7 Follar 1.8

$$
\underline{\lim } E_{n}=\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} E_{k}
$$

$$
=\{x: x \text { is inallof the En's except }\}
$$

$\mu\left(\lim _{n} E_{n}\right) \leqslant \lim _{n \rightarrow \infty} \mu\left(E_{n}\right)$
baby version of $F a t o w$ Lumn

$$
\begin{aligned}
& \mu\left(\lim _{n \rightarrow \infty} E_{n}\right) \geq \lim _{n \rightarrow \infty} \mu\left(E_{n}\right) \text { if } \\
& \frac{\mu\left(\bigcup_{i, 1}^{\infty} E_{i}\right) \geq \infty}{R_{2}([0, \infty), \text { Lpes.muee })} \\
& E_{n}=[n, n+1] \text { CHS } 0, \text { RHS }=1
\end{aligned}
$$

Hind: let $F_{k}=\sum_{j \pi}^{\infty} E_{j}-E_{k}$
$\mu\left(\lim F_{K}\right) \leq \lim \mu\left(A_{K}\right)$ by put.

Riemann inly.

$$
\int_{0}^{1} f d x
$$

$$
\sum_{i=1}^{n} f\left(\frac{i}{n}\right) \frac{1}{n} \quad \text { lot } n \rightarrow \infty
$$

Lebesgue integral. Break the y-axis intr small $\begin{aligned} & \text { piece } \\ & f(x)\end{aligned}=I_{Q}(\mathbb{Q})=\left\{\begin{array}{l}1 \\ 0\end{array} x \in Q\right.$

A. pg 7 of Lective notes:
E xample of an alg. not a σ-alg

$$
Z=N, \quad Q=\left\{A \subseteq N: \quad \mid A<\infty \text { or } \frac{N \backslash A \mid<\infty}{A \text { cofinit }}\right\}
$$

$E=$ ever intgeus. $E \notin Q \quad E=\bigcup_{i=1}^{\infty} \frac{\{2 i\}}{\epsilon \varphi} \Rightarrow \varphi$ not $a \sigma-a l y$.

$$
f_{3}=\mathbb{L}^{\nless} P(X)=\{\text { all subsot, } \delta \mathbb{I}\} .
$$

f_{1}, F_{3} trividy $\sigma-a y . \quad f_{2}$ is a $\sigma-a l y$.

$$
\text { Pf? } \geq X_{1} \phi V \quad A \in F_{2} \Rightarrow A^{(} \in F_{2} \text { (symmety) }
$$

$$
A_{1}, A_{2}, A_{3}, A_{1}, F_{2} . \quad \text { NTS } \cup A_{1} \in F_{2}
$$

casel all A_{i}^{\prime} s are ctble. $\Rightarrow U A_{i}$ ctbk $\Rightarrow U A_{i} \in F_{2}$.
cuse 2 at least one A_{i} is co cowndrale. An.
Then $\cup A_{i}$ co cabant $\partial 人$ sine
with A unotble, A unctble. suchan $A \in F_{3} ; A \notin F_{2}$

$$
\begin{aligned}
& \left|X \backslash \cup A_{i}\right| \leq\left|X \backslash A_{n}\right| \\
& f_{1}=f_{2} \Leftrightarrow|X|=1 . \\
& \langle=|=1 \text {, only } \mid \sigma-a l y \text {. } \\
& \Rightarrow|x| \geq 2 \text {. choose } x \in \mathbb{X} \quad\{x\} \in F_{2} \quad\langle x\rangle \in F_{1} \text {, } \\
& F_{2}=5_{3} \Leftrightarrow \pi \text { ctble. } \\
& \langle\text { Easy } \Rightarrow \text { assum } X \text { not ctble. } \\
& \text { wTS } F_{2} \notin \text { F }_{3} \text {. ASA } A^{C} \text { wand to fiad } \\
& A \in \mathbb{I}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{Z} \times 10\}=\{(x, 0): x \in \mathbb{Z}\} . \quad \bar{X} \times 15=\{(x, 1): x \in \pm\} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& A=f(\mathbb{X} \times(0)) \text {. }
\end{aligned}
$$

Folland 1.3.
m is an inf σ-aly - (ie. 3 co $\#$ of sots in M)
(a) m contrius a sequea of nonewpty sisjoint sods. B_{1}, B_{2}, B_{3}. disjoid nonenty.
(b) carNm) $\geq c$ (= cars of red T_{s})
(a) call $A \in O n$ finite if
$|\{E \in m: E \subseteq A\}|<\infty$ inf ow.
Wote I is inf by ussupptom. Choose $A \in g h, A \neq \phi, A \neq I$. cruad ebserve is eithe Aor A^{c} is infinite $(B \in M \Rightarrow \underset{E M}{E M})$
Let A_{1} piece whin is infinit, B_{1} inf on finite A_{1} inf. Bueck A_{1} into A_{2}, B_{2} partitus (nontrivid) such tat A_{2} is inf.
Keep going $\Rightarrow B_{1}, B_{2}, B_{2} \ldots$ rispindt nowengt.

(b) $C=|[0,1]|=\left|\{0,1)^{N}\right|$
$\{0,1\}^{\prime}=$ infint binany sepereas
Find an injective map from $\Sigma 0,1\}^{N}$ to m $x \neq y \Rightarrow f\left(x \neq f(y) \quad \Rightarrow|m| \geq\left|\{0,\}^{N}\right|\right.$ None $0110100100010000 \longrightarrow B_{2} \cup B_{3} \cup B_{5} \cup B_{\gamma} \cup B_{12}$
$12395629\{1011)$

-pS 14 Lectume notes.
(B, m, μ) is σ-fint, then \& $C=$ atmsl
is at most ctble.
Pf σ-finiks $Z=\bigcup_{i=1}^{\infty} A_{i}$ s.t. $\mu\left(A_{i}\right)<\infty$
If we cm show $\forall i\left|Q \cap A_{i}\right|$ ctble, then done
(A)

NTS $\mu(B)<\infty$, then $B \cap C$ ctble
Pf lot $F_{k}=\left\{x \in B \cap \varphi: \mu[x] \geqslant \frac{1}{k}\right\}$.
claim: $\left|F_{K}\right|<\infty$. since if infinite,

$$
\mu(B) \geq \mu\left(E_{k}\right) \geq \frac{\left|F_{k}\right|<\infty}{\geq}+\infty
$$

$$
\begin{aligned}
& \geq \mu\left(F_{k}\right) \geq \sum_{k=1}^{\frac{1}{k}} F_{k} \Rightarrow B \cap Q \text { ctble. } \\
& B \cap \varphi=V_{k} .
\end{aligned}
$$

(1) J fass on $[0,1]$ whichare discont at evey x.
g. $f(x)= \begin{cases}1 & x \in Q \\ 0 & x \notin Q\end{cases}$
(2) what happens if f is increniz $x<y \Rightarrow f(x) f y)^{2}$ 7 In this con f has \leq ctble may discont.
More over, the relationship between mearurer on $[0,1]$ ant do dit. fins tells us Ris. noth σ-fints spree ($[0,1)_{1}, m=P[0,1]$, countiy mure)

$$
\mu(A)=|A|
$$

Folland 1.18 Variant for Leb. msire.
(a) $\forall E \subseteq \mathbb{R}$, (E nered not be mibel
$\forall \varepsilon>0, \exists$ open set σ s.t $E \subseteq O$,

$$
m(\theta) \leqslant m^{*}(E)+\varepsilon
$$

Les. Pf. cuse (1) $\mathrm{m}^{\gamma}(E)=\infty$, then $\sigma=\mathbb{R}$
case (2) $m^{\alpha}(E)<\infty$. By defn, \exists open interods $I_{1}, I_{2} \ldots$

$$
E \subseteq \text { (2) } \cup I_{i} \text { s.t } \sum_{i=1}^{\infty}\left|I_{i}\right| \leq m^{*}(E)+\varepsilon
$$

let $\sigma=\bigcup_{i=1}^{\infty} I_{i} \quad \sigma$ open. $E \leq O$ and

$$
\begin{aligned}
& \text { let } \sigma=\bigcup_{i=1} I_{i} \quad \sigma \text { open } E \leqslant \theta \\
& \operatorname{mon}(\sigma) \leq \sum_{i=1}^{\infty}\left|I_{i}\right| \leq m^{\alpha}(\mathcal{L})+\varepsilon
\end{aligned}
$$

b^{\prime}. Lot $\mu^{*}(E)<\infty$ (E nead not be miblel
Then \exists a countable intersection fopen
sats, $\underbrace{\infty}_{i=1} \sigma_{i}$ s.t $E \leq \prod_{i=1}^{\infty} \sigma_{i}$ and
$G_{g} \underbrace{i=-1}_{\text {sets }} m\left(\bigcap_{i=1}^{\infty} \sigma_{i}\right)=m^{\gamma}(E)$.
pf. by aq choose σ_{K} upen $E \leq \sigma_{k}$, +

$$
\begin{aligned}
& m\left(\sigma_{k}\right) \leq m^{\prime}(E)+Y_{k} \quad \text { consin } \bigcap_{i=1}^{\infty} \sigma_{i} .
\end{aligned}
$$

$$
\begin{aligned}
& m\left(\int_{=1}^{\infty} \sigma_{1}\right) \leq m\left(\sigma_{k}\right) \leq m^{\gamma(E)}+Y_{k} \\
& \text { Since tom } \forall k, \quad \forall n\left(\cap \sigma_{i}\right) \leq m^{\gamma}(E)
\end{aligned}
$$

$b^{\prime \prime}$. Thm E is m^{*}-mble iff
\exists ctsle inter section of open sets $\bigcap_{i n}^{0} \sigma_{i}$ s.t $E \subseteq \bigcap_{i=1}^{\infty} b_{i}$

$$
m^{*}\left(\frac{\left.\bigcap_{E_{1}}^{\infty} \sigma_{1} \perp E\right)}{A}=0\right.
$$

not sume as,$n \kappa-\backslash=m^{*}(\mid)$

$$
\begin{aligned}
& \text { (} m^{*}(A)=0 \Rightarrow A \text { is } m^{\infty+x} \text { insble } \\
& \Rightarrow \bigcap_{i=1}^{\infty} \sigma_{i} \backslash A \quad \text { an }^{x} \text {-mble } \Rightarrow E \text { is } m^{\sigma} \text { \& milb|c } \\
& \Rightarrow B_{y} b_{i}^{\prime}, \exists \text { open stes } O_{i} \text { s.t } E \subseteq \cap B_{i} \\
& m^{*}\left(\cap \theta_{1}\right)=m^{M}(E) \text { on other hiul } \\
& \text { Sive } E \text { is mble, } \\
& \begin{array}{l}
{ }^{*}\left(\bigcap_{i=1}^{\infty} \sigma_{i}\right)=m^{r}\left(\cap \sigma_{i} \cap E\right)+m^{2}\left(\cap \sigma_{i} \cap E^{c}\right) \\
m^{*}(E)+\text { in }
\end{array} \\
& =m^{*}(E)+m^{\alpha}(A) . \\
& \Rightarrow m^{*}(A)=0 \text {. }
\end{aligned}
$$

