L notes PJ 41 very general
$f:[0,1] \rightarrow R$.. The set of pts where f is cont is a Bovel sett
Pf. show strong. It is in fact a G_{δ} sett; ie. it is a che intersection of open seth.
ie. C pts. of conto of f

Choose $\delta>0$ st $\forall y \in(x-\delta, x+\delta)$

$$
\begin{aligned}
& \mid f(y)-f(x)) \leq 1 / 2 n \\
& \text { ie } f(\left(\frac{x-\delta, x+f)}{I}\right) \subseteq \underbrace{f(x) \cdot \frac{1}{2 n}, f(x)+\frac{1}{2 n}}_{\text {Nim } \frac{1}{n}}]
\end{aligned}
$$

(1) Does then exist $f:[0,1] \rightarrow R$
st f is cont precisely at the irvationds?
4 -rationals?
(i) we dir. Yes. Take a measure, on $[0,1]$ concectasts on ratinuds. $Q=\left(a_{1}, a_{2}, a_{3}, \cdots\right)$
$\left.\mu\left(q_{i}\right\}\right)=\frac{1}{2}$. $\mu[q \mid]=1$ Diff $f(4)$ of $\mu_{\text {a }}$ work.
(2) NO. The precious exeriul \Rightarrow if $\exists \mathrm{afch}$ cont. only on Q, the Q must be a coble

LN, py 56

1. $0 \leq f_{n} \leq 1, f_{n} \rightarrow 0$ uniformly,
but $\int f_{n} \nrightarrow 0$.
[0,00) Leb mave. $f_{n}=\frac{1}{n} I_{[0, n]}$
1* 2 coul ubv. $\int f_{n}{ }^{(x)} d x=\frac{1}{n} \cdot n=1$ 1/n
Sive $\int f_{n}$ tio, The LD C thm
says i there cmunot axoit a $f\left(n \quad g \in 厶^{\prime}(0,0) \mid\right)$ which dominctes all f_{n} 's ($\left.\left|f_{n}\right| \leq g \quad \forall n\right)$. Lot's vevify
"with hands" bere is no such $f(x$. assume there
Sing is $\quad\left|f_{n}\right| \leqslant g \Rightarrow g \alpha x \geq \frac{1}{n}$ on $[n-1, n]$.
$S g=\sum_{m=1}^{\infty} \int_{m-1}^{m} g(x) d x \geqslant \sum_{m=1}^{\infty} \frac{1}{m}=0$
Example cannor occuw on a finite measw Spm

then $\int f_{\text {nar }} \rightarrow 0$. why $L D C$ with $g x=1 \quad \forall x$. contant ave integraste on fivite spores but not on inf. Spreer

Find an exuounter, $0 \leq f_{n} \leq 1$
$f_{n} \rightarrow 0$ unif., $S f_{n} \rightarrow 0$. but f a dom. fan g.

$$
f_{n}=\frac{11}{n} I_{[n, n+1)} \quad S f_{n}=\frac{1}{n} \rightarrow 0 . \quad \text { But no } J .
$$

why: $g \geq f_{n} \Rightarrow g(x) \geq \frac{1}{n}$ on $[n, n+1] \quad \forall n$.

$$
\begin{aligned}
& \int_{0}^{\infty} S(x)=\sum_{n=0}^{\infty} \quad \int_{n+1}^{n+1} S(x) x_{x} \geqslant \sum_{n=\infty}^{\infty} \int_{n}^{n+1} y_{n} d x \\
&=\sum_{0} \frac{1}{n}=\infty . \quad \square
\end{aligned}
$$

$([0,1], H)$ Find $f_{n} \geq 0$.
$f_{h} \rightarrow 0 \quad \forall x$ as $n \rightarrow \infty$.
$\int f_{n} \rightarrow 0$ but \nexists dom. g.

$$
f_{n}=n \frac{I_{n}}{\left[1 / n+1, \frac{1}{n}\right] .}
$$

Folland. Ex 2.3. f_{n} seac: of funs

$L^{11}=\left\{x:\right.$ is illowed $\left.f_{n}(x)=\lim f_{n}(x)\right\}$. Gevervily,
fy whis $\left\{x, f(x)=\frac{L_{0}}{} j(x)\right\}$ is msbe
why ${ }^{2} \quad\{x: \quad f(x)=j(x)\}=\left\{\begin{array}{ll}x: & f(x)-s(x)=0\end{array}\right\}$

$$
\begin{aligned}
& \left.=2^{x}-1\right)^{-1}(0) \quad \text { m } s b_{2} . \\
& =(f(x)-5(x))^{2}
\end{aligned}
$$

(2) convegs means α_{x} afinide $\#$.
[$x: f_{n}(x)$ conveger $\}=\left\{x_{1} f_{n} \otimes x\right.$ (anily seq. $]$

$$
\begin{aligned}
& \left\{x: f_{n}(x) \text { conveger }\right\}=\left\{x: f_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{x, l+m}^{\infty}\left\{x:\left|f_{k}(\infty)-f_{l}(x)\right|<y_{n}\right\}\right. \\
& =\left\{x: \bigcap_{n=1}^{\infty}\right.
\end{aligned}
$$

Folland 2. y.
assume $\{x: \quad f(x) \in(r, \infty))$ misle $\forall r \in Q$.

$$
\begin{aligned}
& f(x) \in(v, 0) \\
& f^{-1}((v, \infty)
\end{aligned} \text { wTs } f \text { mshle. }
$$

Sol. $\forall x \in R, \quad f^{-1}\left((x, \infty)=\bigcup_{r>x}^{r \in Q} \frac{f_{c=3}^{-1}((r, \infty))}{e m}\right.$ y u assum

$$
f((v))>r \Rightarrow w t f^{-1}((v, 001) . \square
$$

2.30. $\quad \int_{0}^{k} x^{n}\left(1-\frac{x}{k}\right)^{k} \lambda x \rightarrow n!\quad$ us $k \rightarrow \infty$ $\forall n$
Sol. LHS $=, \int_{0}^{\infty}{\underset{\sim}{x}\left(1-\frac{x}{k}\right)^{k} I_{[(0, k])}^{(x)}}_{\sim}^{(x}$
What doe intoruand \rightarrow as $k \rightarrow$-oo for fixed x $x^{n} \lim _{k \rightarrow \neq 0}\left(1-\frac{x}{k}\right)^{k}=x^{n} e^{-x}$. If we cons harl LDC,
then $\rightarrow \int_{0}^{\infty} x^{n} e^{-x} d x=n$! by inanition n
we do have a dom $f\left(x . g(x)=x^{n} e^{-x} \in L^{\prime}\right.$ $\left|H_{k}\right| x \mid \leq g(x) \quad \forall x \quad \forall n$. Ie. $x^{n}\left(1-\frac{x}{k}\right)^{k} \leqslant \underline{x}^{n} e^{-x}$ for $x \in[0, k]$ i. $\left(1-\frac{x}{k}\right)^{k} \leq e^{-x}$ for $x \in[0, k]$

Key fact. $a \in[0,1] \quad(1-a) \leq e^{-a}$. Given keylict

$$
\left(1-\frac{x}{k_{k}^{k}}\right)^{k} \leq\left(e^{-\frac{x}{k}}\right)^{k}=e^{-x}
$$

1-a, e^{-a} a grue ado. NTH $\left(e^{-a}\right)^{\prime} \geq(1-a)^{\prime}$ ie.

$$
-e^{-a} \geq-1 \text { ie. } e^{-a} \leq 1 \quad a \geq 0
$$

