

f is of bounded variation on an interval if and only if there exist increasing functions g and h so that f = g - h.

Proof outline:

Theorem

f is of bounded variation on an interval if and only if there exist increasing functions g and h so that f = g - h.

Theorem

f is of bounded variation on an interval if and only if there exist increasing functions g and h so that f = g - h.

$$\sum_{i=1}^{n} |(g-h)(x_i) - (g-h)(x_{i-1})| \le$$

Theorem

f is of bounded variation on an interval if and only if there exist increasing functions g and h so that f = g - h.

$$\sum_{i=1}^{n} |(g-h)(x_i) - (g-h)(x_{i-1})| \leq \sum_{i=1}^{n} |g(x_i) - g(x_{i-1})| + |h(x_i) - h(x_{i-1})|$$

Theorem

f is of bounded variation on an interval if and only if there exist increasing functions g and h so that f = g - h.

$$\sum_{i=1}^{n} |(g-h)(x_i) - (g-h)(x_{i-1})| \leq \sum_{i=1}^{n} |g(x_i) - g(x_{i-1})| + |h(x_i) - h(x_{i-1})|$$

$$= g(b) - g(a) + h(b) - h(a)$$

Step 1:

$$TV_{[a,c]}(f) = TV_{[a,b]}(f) + TV_{[b,c]}(f).$$

Step 1:

$$TV_{[a,c]}(f) = TV_{[a,b]}(f) + TV_{[b,c]}(f).$$

In particular $TV_{[a,x]}(f)$ is an increasing function of x.

Step 1:

$$TV_{[a,c]}(f) = TV_{[a,b]}(f) + TV_{[b,c]}(f).$$

In particular $TV_{[a,x]}(f)$ is an increasing function of x.

Step 2: $TV_{[0,x]}(f) + f(x)$ is an increasing function of x.

Step 1:

$$TV_{[a,c]}(f) = TV_{[a,b]}(f) + TV_{[b,c]}(f).$$

In particular $TV_{[a,x]}(f)$ is an increasing function of x.

Step 2: $TV_{[0,x]}(f) + f(x)$ is an increasing function of x.

subproof: If $0 \le x < y \le 1$,

Step 1:

$$TV_{[a,c]}(f) = TV_{[a,b]}(f) + TV_{[b,c]}(f).$$

In particular $TV_{[a,x]}(f)$ is an increasing function of x.

Step 2: $TV_{[0,x]}(f) + f(x)$ is an increasing function of x. subproof: If $0 \le x < y \le 1$,

$$f(x) - f(y) \le |f(x) - f(y)| \le TV_{[x,y]}(f) = TV_{[0,y]}(f) - TV_{[0,x]}(f)$$

where the last equality comes from Step 1. Now rewrite. subQED

Step 1:

$$TV_{[a,c]}(f) = TV_{[a,b]}(f) + TV_{[b,c]}(f).$$

In particular $TV_{[a,x]}(f)$ is an increasing function of x.

Step 2: $TV_{[0,x]}(f) + f(x)$ is an increasing function of x. subproof: If $0 \le x < y \le 1$,

$$f(x) - f(y) \le |f(x) - f(y)| \le TV_{[x,y]}(f) = TV_{[0,y]}(f) - TV_{[0,x]}(f)$$

where the last equality comes from Step 1. Now rewrite. subQED

Step 3: Note that

Step 1:

$$TV_{[a,c]}(f) = TV_{[a,b]}(f) + TV_{[b,c]}(f).$$

In particular $TV_{[a,x]}(f)$ is an increasing function of x.

Step 2: $TV_{[0,x]}(f) + f(x)$ is an increasing function of x. subproof: If $0 \le x < y \le 1$,

$$f(x) - f(y) \le |f(x) - f(y)| \le TV_{[x,y]}(f) = TV_{[0,y]}(f) - TV_{[0,x]}(f)$$

where the last equality comes from Step 1. Now rewrite. subQED

Step 3: Note that

$$f(x) = \frac{TV_{[0,x]}(f) + f(x)}{2} - \frac{TV_{[0,x]}(f) - f(x)}{2}.$$

Step 1:

$$TV_{[a,c]}(f) = TV_{[a,b]}(f) + TV_{[b,c]}(f).$$

In particular $TV_{[a,x]}(f)$ is an increasing function of x.

Step 2: $TV_{[0,x]}(f) + f(x)$ is an increasing function of x. subproof: If $0 \le x < y \le 1$,

$$f(x) - f(y) \le |f(x) - f(y)| \le TV_{[x,y]}(f) = TV_{[0,y]}(f) - TV_{[0,x]}(f)$$

where the last equality comes from Step 1. Now rewrite. subQED

Step 3: Note that

$$f(x) = \frac{TV_{[0,x]}(f) + f(x)}{2} - \frac{TV_{[0,x]}(f) - f(x)}{2}.$$

The two summands are increasing in x by Step 2,

Step 1:

$$TV_{[a,c]}(f) = TV_{[a,b]}(f) + TV_{[b,c]}(f).$$

In particular $TV_{[a,x]}(f)$ is an increasing function of x.

Step 2: $TV_{[0,x]}(f) + f(x)$ is an increasing function of x. subproof: If $0 \le x < y \le 1$,

$$f(x) - f(y) \le |f(x) - f(y)| \le TV_{[x,y]}(f) = TV_{[0,y]}(f) - TV_{[0,x]}(f)$$

where the last equality comes from Step 1. Now rewrite. subQED

Step 3: Note that

$$f(x) = \frac{TV_{[0,x]}(f) + f(x)}{2} - \frac{TV_{[0,x]}(f) - f(x)}{2}.$$

The two summands are increasing in x by Step 2, where for the second term we also use the fact that $TV_{[0,x]}(-f) = TV_{[0,x]}(f)$. QED

Signed measures and function of finite Variation

Signed measures and function of finite Variation

There is a 1-1 correspondence between signed measures and functions of bounded variation. The bijection is given by μ a signed measure on [0,1] is sent to the bounded variation function

$$F_{\mu}(x) := \mu([0, x].$$

Definition

f:[0,1] to R is absolutely continuous

Definition

f:[0,1] to R is absolutely continuous if for all $\epsilon>0$,

Definition

f:[0,1] to R is absolutely continuous if for all $\epsilon>0$, there exists $\delta>0$

Definition

f:[0,1] to R is absolutely continuous if for all $\epsilon>0$, there exists $\delta>0$ so that if $0 \le x_1 < y_1 < x_2 < y_2 < \dots, x_n < y_n \le 1$

Definition

f:[0,1] to R is absolutely continuous if for all $\epsilon>0$, there exists $\delta>0$ so that if $0 \le x_1 < y_1 < x_2 < y_2 < \dots, x_n < y_n \le 1$ and

$$\sum_{i=1}^n (y_i - x_i) < \delta,$$

Definition

f:[0,1] to R is absolutely continuous if for all $\epsilon>0$, there exists $\delta>0$ so that if $0 \le x_1 < y_1 < x_2 < y_2 < \dots, x_n < y_n \le 1$ and

$$\sum_{i=1}^{n} (y_i - x_i) < \delta,$$

then

$$\sum_{i=1}^n |f(y_i) - f(x_i)| < \epsilon.$$

Definition

f:[0,1] to R is absolutely continuous if for all $\epsilon>0$, there exists $\delta>0$ so that if $0 \le x_1 < y_1 < x_2 < y_2 < \dots, x_n < y_n \le 1$ and

$$\sum_{i=1}^{n} (y_i - x_i) < \delta,$$

then

$$\sum_{i=1}^n |f(y_i) - f(x_i)| < \epsilon.$$

n = 1 corresponds to uniformity continuity.

Absolute continuity

Definition

f:[0,1] to R is absolutely continuous if for all $\epsilon>0$, there exists $\delta>0$ so that if $0 \le x_1 < y_1 < x_2 < y_2 < \dots, x_n < y_n \le 1$ and

$$\sum_{i=1}^{n} (y_i - x_i) < \delta,$$

then

$$\sum_{i=1}^n |f(y_i) - f(x_i)| < \epsilon.$$

n = 1 corresponds to uniformity continuity.

The Cantor Ternary function is *not* absolutely continuous.

Proposition: Let f be a nonnegative monotone increasing function on [0,1] with f(0) = 0.

Proposition: Let f be a nonnegative monotone increasing function on [0,1] with f(0)=0. Then f is absolutely continuous if and only if $\mu_f\ll m$ where m is Lebesgue measure on [0,1].

Proposition: Let f be a nonnegative monotone increasing function on [0,1] with f(0)=0. Then f is absolutely continuous if and only if $\mu_f\ll m$ where m is Lebesgue measure on [0,1].

Proof:

Proposition: Let f be a nonnegative monotone increasing function on [0,1] with f(0)=0. Then f is absolutely continuous if and only if $\mu_f\ll m$ where m is Lebesgue measure on [0,1].

Proof:

First, note that f is continuous if and only if μ_f has no atoms.

Proposition: Let f be a nonnegative monotone increasing function on [0,1] with f(0)=0. Then f is absolutely continuous if and only if $\mu_f\ll m$ where m is Lebesgue measure on [0,1].

Proof:

First, note that f is continuous if and only if μ_f has no atoms. If these equivalent conditions fail, then both sides in the proposition fail.

Proposition: Let f be a nonnegative monotone increasing function on [0,1] with f(0)=0. Then f is absolutely continuous if and only if $\mu_f\ll m$ where m is Lebesgue measure on [0,1].

Proof:

First, note that f is continuous if and only if μ_f has no atoms. If these equivalent conditions fail, then both sides in the proposition fail. Hence we can assume that f is continuous or equivalently μ_f is continuous (i.e. no atoms).

If $\mu_f \ll m$, then f is absolutely continuous.

If $\mu_f \ll m$, then f is absolutely continuous.

Proof: Let $\epsilon > 0$

If $\mu_f \ll m$, then f is absolutely continuous.

Proof: Let $\epsilon > 0$ and choose $\delta > 0$ so that

 $m(A) < \delta$ implies that $\mu_f(A) < \epsilon$.

If $\mu_f \ll m$, then f is absolutely continuous.

Proof: Let $\epsilon > 0$ and choose $\delta > 0$ so that

$$m(A) < \delta$$
 implies that $\mu_f(A) < \epsilon$.

Now if
$$0 \le x_1 < y_1 < x_2 < y_2 < \dots, x_n < y_n \le 1$$
 with $\sum_{i=1}^n (y_i - x_i) < \delta$,

If $\mu_f \ll m$, then f is absolutely continuous.

Proof: Let $\epsilon > 0$ and choose $\delta > 0$ so that

$$m(A) < \delta$$
 implies that $\mu_f(A) < \epsilon$.

Now if $0 \le x_1 < y_1 < x_2 < y_2 < \dots, x_n < y_n \le 1$ with $\sum_{i=1}^n (y_i - x_i) < \delta$, then we have that

$$m(\bigcup_{i=1}^n(x_i,y_i))<\delta$$

If $\mu_f \ll m$, then f is absolutely continuous.

Proof: Let $\epsilon > 0$ and choose $\delta > 0$ so that

$$m(A) < \delta$$
 implies that $\mu_f(A) < \epsilon$.

Now if $0 \le x_1 < y_1 < x_2 < y_2 < \dots, x_n < y_n \le 1$ with $\sum_{i=1}^n (y_i - x_i) < \delta$, then we have that

$$m(\bigcup_{i=1}^n(x_i,y_i))<\delta$$

implying that

$$\mu_f(\bigcup_{i=1}^n(x_i,y_i))<\epsilon$$

If $\mu_f \ll m$, then f is absolutely continuous.

Proof: Let $\epsilon > 0$ and choose $\delta > 0$ so that

$$m(A) < \delta$$
 implies that $\mu_f(A) < \epsilon$.

Now if $0 \le x_1 < y_1 < x_2 < y_2 < \dots, x_n < y_n \le 1$ with $\sum_{i=1}^n (y_i - x_i) < \delta$, then we have that

$$m(\bigcup_{i=1}^n (x_i,y_i)) < \delta$$

implying that

$$\mu_f(\bigcup_{i=1}^n(x_i,y_i))<\epsilon$$

which is equivalent to

$$\sum_{i=1}^{n} |f(y_i) - f(x_i)| < \epsilon.$$

If f is absolutely continuous, then $\mu_f \ll m$.

If f is absolutely continuous, then $\mu_f \ll m$.

Proof: Assume that m(A) = 0 for some Borel set A.

If f is absolutely continuous, then $\mu_f \ll m$. Proof: Assume that m(A) = 0 for some Borel set A. We need to show that $\mu_f(A) = 0$.

If f is absolutely continuous, then $\mu_f \ll m$.

Proof: Assume that m(A)=0 for some Borel set A. We need to show that $\mu_f(A)=0$. Fix $\epsilon>0$ and choose the corresponding δ in the definition of absolute continuity of f.

If f is absolutely continuous, then $\mu_f \ll m$.

Proof: Assume that m(A) = 0 for some Borel set A. We need to show that $\mu_f(A) = 0$. Fix $\epsilon > 0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U) < \delta$ and write U as a disjoint union of open intervals $\{(a_i, b_i)\}$.

If f is absolutely continuous, then $\mu_f \ll m$.

Proof: Assume that m(A) = 0 for some Borel set A. We need to show that $\mu_f(A) = 0$. Fix $\epsilon > 0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U) < \delta$ and write U as a disjoint union of open intervals $\{(a_i, b_i)\}$.

Since we have for any N

If f is absolutely continuous, then $\mu_f \ll m$.

Proof: Assume that m(A) = 0 for some Borel set A. We need to show that $\mu_f(A) = 0$. Fix $\epsilon > 0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U) < \delta$ and write U as a disjoint union of open intervals $\{(a_i, b_i)\}$.

Since we have for any N

$$\sum_{i=1}^{N}(b_i-a_i)<\delta,$$

If f is absolutely continuous, then $\mu_f \ll m$.

Proof: Assume that m(A) = 0 for some Borel set A. We need to show that $\mu_f(A) = 0$. Fix $\epsilon > 0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U) < \delta$ and write U as a disjoint union of open intervals $\{(a_i, b_i)\}$. Since we have for any N

$$\sum_{i=1}^{N}(b_i-a_i)<\delta,$$

it follows that

$$\sum_{i=1}^{N} |f(b_i) - f(a_i)| < \epsilon$$

If f is absolutely continuous, then $\mu_f \ll m$.

Proof: Assume that m(A) = 0 for some Borel set A. We need to show that $\mu_f(A) = 0$. Fix $\epsilon > 0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U) < \delta$ and write U as a disjoint union of open intervals $\{(a_i, b_i)\}$. Since we have for any N

$$\sum_{i=1}^{N}(b_i-a_i)<\delta,$$

it follows that

$$\sum_{i=1}^{N} |f(b_i) - f(a_i)| < \epsilon$$

and so $\mu_f(\bigcup_{i=1}^N (a_i, b_i)) < \epsilon$.

If f is absolutely continuous, then $\mu_f \ll m$.

Proof: Assume that m(A) = 0 for some Borel set A. We need to show that $\mu_f(A) = 0$. Fix $\epsilon > 0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U) < \delta$ and write U as a disjoint union of open intervals $\{(a_i, b_i)\}$.

Since we have for any N

$$\sum_{i=1}^{N}(b_i-a_i)<\delta,$$

it follows that

$$\sum_{i=1}^{N} |f(b_i) - f(a_i)| < \epsilon$$

and so $\mu_f(\bigcup_{i=1}^N (a_i, b_i)) < \epsilon$. By letting $N \to \infty$,

If f is absolutely continuous, then $\mu_f \ll m$.

Proof: Assume that m(A) = 0 for some Borel set A. We need to show that $\mu_f(A) = 0$. Fix $\epsilon > 0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U) < \delta$ and write U as a disjoint union of open intervals $\{(a_i, b_i)\}$.

Since we have for any N

$$\sum_{i=1}^{N}(b_i-a_i)<\delta,$$

it follows that

$$\sum_{i=1}^{N} |f(b_i) - f(a_i)| < \epsilon$$

and so $\mu_f(\bigcup_{i=1}^N (a_i, b_i)) < \epsilon$. By letting $N \to \infty$, we have $\mu_f(U) \le \epsilon$.

If f is absolutely continuous, then $\mu_f \ll m$.

Proof: Assume that m(A) = 0 for some Borel set A. We need to show that $\mu_f(A) = 0$. Fix $\epsilon > 0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U) < \delta$ and write U as a disjoint union of open intervals $\{(a_i, b_i)\}$.

Since we have for any N

$$\sum_{i=1}^{N}(b_i-a_i)<\delta,$$

it follows that

$$\sum_{i=1}^{N} |f(b_i) - f(a_i)| < \epsilon$$

and so $\mu_f(\bigcup_{i=1}^N (a_i, b_i)) < \epsilon$. By letting $N \to \infty$, we have $\mu_f(U) \le \epsilon$. Since $A \subseteq U$, this gives $\mu_f(A) < \epsilon$

If f is absolutely continuous, then $\mu_f \ll m$.

Proof: Assume that m(A) = 0 for some Borel set A. We need to show that $\mu_f(A) = 0$. Fix $\epsilon > 0$ and choose the corresponding δ in the definition of absolute continuity of f. Let U be an open set containing A with $m(U) < \delta$ and write U as a disjoint union of open intervals $\{(a_i, b_i)\}$.

Since we have for any N

$$\sum_{i=1}^{N}(b_i-a_i)<\delta,$$

it follows that

$$\sum_{i=1}^{N} |f(b_i) - f(a_i)| < \epsilon$$

and so $\mu_f(\bigcup_{i=1}^N (a_i, b_i)) < \epsilon$. By letting $N \to \infty$, we have $\mu_f(U) \le \epsilon$. Since $A \subseteq U$, this gives $\mu_f(A) \le \epsilon$ and since ϵ is arbitrary, we get $\mu_f(A) = 0$.

Proposition If $f:[0,1]\to R$ is absolutely continuous, then it has bounded variation.

Proof:

Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f.

Proposition If $f:[0,1]\to R$ is absolutely continuous, then it has bounded variation.

Proof:

Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1/\delta$.

Proposition If $f:[0,1]\to R$ is absolutely continuous, then it has bounded variation.

Proof:

Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1/\delta$. Choose an arbitrary partition $0=x_0< x_1< x_2< \ldots < x_n=1$.

Proposition If $f:[0,1]\to R$ is absolutely continuous, then it has bounded variation.

Proof:

Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1/\delta$. Choose an arbitrary partition $0=x_0< x_1< x_2< \ldots < x_n=1$. Since refining a partition only increases the sum in the definition of total variation,

Proposition If $f:[0,1]\to R$ is absolutely continuous, then it has bounded variation.

Proof:

Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1/\delta$. Choose an arbitrary partition $0=x_0< x_1< x_2< \ldots < x_n=1$. Since refining a partition only increases the sum in the definition of total variation, we can assume that $x_0< x_1< x_2< \ldots < x_n$ contain the points k/N for each integer k.

Proposition If $f:[0,1]\to R$ is absolutely continuous, then it has bounded variation.

Proof:

Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1/\delta$. Choose an arbitrary partition $0=x_0< x_1< x_2< \ldots < x_n=1$. Since refining a partition only increases the sum in the definition of total variation, we can assume that $x_0< x_1< x_2< \ldots < x_n$ contain the points k/N for each integer k. Then by breaking

$$\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|$$

into pieces corresponding to $[0, 1/N], [1/N, 2/N], \dots, [(N-1)/N, 1],$

Proposition If $f:[0,1]\to R$ is absolutely continuous, then it has bounded variation.

Proof:

Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1/\delta$. Choose an arbitrary partition $0=x_0< x_1< x_2< \ldots < x_n=1$. Since refining a partition only increases the sum in the definition of total variation, we can assume that $x_0< x_1< x_2< \ldots < x_n$ contain the points k/N for each integer k. Then by breaking

$$\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|$$

into pieces corresponding to $[0,1/N],[1/N,2/N],\ldots,[(N-1)/N,1]$, the sum over each piece is at most $\epsilon=1$

Proposition If $f:[0,1]\to R$ is absolutely continuous, then it has bounded variation.

Proof:

Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1/\delta$. Choose an arbitrary partition $0=x_0< x_1< x_2< \ldots < x_n=1$. Since refining a partition only increases the sum in the definition of total variation, we can assume that $x_0< x_1< x_2< \ldots < x_n$ contain the points k/N for each integer k. Then by breaking

$$\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|$$

into pieces corresponding to $[0,1/N],[1/N,2/N],\ldots,[(N-1)/N,1]$, the sum over each piece is at most $\epsilon=1$ since the length of each interval is less than δ .

Proposition If $f:[0,1]\to R$ is absolutely continuous, then it has bounded variation.

Proof:

Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1/\delta$. Choose an arbitrary partition $0=x_0< x_1< x_2< \ldots < x_n=1$. Since refining a partition only increases the sum in the definition of total variation, we can assume that $x_0< x_1< x_2< \ldots < x_n$ contain the points k/N for each integer k. Then by breaking

$$\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|$$

into pieces corresponding to $[0,1/N],[1/N,2/N],\ldots,[(N-1)/N,1]$, the sum over each piece is at most $\epsilon=1$ since the length of each interval is less than δ . Since there are N intervals, we get a bound of N on the total variation.

Proposition If $f:[0,1]\to R$ is absolutely continuous, then it has bounded variation.

Proof:

Let δ correspond to $\epsilon=1$ in the definition of absolute continuity for f. Choose N to be an integer larger than $1/\delta$. Choose an arbitrary partition $0=x_0< x_1< x_2< \ldots < x_n=1$. Since refining a partition only increases the sum in the definition of total variation, we can assume that $x_0< x_1< x_2< \ldots < x_n$ contain the points k/N for each integer k. Then by breaking

$$\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|$$

into pieces corresponding to $[0,1/N],[1/N,2/N],\ldots,[(N-1)/N,1]$, the sum over each piece is at most $\epsilon=1$ since the length of each interval is less than δ . Since there are N intervals, we get a bound of N on the total variation.

QED (Recall the Cantor Ternary function)

Recall that an increasing function has a derivative a.e.

Recall that an increasing function has a derivative a.e. One can ask if the second fundamental theorem of calculus holds.

Recall that an increasing function has a derivative a.e. One can ask if the second fundamental theorem of calculus holds.

Question: If $f:[0,1] \to R$ is increasing, does

$$\int_0^1 f'(x) = f(1) - f(0)?$$

Recall that an increasing function has a derivative a.e. One can ask if the second fundamental theorem of calculus holds.

Question: If $f:[0,1] \to R$ is increasing, does

$$\int_0^1 f'(x) = f(1) - f(0)?$$

Recall that an increasing function has a derivative a.e. One can ask if the second fundamental theorem of calculus holds.

Question: If $f:[0,1] \rightarrow R$ is increasing, does

$$\int_0^1 f'(x) = f(1) - f(0)?$$

Note that for the Cantor Ternary function, the LHS is 0 and the RHS is 1. This is indicative of how this inequality may fail for monotone increasing functions.

Proposition: If $f:[0,1] \to R$ is monotone increasing, then

$$\int_0^1 f'(x) \le f(1) - f(0).$$

Proof of
$$\int_0^1 f'(x) \le f(1) - f(0)$$

Extend f to be f(1) to the right of 1.

Proof of $\int_0^1 f'(x) \le f(1) - f(0)$

Extend f to be f(1) to the right of 1. For $h \in (0,1)$ and $x \in [0,1]$,

Proof of
$$\int_{0}^{1} f'(x) \le f(1) - f(0)$$

$$\operatorname{Diff}_h f(x) := \frac{f(x+h) - f(x)}{h}$$
 and

Proof of
$$\int_{0}^{1} f'(x) \le f(1) - f(0)$$

$$\operatorname{Diff}_h f(x) := \frac{f(x+h) - f(x)}{h}$$
 and $\operatorname{Av}_h f(x) := \frac{1}{h} \int_x^{x+h} f(t) dt$

Proof of
$$\int_0^1 f'(x) \le f(1) - f(0)$$

$$\operatorname{Diff}_h f(x) := \frac{f(x+h) - f(x)}{h} \text{ and } \operatorname{Av}_h f(x) := \frac{1}{h} \int_x^{x+h} f(t) dt$$

One has
$$\int_0^1 \mathrm{Diff}_h f(x) dx = \mathrm{Av}_h f(1) - \mathrm{Av}_h f(0).$$

Proof of
$$\int_{0}^{1} f'(x) \le f(1) - f(0)$$

$$\operatorname{Diff}_h f(x) := \frac{f(x+h) - f(x)}{h}$$
 and $\operatorname{Av}_h f(x) := \frac{1}{h} \int_x^{x+h} f(t) dt$

One has
$$\int_0^1 \mathrm{Diff}_h f(x) dx = \mathrm{Av}_h f(1) - \mathrm{Av}_h f(0).$$

Now, we have that for a.e. x

$$\lim_{h\to 0} \mathrm{Diff}_h(x) = f'(x).$$

Proof of
$$\int_{0}^{1} f'(x) \le f(1) - f(0)$$

$$\operatorname{Diff}_h f(x) := rac{f(x+h) - f(x)}{h}$$
 and $\operatorname{Av}_h f(x) := rac{1}{h} \int_x^{x+h} f(t) dt$

One has
$$\int_0^1 \mathrm{Diff}_h f(x) dx = \mathrm{Av}_h f(1) - \mathrm{Av}_h f(0).$$

Now, we have that for a.e. x

$$\lim_{h\to 0} \mathrm{Diff}_h(x) = f'(x).$$

Also all functions are nonnegative since f is increasing.

Proof of
$$\int_{0}^{1} f'(x) \le f(1) - f(0)$$

$$\operatorname{Diff}_h f(x) := \frac{f(x+h) - f(x)}{h}$$
 and $\operatorname{Av}_h f(x) := \frac{1}{h} \int_x^{x+h} f(t) dt$

One has
$$\int_0^1 \mathrm{Diff}_h f(x) dx = \mathrm{Av}_h f(1) - \mathrm{Av}_h f(0).$$

Now, we have that for a.e. x

$$\lim_{h\to 0} \mathrm{Diff}_h(x) = f'(x).$$

Also all functions are nonnegative since f is increasing. It then follows from Fatou's Lemma that

Proof of
$$\int_{0}^{1} f'(x) \le f(1) - f(0)$$

$$\operatorname{Diff}_h f(x) := \frac{f(x+h) - f(x)}{h}$$
 and $\operatorname{Av}_h f(x) := \frac{1}{h} \int_x^{x+h} f(t) dt$

One has
$$\int_0^1 \mathrm{Diff}_h f(x) dx = \mathrm{Av}_h f(1) - \mathrm{Av}_h f(0).$$

Now, we have that for a.e. x

$$\lim_{h\to 0} \operatorname{Diff}_h(x) = f'(x).$$

Also all functions are nonnegative since f is increasing. It then follows from Fatou's Lemma that

$$\int_0^1 f'(x)dx \le \liminf_{h \to 0} \int_0^1 \mathrm{Diff}_h(x)dx$$

Proof of
$$\int_0^1 f'(x) \le f(1) - f(0)$$

$$\operatorname{Diff}_h f(x) := \frac{f(x+h) - f(x)}{h}$$
 and $\operatorname{Av}_h f(x) := \frac{1}{h} \int_x^{x+h} f(t) dt$

One has
$$\int_0^1 \mathrm{Diff}_h f(x) dx = \mathrm{Av}_h f(1) - \mathrm{Av}_h f(0).$$

Now, we have that for a.e. x

$$\lim_{h\to 0} \mathrm{Diff}_h(x) = f'(x).$$

Also all functions are nonnegative since f is increasing. It then follows from Fatou's Lemma that

$$\int_{0}^{1} f'(x)dx \le \liminf_{h \to 0} \int_{0}^{1} \operatorname{Diff}_{h}(x)dx = f(1) - f(0).$$

QED

Theorem

Theorem

Let f be nonnegative monotone increasing on [0,1] with f(0) = 0.

Theorem

Let f be nonnegative monotone increasing on [0,1] with f(0) = 0. Write

$$\mu_{f} = \mu_{s} + \mu_{ac}$$
.

Theorem

Let f be nonnegative monotone increasing on [0,1] with f(0)=0. Write

$$\mu_{f} = \mu_{s} + \mu_{ac}.$$

Then the following hold.

Theorem

Let f be nonnegative monotone increasing on [0,1] with f(0)=0. Write

$$\mu_{f} = \mu_{s} + \mu_{ac}.$$

Then the following hold.

1. The Radon-Nikodym derivative of $\mu_{\rm ac}$ with respect to Lebesgue measure is given by f'.

Theorem

Let f be nonnegative monotone increasing on [0,1] with f(0)=0. Write

$$\mu_f = \mu_s + \mu_{ac}$$
.

Then the following hold.

- 1. The Radon-Nikodym derivative of μ_{ac} with respect to Lebesgue measure is given by f'.
- 2.

$$\mu_{ac}[0,1] = \int_0^1 f'(x) dx.$$

Theorem

Let f be nonnegative monotone increasing on [0,1] with f(0) = 0. Write

$$\mu_f = \mu_s + \mu_{ac}$$
.

Then the following hold.

- 1. The Radon-Nikodym derivative of μ_{ac} with respect to Lebesgue measure is given by f'.
- 2.

$$\mu_{ac}[0,1] = \int_0^1 f'(x) dx.$$

3. f is absolutely continuous if and only if $\int_0^1 f'(x)dx = f(1) - f(0)$.

Theorem

Let f be nonnegative monotone increasing on [0,1] with f(0) = 0. Write

$$\mu_f = \mu_s + \mu_{ac}$$
.

Then the following hold.

- 1. The Radon-Nikodym derivative of μ_{ac} with respect to Lebesgue measure is given by f'.
- 2.

$$\mu_{ac}[0,1] = \int_0^1 f'(x) dx.$$

3. f is absolutely continuous if and only if $\int_0^1 f'(x)dx = f(1) - f(0)$. (So the second fundamental theorem of calculus holds if and only if f is absolutely continuous.)

Theorem

Let f be nonnegative monotone increasing on [0,1] with f(0) = 0. Write

$$\mu_f = \mu_s + \mu_{ac}$$
.

Then the following hold.

- 1. The Radon-Nikodym derivative of μ_{ac} with respect to Lebesgue measure is given by f'.
- 2.

$$\mu_{ac}[0,1] = \int_0^1 f'(x) dx.$$

- 3. f is absolutely continuous if and only if $\int_0^1 f'(x)dx = f(1) f(0)$. (So the second fundamental theorem of calculus holds if and only if f is absolutely continuous.)
- 4. μ_f is singular if and only if f'(x) = 0 a.e.

$$\mu_{ac}[0,1] = \int_0^1 f'(x)dx.$$

$$\mu_{ac}[0,1] = \int_0^1 f'(x) dx.$$

Proof:

We have seen the first statement.

$$\mu_{ac}[0,1] = \int_0^1 f'(x) dx.$$

Proof:

We have seen the first statement. Second statement follows.

$$\mu_{ac}[0,1] = \int_0^1 f'(x) dx.$$

Proof:

We have seen the first statement. Second statement follows.

For the third statement, f is absolutely continuous

$$\mu_{ac}[0,1] = \int_0^1 f'(x) dx.$$

Proof:

We have seen the first statement. Second statement follows.

For the third statement, f is absolutely continuous if and only if $\mu_f \ll m$

$$\mu_{ac}[0,1] = \int_0^1 f'(x) dx.$$

Proof:

We have seen the first statement. Second statement follows.

For the third statement, f is absolutely continuous if and only if $\mu_f \ll m$ if and only if $\mu_f = \mu_{ac}$

$$\mu_{ac}[0,1] = \int_0^1 f'(x) dx.$$

Proof:

We have seen the first statement. Second statement follows.

For the third statement, f is absolutely continuous if and only if $\mu_f \ll m$ if and only if $\mu_f = \mu_{ac}$ if and only if $\mu_f[0,1] = \mu_{ac}[0,1]$

$$\mu_{ac}[0,1] = \int_0^1 f'(x) dx.$$

Proof:

We have seen the first statement. Second statement follows.

For the third statement, f is absolutely continuous if and only if $\mu_f \ll m$ if and only if $\mu_f = \mu_{ac}$ if and only if $\mu_f[0,1] = \mu_{ac}[0,1]$ if and only if $f(1) - f(0) = \mu_{ac}[0,1]$

$$\mu_{ac}[0,1] = \int_0^1 f'(x) dx.$$

Proof:

We have seen the first statement. Second statement follows.

For the third statement, f is absolutely continuous if and only if $\mu_f \ll m$ if and only if $\mu_f = \mu_{ac}$ if and only if $\mu_f[0,1] = \mu_{ac}[0,1]$ if and only if $f(1) - f(0) = \mu_{ac}[0,1]$ if and only if (step 2) $\int_0^1 f'(x) dx = f(1) - f(0)$.

For the fourth step,

$$\mu_{ac}[0,1] = \int_0^1 f'(x) dx.$$

Proof:

We have seen the first statement. Second statement follows.

For the third statement, f is absolutely continuous if and only if $\mu_f \ll m$ if and only if $\mu_f = \mu_{ac}$ if and only if $\mu_f[0,1] = \mu_{ac}[0,1]$ if and only if $f(1) - f(0) = \mu_{ac}[0,1]$ if and only if (step 2) $\int_0^1 f'(x) dx = f(1) - f(0)$.

For the fourth step, μ_f is singular

September 27, 2020

$$\mu_{ac}[0,1] = \int_0^1 f'(x) dx.$$

Proof:

We have seen the first statement. Second statement follows.

For the third statement, f is absolutely continuous if and only if $\mu_f \ll m$ if and only if $\mu_f = \mu_{ac}$ if and only if $\mu_f[0,1] = \mu_{ac}[0,1]$ if and only if $f(1) - f(0) = \mu_{ac}[0,1]$ if and only if (step 2) $\int_0^1 f'(x) dx = f(1) - f(0)$.

For the fourth step, μ_f is singular if and only $\mu_{ac}[0,1]=0$

$$\mu_{ac}[0,1] = \int_0^1 f'(x) dx.$$

Proof:

We have seen the first statement. Second statement follows.

For the third statement, f is absolutely continuous if and only if $\mu_f \ll m$ if and only if $\mu_f = \mu_{ac}$ if and only if $\mu_f[0,1] = \mu_{ac}[0,1]$ if and only if $f(1) - f(0) = \mu_{ac}[0,1]$ if and only if (step 2) $\int_0^1 f'(x) dx = f(1) - f(0)$.

For the fourth step, μ_f is singular if and only $\mu_{ac}[0,1]=0$ if and only if (step 2) $\int_0^1 f'(x) dx=0$

$$\mu_{ac}[0,1] = \int_0^1 f'(x) dx.$$

Proof:

We have seen the first statement. Second statement follows.

For the third statement, f is absolutely continuous if and only if $\mu_f \ll m$ if and only if $\mu_f = \mu_{ac}$ if and only if $\mu_f[0,1] = \mu_{ac}[0,1]$ if and only if $f(1) - f(0) = \mu_{ac}[0,1]$ if and only if (step 2) $\int_0^1 f'(x) dx = f(1) - f(0)$.

For the fourth step, μ_f is singular if and only $\mu_{ac}[0,1]=0$ if and only if (step 2) $\int_0^1 f'(x) dx = 0$ if and only if f'(x) = 0 a.e. QED