Class Lectures (for Chapter 6)

Probability Theory framework

Probability Theory framework

Kolmogorov in the 1930's placed probability theory on a firm mathematical basis;

Probability Theory framework

Kolmogorov in the 1930's placed probability theory on a firm mathematical basis; namely using measure and integration theory.

Probability Theory framework

Kolmogorov in the 1930's placed probability theory on a firm mathematical basis; namely using measure and integration theory.

Definition

A probability space is a measure space (Ω, \mathcal{M}, P) with $P(\Omega)=1$.

Probability Theory framework

Kolmogorov in the 1930's placed probability theory on a firm mathematical basis; namely using measure and integration theory.

Definition

A probability space is a measure space (Ω, \mathcal{M}, P) with $P(\Omega)=1$.
Ω is the set of "outcomes" of some "random" experiment.

Probability Theory framework

Kolmogorov in the 1930's placed probability theory on a firm mathematical basis; namely using measure and integration theory.

Definition

A probability space is a measure space (Ω, \mathcal{M}, P) with $P(\Omega)=1$.
Ω is the set of "outcomes" of some "random" experiment. \mathcal{M} is the set of "events" to which we will assign a "probability".

Probability Theory framework

Kolmogorov in the 1930's placed probability theory on a firm mathematical basis; namely using measure and integration theory.

Definition

A probability space is a measure space (Ω, \mathcal{M}, P) with $P(\Omega)=1$.
Ω is the set of "outcomes" of some "random" experiment. \mathcal{M} is the set of "events" to which we will assign a "probability". For $A \in \mathcal{M}, P(A)$ is the the "probability" that our "randomly chosen" $\omega \in \Omega$ falls in A.

Probability Theory framework

Kolmogorov in the 1930's placed probability theory on a firm mathematical basis; namely using measure and integration theory.

Definition

A probability space is a measure space (Ω, \mathcal{M}, P) with $P(\Omega)=1$.
Ω is the set of "outcomes" of some "random" experiment. \mathcal{M} is the set of "events" to which we will assign a "probability". For $A \in \mathcal{M}, P(A)$ is the the "probability" that our "randomly chosen" $\omega \in \Omega$ falls in A.

So, (Ω, \mathcal{M}, P) governs some "random experiment" where P tells us the "likelihood" that ω (chosen "randomly") falls in different sets.

Random variables

Definition

Given a probability space (Ω, \mathcal{M}, P), a random variable is a measurable function X on (Ω, \mathcal{M}, P).

Random variables

Definition

Given a probability space (Ω, \mathcal{M}, P), a random variable is a measurable function X on (Ω, \mathcal{M}, P).

So a random variable is not really random as it is just a function.

Random variables

Definition

Given a probability space (Ω, \mathcal{M}, P), a random variable is a measurable function X on (Ω, \mathcal{M}, P).

So a random variable is not really random as it is just a function. However, if ω is "random", then $X(\omega)$ is "random".

Random variables

Definition

Given a probability space (Ω, \mathcal{M}, P), a random variable is a measurable function X on (Ω, \mathcal{M}, P).

So a random variable is not really random as it is just a function. However, if ω is "random", then $X(\omega)$ is "random". Hence we call it a random variable.

Random variables

Definition

Given a probability space (Ω, \mathcal{M}, P), a random variable is a measurable function X on (Ω, \mathcal{M}, P).

So a random variable is not really random as it is just a function. However, if ω is "random", then $X(\omega)$ is "random". Hence we call it a random variable.

Definition

If X is a random variable on a probability space (Ω, \mathcal{M}, P), its expectation, denoted $E(X)$,

Random variables

Definition

Given a probability space (Ω, \mathcal{M}, P), a random variable is a measurable function X on (Ω, \mathcal{M}, P).

So a random variable is not really random as it is just a function. However, if ω is "random", then $X(\omega)$ is "random". Hence we call it a random variable.

Definition

If X is a random variable on a probability space (Ω, \mathcal{M}, P), its expectation, denoted $E(X)$, is simply defined by

$$
E(X)=\int X(\omega) d P(\omega)
$$

provided this exists, meaning at least one of $\int X^{+} d P$ and $\int X^{-} d P$ is finite.

Law or distribution of a random variable

Law of distribution of a random variable

Definition

Given a random variable X on a probability space (Ω, \mathcal{M}, P),

Law of distribution of a random variable

Definition

Given a random variable X on a probability space (Ω, \mathcal{M}, P), the distribution or law of X (see picture)

Law of distribution of a random variable

Definition

Given a random variable X on a probability space (Ω, \mathcal{M}, P), the distribution or law of \mathbf{X} (see picture) is the probability measure μ_{X} on (R, \mathcal{B}) given by

Law of distribution of a random variable

Definition

Given a random variable X on a probability space (Ω, \mathcal{M}, P), the distribution or law of \mathbf{X} (see picture) is the probability measure μ_{X} on (R, \mathcal{B}) given by

$$
\mu_{X}(A):=P\left(X^{-1}(A)\right) .
$$

Law of distribution of a random variable

Definition

Given a random variable X on a probability space (Ω, \mathcal{M}, P), the distribution or law of X (see picture) is the probability measure μ_{X} on (R, \mathcal{B}) given by

$$
\mu_{X}(A):=P\left(X^{-1}(A)\right) .
$$

Remarks: (i) One needs to check that μ_{X} is a probability measure.

Law of distribution of a random variable

Definition

Given a random variable X on a probability space (Ω, \mathcal{M}, P), the distribution or law of X (see picture) is the probability measure μ_{X} on (R, \mathcal{B}) given by

$$
\mu_{X}(A):=P\left(X^{-1}(A)\right) .
$$

Remarks: (i) One needs to check that μ_{X} is a probability measure. (ii) The distribution of X contains all the essential information of X.

Law of distribution of a random variable

Definition

Given a random variable X on a probability space (Ω, \mathcal{M}, P), the distribution or law of X (see picture) is the probability measure μ_{X} on (R, \mathcal{B}) given by

$$
\mu_{X}(A):=P\left(X^{-1}(A)\right) .
$$

Remarks: (i) One needs to check that μ_{X} is a probability measure. (ii) The distribution of X contains all the essential information of X.
(iii) If someone says

Law of distribution of a random variable

Definition

Given a random variable X on a probability space (Ω, \mathcal{M}, P), the distribution or law of X (see picture) is the probability measure μ_{X} on (R, \mathcal{B}) given by

$$
\mu_{X}(A):=P\left(X^{-1}(A)\right) .
$$

Remarks: (i) One needs to check that μ_{X} is a probability measure. (ii) The distribution of X contains all the essential information of X.
(iii) If someone says
"Let X be a Poisson random variable with parameter λ ",

Law of distribution of a random variable

Definition

Given a random variable X on a probability space (Ω, \mathcal{M}, P), the distribution or law of X (see picture) is the probability measure μ_{X} on (R, \mathcal{B}) given by

$$
\mu_{X}(A):=P\left(X^{-1}(A)\right) .
$$

Remarks: (i) One needs to check that μ_{X} is a probability measure. (ii) The distribution of X contains all the essential information of X.
(iii) If someone says
"Let X be a Poisson random variable with parameter λ ", what they mean is

Law of distribution of a random variable

Definition

Given a random variable X on a probability space (Ω, \mathcal{M}, P), the distribution or law of X (see picture) is the probability measure μ_{X} on (R, \mathcal{B}) given by

$$
\mu_{X}(A):=P\left(X^{-1}(A)\right) .
$$

Remarks: (i) One needs to check that μ_{X} is a probability measure. (ii) The distribution of X contains all the essential information of X.
(iii) If someone says
"Let X be a Poisson random variable with parameter λ ", what they mean is X is a random variable on some probability space

Law of distribution of a random variable

Definition

Given a random variable X on a probability space (Ω, \mathcal{M}, P), the distribution or law of X (see picture) is the probability measure μ_{X} on (R, \mathcal{B}) given by

$$
\mu_{X}(A):=P\left(X^{-1}(A)\right) .
$$

Remarks: (i) One needs to check that μ_{X} is a probability measure. (ii) The distribution of X contains all the essential information of X.
(iii) If someone says
"Let X be a Poisson random variable with parameter λ ", what they mean is X is a random variable on some probability space (which we often don't care about)

Law of distribution of a random variable

Definition

Given a random variable X on a probability space (Ω, \mathcal{M}, P), the distribution or law of X (see picture) is the probability measure μ_{X} on (R, \mathcal{B}) given by

$$
\mu_{X}(A):=P\left(X^{-1}(A)\right) .
$$

Remarks: (i) One needs to check that μ_{X} is a probability measure. (ii) The distribution of X contains all the essential information of X.
(iii) If someone says
"Let X be a Poisson random variable with parameter λ ", what they mean is X is a random variable on some probability space (which we often don't care about) and the law of X, μ_{X}, satisfies

Law of distribution of a random variable

Definition

Given a random variable X on a probability space (Ω, \mathcal{M}, P), the distribution or law of X (see picture) is the probability measure μ_{X} on (R, \mathcal{B}) given by

$$
\mu_{X}(A):=P\left(X^{-1}(A)\right) .
$$

Remarks: (i) One needs to check that μ_{X} is a probability measure. (ii) The distribution of X contains all the essential information of X.
(iii) If someone says
"Let X be a Poisson random variable with parameter λ ", what they mean is X is a random variable on some probability space (which we often don't care about) and the law of X, μ_{X}, satisfies

$$
\mu_{X}(k)=\frac{e^{-\lambda} \lambda^{k}}{k!} \text { for } k \in N
$$

Independence

Independence

Definition

n random variables $X_{1}, X_{2} \ldots, X_{n}$ on a probability space (Ω, \mathcal{M}, P) are called independent

Independence

Definition

n random variables $X_{1}, X_{2} \ldots, X_{n}$ on a probability space (Ω, \mathcal{M}, P) are called independent if for all Borel sets $B_{1}, B_{2} \ldots, B_{n}$

$$
P\left(\bigcap_{i=1}^{n} X_{i}^{-1}\left(B_{i}\right)\right)=\prod_{i=1}^{n} P\left(X_{i}^{-1}\left(B_{i}\right)\right)
$$

Independence

Definition

n random variables $X_{1}, X_{2} \ldots, X_{n}$ on a probability space (Ω, \mathcal{M}, P) are called independent if for all Borel sets $B_{1}, B_{2} \ldots, B_{n}$

$$
P\left(\bigcap_{i=1}^{n} x_{i}^{-1}\left(B_{i}\right)\right)=\prod_{i=1}^{n} P\left(X_{i}^{-1}\left(B_{i}\right)\right) .
$$

Definition

An infinite collection of random variables on a probability space (Ω, \mathcal{M}, P) is called independent if each finite collection is independent as above.

A simple example of convergence in probability but not a.s.

A simple example of convergence in probability but not a.s. Step 1: (will use $1-x \leq e^{-x}$ for all x)

A simple example of convergence in probability but not a.s. Step 1: (will use $1-x \leq e^{-x}$ for all x)

Theorem
(Second Borel Cantelli Lemma)

A simple example of convergence in probability but not a.s. Step 1: (will use $1-x \leq e^{-x}$ for all x)

Theorem
(Second Borel Cantelli Lemma)
Let E_{1}, E_{2}, \ldots be a sequence of independent events in the probability space (Ω, \mathcal{M}, P).

A simple example of convergence in probability but not a.s. Step 1: (will use $1-x \leq e^{-x}$ for all x)

Theorem
(Second Borel Cantelli Lemma)
Let E_{1}, E_{2}, \ldots be a sequence of independent events in the probability space (Ω, \mathcal{M}, P). If $\sum_{i} P\left(E_{i}\right)=\infty$,

A simple example of convergence in probability but not a.s. Step 1: (will use $1-x \leq e^{-x}$ for all x)

Theorem
(Second Borel Cantelli Lemma)
Let E_{1}, E_{2}, \ldots be a sequence of independent events in the probability space (Ω, \mathcal{M}, P). If $\sum_{i} P\left(E_{i}\right)=\infty$, then

$$
P\left(\lim \sup E_{i}\right)=1
$$

A simple example of convergence in probability but not a.s. Step 1: (will use $1-x \leq e^{-x}$ for all x)

Theorem
(Second Borel Cantelli Lemma)
Let E_{1}, E_{2}, \ldots be a sequence of independent events in the probability space (Ω, \mathcal{M}, P). If $\sum_{i} P\left(E_{i}\right)=\infty$, then

$$
P\left(\lim \sup E_{i}\right)=1
$$

Proof: $\left(\limsup E_{i}\right)^{c}:=\bigcup_{n=1}^{\infty}\left(\bigcap_{k=n}^{\infty} E_{k}^{c}\right)$.

A simple example of convergence in probability but not a.s. Step 1: (will use $1-x \leq e^{-x}$ for all x)

Theorem
(Second Borel Cantelli Lemma)
Let E_{1}, E_{2}, \ldots be a sequence of independent events in the probability space (Ω, \mathcal{M}, P). If $\sum_{i} P\left(E_{i}\right)=\infty$, then

$$
P\left(\lim \sup E_{i}\right)=1
$$

Proof: $\left(\limsup E_{i}\right)^{c}:=\bigcup_{n=1}^{\infty}\left(\bigcap_{k=n}^{\infty} E_{k}^{c}\right)$. For each n,

A simple example of convergence in probability but not a.s. Step 1: (will use $1-x \leq e^{-x}$ for all x)

Theorem

(Second Borel Cantelli Lemma)
Let E_{1}, E_{2}, \ldots be a sequence of independent events in the probability space (Ω, \mathcal{M}, P). If $\sum_{i} P\left(E_{i}\right)=\infty$, then

$$
P\left(\lim \sup E_{i}\right)=1 .
$$

Proof: $\left(\limsup E_{i}\right)^{c}:=\bigcup_{n=1}^{\infty}\left(\bigcap_{k=n}^{\infty} E_{k}^{c}\right)$. For each n,

A simple example of convergence in probability but not a.s. Step 1: (will use $1-x \leq e^{-x}$ for all x)

Theorem
(Second Borel Cantelli Lemma)
Let E_{1}, E_{2}, \ldots be a sequence of independent events in the probability space (Ω, \mathcal{M}, P). If $\sum_{i} P\left(E_{i}\right)=\infty$, then

$$
P\left(\lim \sup E_{i}\right)=1
$$

Proof: $\left(\limsup E_{i}\right)^{c}:=\bigcup_{n=1}^{\infty}\left(\bigcap_{k=n}^{\infty} E_{k}^{c}\right)$. For each n,
$P\left(\bigcap_{k=n}^{\infty} E_{k}^{c}\right)=\prod_{k=n}^{\infty} P\left(E_{k}^{c}\right)=$

A simple example of convergence in probability but not a.s. Step 1: (will use $1-x \leq e^{-x}$ for all x)

Theorem
(Second Borel Cantelli Lemma)
Let E_{1}, E_{2}, \ldots be a sequence of independent events in the probability space (Ω, \mathcal{M}, P). If $\sum_{i} P\left(E_{i}\right)=\infty$, then

$$
P\left(\lim \sup E_{i}\right)=1
$$

Proof: $\left(\lim \sup E_{i}\right)^{c}:=\bigcup_{n=1}^{\infty}\left(\bigcap_{k=n}^{\infty} E_{k}^{c}\right)$. For each n,
$P\left(\bigcap_{k=n}^{\infty} E_{k}^{c}\right)=\prod_{k=n}^{\infty} P\left(E_{k}^{c}\right)=\prod_{k=n}^{\infty}\left(1-P\left(E_{k}\right)\right)$

A simple example of convergence in probability but not a.s. Step 1: (will use $1-x \leq e^{-x}$ for all x)

Theorem
(Second Borel Cantelli Lemma)
Let E_{1}, E_{2}, \ldots be a sequence of independent events in the probability space (Ω, \mathcal{M}, P). If $\sum_{i} P\left(E_{i}\right)=\infty$, then

$$
P\left(\lim \sup E_{i}\right)=1
$$

Proof: $\left(\limsup E_{i}\right)^{c}:=\bigcup_{n=1}^{\infty}\left(\bigcap_{k=n}^{\infty} E_{k}^{c}\right)$. For each n,
$P\left(\bigcap_{k=n}^{\infty} E_{k}^{c}\right)=\prod_{k=n}^{\infty} P\left(E_{k}^{c}\right)=\prod_{k=n}^{\infty}\left(1-P\left(E_{k}\right)\right) \leq \prod_{k=n}^{\infty} e^{-P\left(E_{k}\right)}$

A simple example of convergence in probability but not a.s. Step 1: (will use $1-x \leq e^{-x}$ for all x)

Theorem
(Second Borel Cantelli Lemma)
Let E_{1}, E_{2}, \ldots be a sequence of independent events in the probability space (Ω, \mathcal{M}, P). If $\sum_{i} P\left(E_{i}\right)=\infty$, then

$$
P\left(\lim \sup E_{i}\right)=1
$$

Proof: $\left(\limsup E_{i}\right)^{c}:=\bigcup_{n=1}^{\infty}\left(\bigcap_{k=n}^{\infty} E_{k}^{c}\right)$. For each n,
$P\left(\bigcap_{k=n}^{\infty} E_{k}^{c}\right)=\prod_{k=n}^{\infty} P\left(E_{k}^{c}\right)=\prod_{k=n}^{\infty}\left(1-P\left(E_{k}\right)\right) \leq \prod_{k=n}^{\infty} e^{-P\left(E_{k}\right)}=e^{-\sum_{k=n}^{\infty} P\left(E_{k}\right)}=$

A simple example of convergence in probability but not a.s. Step 1: (will use $1-x \leq e^{-x}$ for all x)

Theorem

(Second Borel Cantelli Lemma)
Let E_{1}, E_{2}, \ldots be a sequence of independent events in the probability space (Ω, \mathcal{M}, P). If $\sum_{i} P\left(E_{i}\right)=\infty$, then

$$
P\left(\lim \sup E_{i}\right)=1
$$

Proof: $\left(\limsup E_{i}\right)^{c}:=\bigcup_{n=1}^{\infty}\left(\bigcap_{k=n}^{\infty} E_{k}^{c}\right)$. For each n,

$$
P\left(\bigcap_{k=n}^{\infty} E_{k}^{c}\right)=\prod_{k=n}^{\infty} P\left(E_{k}^{c}\right)=\prod_{k=n}^{\infty}\left(1-P\left(E_{k}\right)\right) \leq \prod_{k=n}^{\infty} e^{-P\left(E_{k}\right)}=e^{-\sum_{k=n}^{\infty} P\left(E_{k}\right)}=0
$$

QED

A simple example of convergence in probability but not a.s. Step 1: (will use $1-x \leq e^{-x}$ for all x)

Theorem

(Second Borel Cantelli Lemma)
Let E_{1}, E_{2}, \ldots be a sequence of independent events in the probability space (Ω, \mathcal{M}, P). If $\sum_{i} P\left(E_{i}\right)=\infty$, then

$$
P\left(\lim \sup E_{i}\right)=1
$$

Proof: $\left(\lim \sup E_{i}\right)^{c}:=\bigcup_{n=1}^{\infty}\left(\bigcap_{k=n}^{\infty} E_{k}^{c}\right)$. For each n,
$P\left(\bigcap_{k=n}^{\infty} E_{k}^{c}\right)=\prod_{k=n}^{\infty} P\left(E_{k}^{c}\right)=\prod_{k=n}^{\infty}\left(1-P\left(E_{k}\right)\right) \leq \prod_{k=n}^{\infty} e^{-P\left(E_{k}\right)}=e^{-\sum_{k=n}^{\infty} P\left(E_{k}\right)}=0$
QED For the unit interval with Lebesgue measure, let $E_{n}=[0,1 / n]$, what is happening?

Two examples

Two examples

Example 1: Let E_{1}, E_{2}, \ldots be a sequence of independent events in some probability space (Ω, \mathcal{M}, P) with $P\left(E_{n}\right)=1 / n^{2}$.

Two examples

Example 1: Let E_{1}, E_{2}, \ldots be a sequence of independent events in some probability space (Ω, \mathcal{M}, P) with $P\left(E_{n}\right)=1 / n^{2}$. Then the sequence of functions $I_{E_{n}}$ converges to 0 a.s.

Two examples

Example 1: Let E_{1}, E_{2}, \ldots be a sequence of independent events in some probability space (Ω, \mathcal{M}, P) with $P\left(E_{n}\right)=1 / n^{2}$. Then the sequence of functions $I_{E_{n}}$ converges to 0 a.s. This follows immediately from the Borel-Cantelli Lemma.

Two examples

Example 1: Let E_{1}, E_{2}, \ldots be a sequence of independent events in some probability space (Ω, \mathcal{M}, P) with $P\left(E_{n}\right)=1 / n^{2}$. Then the sequence of functions $I_{E_{n}}$ converges to 0 a.s. This follows immediately from the Borel-Cantelli Lemma.

Example 2: Let E_{1}, E_{2}, \ldots be a sequence of independent events in some probability space (Ω, \mathcal{M}, P) with $P\left(E_{n}\right)=1 / n$.

Two examples

Example 1: Let E_{1}, E_{2}, \ldots be a sequence of independent events in some probability space (Ω, \mathcal{M}, P) with $P\left(E_{n}\right)=1 / n^{2}$. Then the sequence of functions $I_{E_{n}}$ converges to 0 a.s. This follows immediately from the Borel-Cantelli Lemma.

Example 2: Let E_{1}, E_{2}, \ldots be a sequence of independent events in some probability space (Ω, \mathcal{M}, P) with $P\left(E_{n}\right)=1 / n$. Then the sequence of functions $I_{E_{n}}$ converges to 0 in measure but not a.s.

Two examples

Example 1: Let E_{1}, E_{2}, \ldots be a sequence of independent events in some probability space (Ω, \mathcal{M}, P) with $P\left(E_{n}\right)=1 / n^{2}$. Then the sequence of functions $I_{E_{n}}$ converges to 0 a.s. This follows immediately from the Borel-Cantelli Lemma.

Example 2: Let E_{1}, E_{2}, \ldots be a sequence of independent events in some probability space (Ω, \mathcal{M}, P) with $P\left(E_{n}\right)=1 / n$. Then the sequence of functions $I_{E_{n}}$ converges to 0 in measure but not a.s.

Why? $P\left(\left|I_{E_{n}}-0\right| \geq \epsilon\right)=P\left(E_{n}\right)$ which goes to 0 . Hence convergence in measure. However, the second Borel-Cantelli Lemma says that $P\left(\lim \sup E_{i}\right)=1$ and this means that it is not the case that $I_{E_{n}}$ converges to 0 a.s.. In fact it says that $I_{E_{n}}$ converges to 0 only on a set of probability 0.

Two examples

Example 1: Let E_{1}, E_{2}, \ldots be a sequence of independent events in some probability space (Ω, \mathcal{M}, P) with $P\left(E_{n}\right)=1 / n^{2}$. Then the sequence of functions $I_{E_{n}}$ converges to 0 a.s. This follows immediately from the Borel-Cantelli Lemma.

Example 2: Let E_{1}, E_{2}, \ldots be a sequence of independent events in some probability space (Ω, \mathcal{M}, P) with $P\left(E_{n}\right)=1 / n$. Then the sequence of functions $I_{E_{n}}$ converges to 0 in measure but not a.s.

Why? $P\left(\left|I_{E_{n}}-0\right| \geq \epsilon\right)=P\left(E_{n}\right)$ which goes to 0 . Hence convergence in measure. However, the second Borel-Cantelli Lemma says that $P\left(\lim \sup E_{i}\right)=1$ and this means that it is not the case that $I_{E_{n}}$ converges to 0 a.s.. In fact it says that $I_{E_{n}}$ converges to 0 only on a set of probability 0.

One should contemplate what is happening. For very large n, it is very unlikely that E_{n} occurs.

Two examples

Example 1: Let E_{1}, E_{2}, \ldots be a sequence of independent events in some probability space (Ω, \mathcal{M}, P) with $P\left(E_{n}\right)=1 / n^{2}$. Then the sequence of functions $I_{E_{n}}$ converges to 0 a.s. This follows immediately from the Borel-Cantelli Lemma.

Example 2: Let E_{1}, E_{2}, \ldots be a sequence of independent events in some probability space (Ω, \mathcal{M}, P) with $P\left(E_{n}\right)=1 / n$. Then the sequence of functions $I_{E_{n}}$ converges to 0 in measure but not a.s.

Why? $P\left(\left|I_{E_{n}}-0\right| \geq \epsilon\right)=P\left(E_{n}\right)$ which goes to 0 . Hence convergence in measure. However, the second Borel-Cantelli Lemma says that $P\left(\lim \sup E_{i}\right)=1$ and this means that it is not the case that $I_{E_{n}}$ converges to 0 a.s.. In fact it says that $I_{E_{n}}$ converges to 0 only on a set of probability 0.

One should contemplate what is happening. For very large n, it is very unlikely that E_{n} occurs. But nonetheless, if you watch things in time (as n moves), $I_{E_{n}}$ will a.s. pop up to be 1 infinitely often but more and more rarely.

Two examples

Example 1: Let E_{1}, E_{2}, \ldots be a sequence of independent events in some probability space (Ω, \mathcal{M}, P) with $P\left(E_{n}\right)=1 / n^{2}$. Then the sequence of functions $I_{E_{n}}$ converges to 0 a.s. This follows immediately from the Borel-Cantelli Lemma.

Example 2: Let E_{1}, E_{2}, \ldots be a sequence of independent events in some probability space (Ω, \mathcal{M}, P) with $P\left(E_{n}\right)=1 / n$. Then the sequence of functions $I_{E_{n}}$ converges to 0 in measure but not a.s.

Why? $P\left(\left|I_{E_{n}}-0\right| \geq \epsilon\right)=P\left(E_{n}\right)$ which goes to 0 . Hence convergence in measure. However, the second Borel-Cantelli Lemma says that $P\left(\lim \sup E_{i}\right)=1$ and this means that it is not the case that $I_{E_{n}}$ converges to 0 a.s.. In fact it says that $I_{E_{n}}$ converges to 0 only on a set of probability 0.

One should contemplate what is happening. For very large n, it is very unlikely that E_{n} occurs. But nonetheless, if you watch things in time (as n moves), $I_{E_{n}}$ will a.s. pop up to be 1 infinitely often but more and more rarely. Look familiar?

Law of Large Numbers: Special case

Law of Large Numbers: Special case

Theorem
(Weak and Strong Law of Large Numbers in a SPECIAL case)

Law of Large Numbers: Special case

Theorem
(Weak and Strong Law of Large Numbers in a SPECIAL case) Let X_{1}, X_{2}, \ldots be independent random variables

Law of Large Numbers: Special case

Theorem
(Weak and Strong Law of Large Numbers in a SPECIAL case) Let X_{1}, X_{2}, \ldots be independent random variables each with distribution $\left(\delta_{1}+\delta_{-1}\right) / 2$;

Law of Large Numbers: Special case

Theorem
(Weak and Strong Law of Large Numbers in a SPECIAL case) Let X_{1}, X_{2}, \ldots be independent random variables each with distribution $\left(\delta_{1}+\delta_{-1}\right) / 2$; i.e. $P\left(\left\{\omega: X_{i}(\omega)=1\right\}\right)=P\left(\left\{\omega: X_{i}(\omega)=-1\right\}\right)=1 / 2$.

Law of Large Numbers: Special case

Theorem

(Weak and Strong Law of Large Numbers in a SPECIAL case) Let X_{1}, X_{2}, \ldots be independent random variables each with distribution $\left(\delta_{1}+\delta_{-1}\right) / 2$; i.e. $P\left(\left\{\omega: X_{i}(\omega)=1\right\}\right)=P\left(\left\{\omega: X_{i}(\omega)=-1\right\}\right)=1 / 2$. Then (WLLN)

Law of Large Numbers: Special case

Theorem

(Weak and Strong Law of Large Numbers in a SPECIAL case) Let X_{1}, X_{2}, \ldots be independent random variables each with distribution $\left(\delta_{1}+\delta_{-1}\right) / 2$; i.e. $P\left(\left\{\omega: X_{i}(\omega)=1\right\}\right)=P\left(\left\{\omega: X_{i}(\omega)=-1\right\}\right)=1 / 2$. Then (WLLN)
(i).

$$
\frac{S_{n}}{n}:=\frac{\sum_{i=1}^{n} X_{i}}{n} \text { converges in measure (in probability) } \rightarrow 0 .
$$

Law of Large Numbers: Special case

Theorem

(Weak and Strong Law of Large Numbers in a SPECIAL case) Let X_{1}, X_{2}, \ldots be independent random variables each with distribution $\left(\delta_{1}+\delta_{-1}\right) / 2$; i.e. $P\left(\left\{\omega: X_{i}(\omega)=1\right\}\right)=P\left(\left\{\omega: X_{i}(\omega)=-1\right\}\right)=1 / 2$. Then (WLLN)
(i).

$$
\frac{S_{n}}{n}:=\frac{\sum_{i=1}^{n} X_{i}}{n} \text { converges in measure (in probability) } \rightarrow 0 .
$$

and (SLLN)

Law of Large Numbers: Special case

Theorem

(Weak and Strong Law of Large Numbers in a SPECIAL case) Let X_{1}, X_{2}, \ldots be independent random variables each with distribution $\left(\delta_{1}+\delta_{-1}\right) / 2$; i.e. $P\left(\left\{\omega: X_{i}(\omega)=1\right\}\right)=P\left(\left\{\omega: X_{i}(\omega)=-1\right\}\right)=1 / 2$. Then (WLLN)
(i).

$$
\frac{S_{n}}{n}:=\frac{\sum_{i=1}^{n} X_{i}}{n} \text { converges in measure (in probability) } \rightarrow 0 .
$$

and (SLLN)
(ii).

$$
\frac{S_{n}}{n}:=\frac{\sum_{i=1}^{n} X_{i}}{n} \text { converges almost everywhere (almost surely) } \rightarrow 0 .
$$

Some remarks

Remarks:

Some remarks

Remarks:
 1. SLLN implies WLLN. Why?

Some remarks

Remarks:

1. SLLN implies WLLN. Why?
2. WLLN easier to prove but holds a little more generally.

Some remarks

Remarks:

1. SLLN implies WLLN. Why?
2. WLLN easier to prove but holds a little more generally.
3. WLLN could be formulated in the 19th century while the conceptual framework did not exist in the 19th century to state the SLLN.

Some remarks

Remarks:

1. SLLN implies WLLN. Why?
2. WLLN easier to prove but holds a little more generally.
3. WLLN could be formulated in the 19th century while the conceptual framework did not exist in the 19th century to state the SLLN.
4. Which is more natural?

Proof of the WLLN

Proof:
(i) We first compute $E\left(S_{n}^{2}\right)$.

Proof of the WLLN

Proof:
(i) We first compute $E\left(S_{n}^{2}\right)$. We have

$$
\begin{gathered}
E\left(S_{n}^{2}\right)=E\left(\left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{j=1}^{n} X_{j}\right)\right)=E\left(\sum_{i, j=1}^{n} X_{i} X_{j}\right)= \\
\sum_{i, j=1}^{n} E\left(X_{i} X_{j}\right)=n+\sum_{i, j=1, i \neq j}^{n} E\left(X_{i} X_{j}\right) .
\end{gathered}
$$

Proof of the WLLN

Proof:
(i) We first compute $E\left(S_{n}^{2}\right)$. We have

$$
\begin{gathered}
E\left(S_{n}^{2}\right)=E\left(\left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{j=1}^{n} X_{j}\right)\right)=E\left(\sum_{i, j=1}^{n} X_{i} X_{j}\right)= \\
\sum_{i, j=1}^{n} E\left(X_{i} X_{j}\right)=n+\sum_{i, j=1, i \neq j}^{n} E\left(X_{i} X_{j}\right)
\end{gathered}
$$

Each X_{i} has expectation 0

Proof of the WLLN

Proof:
(i) We first compute $E\left(S_{n}^{2}\right)$. We have

$$
\begin{gathered}
E\left(S_{n}^{2}\right)=E\left(\left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{j=1}^{n} X_{j}\right)\right)=E\left(\sum_{i, j=1}^{n} X_{i} X_{j}\right)= \\
\sum_{i, j=1}^{n} E\left(X_{i} X_{j}\right)=n+\sum_{i, j=1, i \neq j}^{n} E\left(X_{i} X_{j}\right)
\end{gathered}
$$

Each X_{i} has expectation 0 and due to independence $E\left(X_{i} X_{j}\right)=0$ when $i \neq j$.

Proof of the WLLN

Proof:
(i) We first compute $E\left(S_{n}^{2}\right)$. We have

$$
\begin{gathered}
E\left(S_{n}^{2}\right)=E\left(\left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{j=1}^{n} X_{j}\right)\right)=E\left(\sum_{i, j=1}^{n} X_{i} X_{j}\right)= \\
\sum_{i, j=1}^{n} E\left(X_{i} X_{j}\right)=n+\sum_{i, j=1, i \neq j}^{n} E\left(X_{i} X_{j}\right)
\end{gathered}
$$

Each X_{i} has expectation 0 and due to independence $E\left(X_{i} X_{j}\right)=0$ when $i \neq j$. So

$$
E\left(S_{n}^{2}\right)=n
$$

Proof of the WLLN

Proof:
(i) We first compute $E\left(S_{n}^{2}\right)$. We have

$$
\begin{gathered}
E\left(S_{n}^{2}\right)=E\left(\left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{j=1}^{n} X_{j}\right)\right)=E\left(\sum_{i, j=1}^{n} X_{i} X_{j}\right)= \\
\sum_{i, j=1}^{n} E\left(X_{i} X_{j}\right)=n+\sum_{i, j=1, i \neq j}^{n} E\left(X_{i} X_{j}\right)
\end{gathered}
$$

Each X_{i} has expectation 0 and due to independence $E\left(X_{i} X_{j}\right)=0$ when $i \neq j$. So

$$
E\left(S_{n}^{2}\right)=n
$$

and hence, by linearity

$$
E\left(\left(S_{n} / n\right)^{2}\right)=1 / n
$$

Proof of the WLLN

Proof:
(i) We first compute $E\left(S_{n}^{2}\right)$. We have

$$
\begin{gathered}
E\left(S_{n}^{2}\right)=E\left(\left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{j=1}^{n} X_{j}\right)\right)=E\left(\sum_{i, j=1}^{n} X_{i} X_{j}\right)= \\
\sum_{i, j=1}^{n} E\left(X_{i} X_{j}\right)=n+\sum_{i, j=1, i \neq j}^{n} E\left(X_{i} X_{j}\right)
\end{gathered}
$$

Each X_{i} has expectation 0 and due to independence $E\left(X_{i} X_{j}\right)=0$ when $i \neq j$. So

$$
E\left(S_{n}^{2}\right)=n
$$

and hence, by linearity

$$
E\left(\left(S_{n} / n\right)^{2}\right)=1 / n
$$

Finally, fixing $\epsilon>0$, we have, using Markov's inequality

Proof of the WLLN

Proof:
(i) We first compute $E\left(S_{n}^{2}\right)$. We have

$$
\begin{gathered}
E\left(S_{n}^{2}\right)=E\left(\left(\sum_{i=1}^{n} X_{i}\right)\left(\sum_{j=1}^{n} X_{j}\right)\right)=E\left(\sum_{i, j=1}^{n} X_{i} X_{j}\right)= \\
\sum_{i, j=1}^{n} E\left(X_{i} X_{j}\right)=n+\sum_{i, j=1, i \neq j}^{n} E\left(X_{i} X_{j}\right)
\end{gathered}
$$

Each X_{i} has expectation 0 and due to independence $E\left(X_{i} X_{j}\right)=0$ when $i \neq j$. So

$$
E\left(S_{n}^{2}\right)=n
$$

and hence, by linearity

$$
E\left(\left(S_{n} / n\right)^{2}\right)=1 / n
$$

Finally, fixing $\epsilon>0$, we have, using Markov's inequality

$$
P\left(\left|S_{n} / n\right| \geq \epsilon\right)=P\left(\left(S_{n} / n\right)^{2} \geq \epsilon^{2}\right) \leq \frac{E\left(\left(S_{n} / n\right)^{2}\right)}{\epsilon^{2} \quad \text { September 23, } 2021}=\frac{1}{n \epsilon^{2}}
$$

Proof of the SLLN

(ii)

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)
$$

Proof of the SLLN

(ii)

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\text { or }=\infty ?
$$

Proof of the SLLN

(ii)

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\text { or }=\infty ?
$$

The previous line does not tell us. But let's anyway prove (ii) assuming this converges.

Proof of the SLLN

(ii)

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\text { or }=\infty ?
$$

The previous line does not tell us. But let's anyway prove (ii) assuming this converges.

The Borel-Cantelli Lemma tells us that for every $\epsilon>0$,

Proof of the SLLN

(ii)

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\text { or }=\infty ?
$$

The previous line does not tell us. But let's anyway prove (ii) assuming this converges.

The Borel-Cantelli Lemma tells us that for every $\epsilon>0$,

$$
P\left(\left|S_{n} / n\right| \geq \epsilon \text { i.o. }\right)=0
$$

Proof of the SLLN

(ii)

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\text { or }=\infty ?
$$

The previous line does not tell us. But let's anyway prove (ii) assuming this converges.

The Borel-Cantelli Lemma tells us that for every $\epsilon>0$,

$$
P\left(\left|S_{n} / n\right| \geq \epsilon \text { i.o. }\right)=0
$$

Letting $A_{k}:=\left(\left|S_{n} / n\right| \geq \frac{1}{k}\right.$ i.o. $)$,

Proof of the SLLN

(ii)

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\text { or }=\infty ?
$$

The previous line does not tell us. But let's anyway prove (ii) assuming this converges.

The Borel-Cantelli Lemma tells us that for every $\epsilon>0$,

$$
P\left(\left|S_{n} / n\right| \geq \epsilon \text { i.o. }\right)=0
$$

Letting $A_{k}:=\left(\left|S_{n} / n\right| \geq \frac{1}{k}\right.$ i.o. $)$, we have $P\left(A_{k}\right)=0$

Proof of the SLLN

(ii)

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\text { or }=\infty ?
$$

The previous line does not tell us. But let's anyway prove (ii) assuming this converges.

The Borel-Cantelli Lemma tells us that for every $\epsilon>0$,

$$
P\left(\left|S_{n} / n\right| \geq \epsilon \text { i.o. }\right)=0
$$

Letting $A_{k}:=\left(\left|S_{n} / n\right| \geq \frac{1}{k}\right.$ i.o. $)$, we have $P\left(A_{k}\right)=0$ and hence $P\left(\bigcup_{k} A_{k}\right)=0$.

Proof of the SLLN

(ii)

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\text { or }=\infty ?
$$

The previous line does not tell us. But let's anyway prove (ii) assuming this converges.

The Borel-Cantelli Lemma tells us that for every $\epsilon>0$,

$$
P\left(\left|S_{n} / n\right| \geq \epsilon \text { i.o. }\right)=0
$$

Letting $A_{k}:=\left(\left|S_{n} / n\right| \geq \frac{1}{k}\right.$ i.o. $)$, we have $P\left(A_{k}\right)=0$ and hence $P\left(\bigcup_{k} A_{k}\right)=0$. This is the same as $P\left(\bigcap_{k} A_{k}^{c}\right)=1$.

Proof of the SLLN

(ii)

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\text { or }=\infty ?
$$

The previous line does not tell us. But let's anyway prove (ii) assuming this converges.

The Borel-Cantelli Lemma tells us that for every $\epsilon>0$,

$$
P\left(\left|S_{n} / n\right| \geq \epsilon \text { i.o. }\right)=0
$$

Letting $A_{k}:=\left(\left|S_{n} / n\right| \geq \frac{1}{k}\right.$ i.o. $)$, we have $P\left(A_{k}\right)=0$ and hence $P\left(\bigcup_{k} A_{k}\right)=0$. This is the same as $P\left(\bigcap_{k} A_{k}^{c}\right)=1$.
One observes that

$$
\bigcap_{k} A_{k}^{c}=\left\{\frac{S_{n}}{n} \rightarrow 0\right\}
$$

Proof of the SLLN

(ii)

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\text { or }=\infty ?
$$

The previous line does not tell us. But let's anyway prove (ii) assuming this converges.

The Borel-Cantelli Lemma tells us that for every $\epsilon>0$,

$$
P\left(\left|S_{n} / n\right| \geq \epsilon \text { i.o. }\right)=0
$$

Letting $A_{k}:=\left(\left|S_{n} / n\right| \geq \frac{1}{k}\right.$ i.o.), we have $P\left(A_{k}\right)=0$ and hence $P\left(\bigcup_{k} A_{k}\right)=0$. This is the same as $P\left(\bigcap_{k} A_{k}^{c}\right)=1$.
One observes that

$$
\bigcap_{k} A_{k}^{c}=\left\{\frac{S_{n}}{n} \rightarrow 0\right\}
$$

Hence $P\left(S_{n} / n \rightarrow 0\right)=1$.

Proof of the SLLN

Proof of the SLLN

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\infty
$$

Proof of the SLLN

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\infty
$$

We need to use 4th moments

Proof of the SLLN

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\infty
$$

We need to use 4th moments and will prove afterwards

$$
E\left(S_{n}^{4}\right) \leq 3 n^{2}
$$

Proof of the SLLN

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\infty
$$

We need to use 4th moments and will prove afterwards

$$
E\left(S_{n}^{4}\right) \leq 3 n^{2}
$$

This gives $E\left(\left(S_{n} / n\right)^{4}\right) \leq 3 / n^{2}$.

Proof of the SLLN

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\infty
$$

We need to use 4th moments and will prove afterwards

$$
E\left(S_{n}^{4}\right) \leq 3 n^{2}
$$

This gives $E\left(\left(S_{n} / n\right)^{4}\right) \leq 3 / n^{2}$. Assuming this, we fix $\epsilon>0$

Proof of the SLLN

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\infty
$$

We need to use 4th moments and will prove afterwards

$$
E\left(S_{n}^{4}\right) \leq 3 n^{2}
$$

This gives $E\left(\left(S_{n} / n\right)^{4}\right) \leq 3 / n^{2}$. Assuming this, we fix $\epsilon>0$ and we obtain

$$
P\left(\left|S_{n} / n\right| \geq \epsilon\right)
$$

Proof of the SLLN

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\infty
$$

We need to use 4th moments and will prove afterwards

$$
E\left(S_{n}^{4}\right) \leq 3 n^{2}
$$

This gives $E\left(\left(S_{n} / n\right)^{4}\right) \leq 3 / n^{2}$. Assuming this, we fix $\epsilon>0$ and we obtain

$$
P\left(\left|S_{n} / n\right| \geq \epsilon\right)=P\left(\left(S_{n} / n\right)^{4} \geq \epsilon^{4}\right)
$$

Proof of the SLLN

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\infty
$$

We need to use 4th moments and will prove afterwards

$$
E\left(S_{n}^{4}\right) \leq 3 n^{2}
$$

This gives $E\left(\left(S_{n} / n\right)^{4}\right) \leq 3 / n^{2}$. Assuming this, we fix $\epsilon>0$ and we obtain

$$
P\left(\left|S_{n} / n\right| \geq \epsilon\right)=P\left(\left(S_{n} / n\right)^{4} \geq \epsilon^{4}\right) \leq \frac{E\left(\left(S_{n} / n\right)^{4}\right)}{\epsilon^{4}}
$$

Proof of the SLLN

$$
\sum_{n} P\left(\left|S_{n} / n\right| \geq \epsilon\right)<\infty
$$

We need to use 4th moments and will prove afterwards

$$
E\left(S_{n}^{4}\right) \leq 3 n^{2}
$$

This gives $E\left(\left(S_{n} / n\right)^{4}\right) \leq 3 / n^{2}$. Assuming this, we fix $\epsilon>0$ and we obtain

$$
P\left(\left|S_{n} / n\right| \geq \epsilon\right)=P\left(\left(S_{n} / n\right)^{4} \geq \epsilon^{4}\right) \leq \frac{E\left(\left(S_{n} / n\right)^{4}\right)}{\epsilon^{4}} \leq \frac{3}{n^{2} \epsilon^{4}}
$$

Proof of the SLLN

Proof of the SLLN

$$
E\left(S_{n}^{4}\right) \leq 3 n^{2}
$$

Proof of the SLLN

$$
\begin{gathered}
E\left(S_{n}^{4}\right) \leq 3 n^{2} \\
E\left(S_{n}^{4}\right)=E\left(\sum_{i, j, k, \ell=1}^{n} x_{i} X_{j} x_{k} X_{\ell}\right)=\sum_{i, j, k, \ell=1}^{n} E\left(X_{i} X_{j} x_{k} X_{\ell}\right) .
\end{gathered}
$$

Proof of the SLLN

$$
\begin{gathered}
E\left(S_{n}^{4}\right) \leq 3 n^{2} \\
E\left(S_{n}^{4}\right)=E\left(\sum_{i, j, k, \ell=1}^{n} x_{i} x_{j} x_{k} x_{\ell}\right)=\sum_{i, j, k, \ell=1}^{n} E\left(X_{i} x_{j} x_{k} x_{\ell}\right) .
\end{gathered}
$$

We break the index set into three groups,

Proof of the SLLN

$$
\begin{gathered}
E\left(S_{n}^{4}\right) \leq 3 n^{2} \\
E\left(S_{n}^{4}\right)=E\left(\sum_{i, j, k, \ell=1}^{n} x_{i} X_{j} x_{k} X_{\ell}\right)=\sum_{i, j, k, \ell=1}^{n} E\left(X_{i} X_{j} x_{k} X_{\ell}\right) .
\end{gathered}
$$

We break the index set into three groups, (a) $i=j=k=\ell$,

Proof of the SLLN

$$
\begin{gathered}
E\left(S_{n}^{4}\right) \leq 3 n^{2} \\
E\left(S_{n}^{4}\right)=E\left(\sum_{i, j, k, \ell=1}^{n} x_{i} X_{j} x_{k} X_{\ell}\right)=\sum_{i, j, k, \ell=1}^{n} E\left(X_{i} X_{j} x_{k} X_{\ell}\right) .
\end{gathered}
$$

We break the index set into three groups, (a) $i=j=k=\ell$, (b) two of i, j, k, ℓ take one value and two take another value

Proof of the SLLN

$$
\begin{gathered}
E\left(S_{n}^{4}\right) \leq 3 n^{2} \\
E\left(S_{n}^{4}\right)=E\left(\sum_{i, j, k, \ell=1}^{n} X_{i} X_{j} X_{k} X_{\ell}\right)=\sum_{i, j, k, \ell=1}^{n} E\left(X_{i} X_{j} x_{k} X_{\ell}\right) .
\end{gathered}
$$

We break the index set into three groups, (a) $i=j=k=\ell$, (b) two of i, j, k, ℓ take one value and two take another value and (c) all other possibilities.
Terms in (a) or (b), which are $E\left(X_{i}^{4}\right)$ and $E\left(X_{i}^{2} X_{j}^{2}\right)=E\left(X_{i}^{2}\right) E\left(X_{j}^{2}\right)$ are 1 .

Proof of the SLLN

$$
\begin{gathered}
E\left(S_{n}^{4}\right) \leq 3 n^{2} \\
E\left(S_{n}^{4}\right)=E\left(\sum_{i, j, k, \ell=1}^{n} X_{i} X_{j} X_{k} X_{\ell}\right)=\sum_{i, j, k, \ell=1}^{n} E\left(X_{i} X_{j} x_{k} X_{\ell}\right) .
\end{gathered}
$$

We break the index set into three groups, (a) $i=j=k=\ell$, (b) two of i, j, k, ℓ take one value and two take another value and (c) all other possibilities.
Terms in (a) or (b), which are $E\left(X_{i}^{4}\right)$ and $E\left(X_{i}^{2} X_{j}^{2}\right)=E\left(X_{i}^{2}\right) E\left(X_{j}^{2}\right)$ are 1 . All terms of type (c) are zero after checking.

Proof of the SLLN

$$
\begin{gathered}
E\left(S_{n}^{4}\right) \leq 3 n^{2} \\
E\left(S_{n}^{4}\right)=E\left(\sum_{i, j, k, \ell=1}^{n} x_{i} X_{j} X_{k} X_{\ell}\right)=\sum_{i, j, k, \ell=1}^{n} E\left(X_{i} X_{j} x_{k} X_{\ell}\right) .
\end{gathered}
$$

We break the index set into three groups, (a) $i=j=k=\ell$, (b) two of i, j, k, ℓ take one value and two take another value and (c) all other possibilities.
Terms in (a) or (b), which are $E\left(X_{i}^{4}\right)$ and $E\left(X_{i}^{2} X_{j}^{2}\right)=E\left(X_{i}^{2}\right) E\left(X_{j}^{2}\right)$ are 1. All terms of type (c) are zero after checking. For example,

$$
E\left(X_{2} X_{3} X_{2} X_{5}\right)=E\left(X_{2}^{2} X_{3} X_{5}\right)=E\left(X_{2}^{2}\right) E\left(X_{3}\right) E\left(X_{5}\right)=0
$$

The number of terms of type (b) is $n(n-1) 3$ (elementary combinatorics).

Proof of the SLLN

$$
\begin{gathered}
E\left(S_{n}^{4}\right) \leq 3 n^{2} \\
E\left(S_{n}^{4}\right)=E\left(\sum_{i, j, k, \ell=1}^{n} x_{i} X_{j} x_{k} X_{\ell}\right)=\sum_{i, j, k, \ell=1}^{n} E\left(X_{i} X_{j} x_{k} X_{\ell}\right) .
\end{gathered}
$$

We break the index set into three groups, (a) $i=j=k=\ell$, (b) two of i, j, k, ℓ take one value and two take another value and (c) all other possibilities.
Terms in (a) or (b), which are $E\left(X_{i}^{4}\right)$ and $E\left(X_{i}^{2} X_{j}^{2}\right)=E\left(X_{i}^{2}\right) E\left(X_{j}^{2}\right)$ are 1 . All terms of type (c) are zero after checking. For example,

$$
E\left(X_{2} X_{3} X_{2} X_{5}\right)=E\left(X_{2}^{2} X_{3} X_{5}\right)=E\left(X_{2}^{2}\right) E\left(X_{3}\right) E\left(X_{5}\right)=0
$$

The number of terms of type (b) is $n(n-1) 3$ (elementary combinatorics). Hence $E\left(S_{n}^{4}\right)$ is $n+n(n-1) 3 \leq 3 n^{2}$. QED

General SLLN

Theorem

(Strong Law of Large Numbers: General case) Let X_{1}, X_{2}, \ldots be independent random variables with the same distribution with $E(|X|)<\infty$. Then

$$
\frac{S_{n}}{n}:=\frac{\sum_{i=1}^{n} X_{i}}{n} \text { converges a.e. to } E(X) \text {. }
$$

WLLN without an expectation

WLLN without an expectation

The WLLN holds under slightly weaker assumptions.

WLLN without an expectation

The WLLN holds under slightly weaker assumptions.
For example if the probability density function for X is

$$
f(x):=\frac{c}{x^{2} \log (|x|)} l_{|x| \geq 2}
$$

WLLN without an expectation

The WLLN holds under slightly weaker assumptions.
For example if the probability density function for X is

$$
f(x):=\frac{c}{x^{2} \log (|x|)} l_{|x| \geq 2}
$$

then $E(|X|)=\infty$

WLLN without an expectation

The WLLN holds under slightly weaker assumptions.
For example if the probability density function for X is

$$
f(x):=\frac{c}{x^{2} \log (|x|)} l_{|x| \geq 2}
$$

then $E(|X|)=\infty$ and

$$
\frac{S_{n}}{n} \rightarrow 0 \text { in probability but not a.s. }
$$

WLLN without an expectation

The WLLN holds under slightly weaker assumptions.
For example if the probability density function for X is

$$
f(x):=\frac{c}{x^{2} \log (|x|)} l_{|x| \geq 2}
$$

then $E(|X|)=\infty$ and

$$
\frac{S_{n}}{n} \rightarrow 0 \text { in probability but not a.s. }
$$

What is happening? How could this be occuring?

WLLN without an expectation

The WLLN holds under slightly weaker assumptions.
For example if the probability density function for X is

$$
f(x):=\frac{c}{x^{2} \log (|x|)} l_{|x| \geq 2}
$$

then $E(|X|)=\infty$ and

$$
\frac{S_{n}}{n} \rightarrow 0 \text { in probability but not a.s. }
$$

What is happening? How could this be occuring?
For very large $n, \frac{S_{n}}{n}$ is very likely to be close to 0 ,

WLLN without an expectation

The WLLN holds under slightly weaker assumptions.
For example if the probability density function for X is

$$
f(x):=\frac{c}{x^{2} \log (|x|)} l_{|x| \geq 2}
$$

then $E(|X|)=\infty$ and

$$
\frac{S_{n}}{n} \rightarrow 0 \text { in probability but not a.s. }
$$

What is happening? How could this be occuring?
For very large $n, \frac{S_{n}}{n}$ is very likely to be close to 0 , but if you watch the trajectory in time, there will be these very rare times at which $\frac{S_{n}}{n}$ is close to ∞ and times close to $-\infty$.

Infinite number of independent random variables?

Infinite number of independent random variables?

How do we know that we can have a probability space with an infinite number of independent random variables.

Infinite number of independent random variables?

How do we know that we can have a probability space with an infinite number of independent random variables. There are two approaches.

Infinite number of independent random variables?

How do we know that we can have a probability space with an infinite number of independent random variables. There are two approaches.

Approach 1: Constructing an infinite product space (see notes).

Infinite number of independent random variables?

How do we know that we can have a probability space with an infinite number of independent random variables. There are two approaches.
Approach 1: Constructing an infinite product space (see notes).
Approach 2: Use $\left([0,1], \mathcal{B}_{[0,1]}, m\right)$ where m is Lebesgue measure as our probability space.

Infinite number of independent random variables?

How do we know that we can have a probability space with an infinite number of independent random variables. There are two approaches.
Approach 1: Constructing an infinite product space (see notes).
Approach 2: Use $\left([0,1], \mathcal{B}_{[0,1]}, m\right)$ where m is Lebesgue measure as our probability space.
Given $x \in[0,1], x$ has a binary expansion

$$
x=\sum_{n=1}^{\infty} \frac{a_{n}(x)}{2^{n}}
$$

where each $a_{n}(x) \in\{0,1\}$.

Infinite number of independent random variables?

How do we know that we can have a probability space with an infinite number of independent random variables. There are two approaches.
Approach 1: Constructing an infinite product space (see notes).
Approach 2: Use $\left([0,1], \mathcal{B}_{[0,1]}, m\right)$ where m is Lebesgue measure as our probability space.
Given $x \in[0,1], x$ has a binary expansion

$$
x=\sum_{n=1}^{\infty} \frac{a_{n}(x)}{2^{n}}
$$

where each $a_{n}(x) \in\{0,1\}$. (Nonuniqueness only occurs at countably many x 's and so can ignore.)

Infinite number of independent random variables?

How do we know that we can have a probability space with an infinite number of independent random variables. There are two approaches.
Approach 1: Constructing an infinite product space (see notes).
Approach 2: Use $\left([0,1], \mathcal{B}_{[0,1]}, m\right)$ where m is Lebesgue measure as our probability space.
Given $x \in[0,1], x$ has a binary expansion

$$
x=\sum_{n=1}^{\infty} \frac{a_{n}(x)}{2^{n}}
$$

where each $a_{n}(x) \in\{0,1\}$. (Nonuniqueness only occurs at countably many x 's and so can ignore.) Now, for each $n \geq 1$, define the random variable

$$
X_{n}(x)
$$

Infinite number of independent random variables?

How do we know that we can have a probability space with an infinite number of independent random variables. There are two approaches.
Approach 1: Constructing an infinite product space (see notes).
Approach 2: Use $\left([0,1], \mathcal{B}_{[0,1]}, m\right)$ where m is Lebesgue measure as our probability space.
Given $x \in[0,1], x$ has a binary expansion

$$
x=\sum_{n=1}^{\infty} \frac{a_{n}(x)}{2^{n}}
$$

where each $a_{n}(x) \in\{0,1\}$. (Nonuniqueness only occurs at countably many x 's and so can ignore.) Now, for each $n \geq 1$, define the random variable

$$
X_{n}(x)=1 \text { if } a_{n}(x)=1 \text { and }-1 \text { if } a_{n}(x)=0 .
$$

Infinite number of independent random variables?

How do we know that we can have a probability space with an infinite number of independent random variables. There are two approaches.
Approach 1: Constructing an infinite product space (see notes).
Approach 2: Use $\left([0,1], \mathcal{B}_{[0,1]}, m\right)$ where m is Lebesgue measure as our probability space.
Given $x \in[0,1], x$ has a binary expansion

$$
x=\sum_{n=1}^{\infty} \frac{a_{n}(x)}{2^{n}}
$$

where each $a_{n}(x) \in\{0,1\}$. (Nonuniqueness only occurs at countably many x 's and so can ignore.) Now, for each $n \geq 1$, define the random variable

$$
X_{n}(x)=1 \text { if } a_{n}(x)=1 \text { and }-1 \text { if } a_{n}(x)=0 .
$$

One can show that X_{1}, X_{2}, \ldots are independent and each has distribution $\left(\delta_{1}+\delta_{-1}\right) / 2$.

Random series: a fascinating aside

Random series: a fascinating aside

Of course $\sum_{n} \frac{1}{n}$ diverges

Random series: a fascinating aside

Of course $\sum_{n} \frac{1}{n}$ diverges while $\sum_{n} \frac{(-1)^{n}}{n}$ converges.

Random series: a fascinating aside

Of course $\sum_{n} \frac{1}{n}$ diverges while $\sum_{n} \frac{(-1)^{n}}{n}$ converges. What happens if we put a random sign in front of $\frac{1}{n}$?

Random series: a fascinating aside

Of course $\sum_{n} \frac{1}{n}$ diverges while $\sum_{n} \frac{(-1)^{n}}{n}$ converges. What happens if we put a random sign in front of $\frac{1}{n}$?
Let $\left\{X_{n}\right\}_{n \geq 1}$ be independent random variables with $P\left(X_{n}=1\right)=P\left(X_{n}=-1\right)=\frac{1}{2}$ for each n.

Random series: a fascinating aside

Of course $\sum_{n} \frac{1}{n}$ diverges while $\sum_{n} \frac{(-1)^{n}}{n}$ converges. What happens if we put a random sign in front of $\frac{1}{n}$?
Let $\left\{X_{n}\right\}_{n \geq 1}$ be independent random variables with $P\left(X_{n}=1\right)=P\left(X_{n}=-1\right)=\frac{1}{2}$ for each n.

$$
\text { Does } \sum_{n=1}^{\infty} \frac{X_{n}}{n} \text { converge or not? }
$$

Random series: a fascinating aside

Of course $\sum_{n} \frac{1}{n}$ diverges while $\sum_{n} \frac{(-1)^{n}}{n}$ converges. What happens if we put a random sign in front of $\frac{1}{n}$?
Let $\left\{X_{n}\right\}_{n \geq 1}$ be independent random variables with $P\left(X_{n}=1\right)=P\left(X_{n}=-1\right)=\frac{1}{2}$ for each n.

$$
\text { Does } \sum_{n=1}^{\infty} \frac{X_{n}}{n} \text { converge or not? }
$$

Theorem

$\sum_{n=1}^{\infty} \frac{X_{n}}{n}$ converges a.e.

Random series: a fascinating aside

Theorem
(i) If $\alpha>1 / 2$,

Random series: a fascinating aside

Theorem
(i) If $\alpha>1 / 2$, then $\sum_{n=1}^{\infty} \frac{X_{n}}{n^{\alpha}}$ converges a.e.

Random series: a fascinating aside

Theorem
(i) If $\alpha>1 / 2$, then $\sum_{n=1}^{\infty} \frac{X_{n}}{n^{\alpha}}$ converges a.e.
(ii) If $\alpha \in(0,1 / 2]$, then $\sum_{n=1}^{\infty} \frac{X_{n}}{n^{\alpha}}$ diverges a.e..

Random series: a fascinating aside

Theorem

(i) If $\alpha>1 / 2$, then $\sum_{n=1}^{\infty} \frac{X_{n}}{n^{\alpha}}$ converges a.e.
(ii) If $\alpha \in(0,1 / 2]$, then $\sum_{n=1}^{\infty} \frac{X_{n}}{n^{\alpha}}$ diverges a.e..

More specificially, one has that a.e., $\lim \sup _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{X_{k}}{k^{\alpha}}=\infty$ and $\liminf _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{X_{k}}{k^{\alpha}}=-\infty$.

Random series: a fascinating aside

Theorem

(i) If $\alpha>1 / 2$, then $\sum_{n=1}^{\infty} \frac{X_{n}}{n^{\alpha}}$ converges a.e.
(ii) If $\alpha \in(0,1 / 2]$, then $\sum_{n=1}^{\infty} \frac{X_{n}}{n^{\alpha}}$ diverges a.e..

More specificially, one has that a.e., $\lim \sup _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{X_{k}}{k^{\alpha}}=\infty$ and $\liminf _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{X_{k}}{k^{\alpha}}=-\infty$.

Explanation: The variance of $\sum_{k=1}^{n} \frac{X_{k}}{k^{\alpha}}$

Random series: a fascinating aside

Theorem

(i) If $\alpha>1 / 2$, then $\sum_{n=1}^{\infty} \frac{X_{n}}{n^{\alpha}}$ converges a.e.
(ii) If $\alpha \in(0,1 / 2]$, then $\sum_{n=1}^{\infty} \frac{X_{n}}{n^{\alpha}}$ diverges a.e..

More specificially, one has that a.e., $\lim \sup _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{X_{k}}{k^{\alpha}}=\infty$ and $\liminf _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{X_{k}}{k^{\alpha}}=-\infty$.

Explanation: The variance of $\sum_{k=1}^{n} \frac{X_{k}}{k^{\alpha}}=\sum_{k=1}^{n} \frac{1}{k^{2 \alpha}}$ converges to ∞ if and only if $\alpha \leq 1 / 2$.

A few words about the variance

Definition

If X is a random variable on a probability space (Ω, \mathcal{M}, P) with finite expectation, then the variance of $X, \operatorname{Var}(X)$,

A few words about the variance

Definition

If X is a random variable on a probability space (Ω, \mathcal{M}, P) with finite expectation, then the variance of $X, \operatorname{Var}(X)$, is

$$
\operatorname{Var}(X)=\int(X-E(X))^{2} d P
$$

A few words about the variance

Definition

If X is a random variable on a probability space (Ω, \mathcal{M}, P) with finite expectation, then the variance of $X, \operatorname{Var}(X)$, is

$$
\operatorname{Var}(X)=\int(X-E(X))^{2} d P
$$

- Assuming X has finite expectation, $\operatorname{Var}(X)<\infty$ if and only if $X \in L^{2}(\Omega, \mathcal{M}, P)$

A few words about the variance

Definition

If X is a random variable on a probability space (Ω, \mathcal{M}, P) with finite expectation, then the variance of $X, \operatorname{Var}(X)$, is

$$
\operatorname{Var}(X)=\int(X-E(X))^{2} d P
$$

- Assuming X has finite expectation, $\operatorname{Var}(X)<\infty$ if and only if $X \in L^{2}(\Omega, \mathcal{M}, P)$
- $\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}$, which is something you might have seen, is actually the pythagorean theorem, viewed properly.

A few words about the variance

In R^{n}, there is a dot product $x \cdot y:=\sum_{i} x_{i} y_{i}$.

A few words about the variance

In R^{n}, there is a dot product $x \cdot y:=\sum_{i} x_{i} y_{i}$. This can be used to compute projections in order to find the closest point to a given point which sits in some plane.

A few words about the variance

In R^{n}, there is a dot product $x \cdot y:=\sum_{i} x_{i} y_{i}$. This can be used to compute projections in order to find the closest point to a given point which sits in some plane.

For $L^{2}(\Omega, \mathcal{M}, P)$, there is a similar dot product defined by $X \cdot Y:=E(X Y)$.

A few words about the variance

In R^{n}, there is a dot product $x \cdot y:=\sum_{i} x_{i} y_{i}$. This can be used to compute projections in order to find the closest point to a given point which sits in some plane.

For $L^{2}(\Omega, \mathcal{M}, P)$, there is a similar dot product defined by $X \cdot Y:=E(X Y)$. It satisfies all the usual properties that the dot product in R^{n} satisfies.

A few words about the variance

In R^{n}, there is a dot product $x \cdot y:=\sum_{i} x_{i} y_{i}$. This can be used to compute projections in order to find the closest point to a given point which sits in some plane.

For $L^{2}(\Omega, \mathcal{M}, P)$, there is a similar dot product defined by $X \cdot Y:=E(X Y)$. It satisfies all the usual properties that the dot product in R^{n} satisfies. The length of a random variable is defined to be, exactly as in R^{n}, $(X \cdot X)^{1 / 2}$ or $\left(E\left(X^{2}\right)\right)^{1 / 2}$.

A few words about the variance

In R^{n}, there is a dot product $x \cdot y:=\sum_{i} x_{i} y_{i}$. This can be used to compute projections in order to find the closest point to a given point which sits in some plane.

For $L^{2}(\Omega, \mathcal{M}, P)$, there is a similar dot product defined by $X \cdot Y:=E(X Y)$. It satisfies all the usual properties that the dot product in R^{n} satisfies. The length of a random variable is defined to be, exactly as in R^{n}, $(X \cdot X)^{1 / 2}$ or $\left(E\left(X^{2}\right)\right)^{1 / 2}$. The distance between X and Y is the length of $X-Y$.

A few words about the variance

One can consider the 1-dimensional space of constant random variables and ask which random variable in this subspace is closest to a given random variable X.

A few words about the variance

One can consider the 1-dimensional space of constant random variables and ask which random variable in this subspace is closest to a given random variable X. It turns out that this is simply the constant random variable $E(X)$,

A few words about the variance

One can consider the 1-dimensional space of constant random variables and ask which random variable in this subspace is closest to a given random variable X. It turns out that this is simply the constant random variable $E(X)$, i.e., $E(X)$ is the projection of X onto the 1-dimensional space of constant random variables.

A few words about the variance

One can consider the 1-dimensional space of constant random variables and ask which random variable in this subspace is closest to a given random variable X. It turns out that this is simply the constant random variable $E(X)$, i.e., $E(X)$ is the projection of X onto the 1-dimensional space of constant random variables.

Hence $E(X)$ and $X-E(X)$ are orthogonal.

A few words about the variance

One can consider the 1-dimensional space of constant random variables and ask which random variable in this subspace is closest to a given random variable X. It turns out that this is simply the constant random variable $E(X)$, i.e., $E(X)$ is the projection of X onto the 1-dimensional space of constant random variables.

Hence $E(X)$ and $X-E(X)$ are orthogonal. The pythagorean theorem tells us that $E\left(X^{2}\right)=E(X-E(X))^{2}+(E(X))^{2}=\operatorname{Var}(X)+(E(X))^{2}$.

A few words about the variance

One can consider the 1-dimensional space of constant random variables and ask which random variable in this subspace is closest to a given random variable X. It turns out that this is simply the constant random variable $E(X)$, i.e., $E(X)$ is the projection of X onto the 1-dimensional space of constant random variables.

Hence $E(X)$ and $X-E(X)$ are orthogonal. The pythagorean theorem tells us that $E\left(X^{2}\right)=E(X-E(X))^{2}+(E(X))^{2}=\operatorname{Var}(X)+(E(X))^{2}$. So, the variance is the "squared distance from X to its projection onto the 1-dimensional space of constant functions".

A fun aside: the arc sign law for coin tossing

A fun aside: the arc sign law for coin tossing

You play a game. Each minute you win or lose a dollar, each with probably $1 / 2$, independently each time.

A fun aside: the arc sign law for coin tossing

You play a game. Each minute you win or lose a dollar, each with probably $1 / 2$, independently each time. X_{i} is what you received at time i (either 1 or -1)

A fun aside: the arc sign law for coin tossing

You play a game. Each minute you win or lose a dollar, each with probably $1 / 2$, independently each time. X_{i} is what you received at time i (either 1 or -1$)$ and $S_{n}:=\sum_{i=1}^{n} X_{i}$ is your total winnings at time n.

A fun aside: the arc sign law for coin tossing

You play a game. Each minute you win or lose a dollar, each with probably $1 / 2$, independently each time. X_{i} is what you received at time i (either 1 or -1$)$ and $S_{n}:=\sum_{i=1}^{n} X_{i}$ is your total winnings at time n.

If you played a very very large number n of times and it turns out that $\frac{S_{n}}{n}<-.001$, would you have a right to say you have been very unlucky?

A fun aside: the arc sign law for coin tossing

You play a game. Each minute you win or lose a dollar, each with probably $1 / 2$, independently each time. X_{i} is what you received at time i (either 1 or -1$)$ and $S_{n}:=\sum_{i=1}^{n} X_{i}$ is your total winnings at time n.

If you played a very very large number n of times and it turns out that $\frac{S_{n}}{n}<-.001$, would you have a right to say you have been very unlucky? Answer: yes.

A fun aside: the arc sign law for coin tossing

You play a game. Each minute you win or lose a dollar, each with probably $1 / 2$, independently each time. X_{i} is what you received at time i (either 1 or -1$)$ and $S_{n}:=\sum_{i=1}^{n} X_{i}$ is your total winnings at time n.

If you played a very very large number n of times and it turns out that $\frac{S_{n}}{n}<-.001$, would you have a right to say you have been very unlucky? Answer: yes.

Since $\frac{S_{n}}{n}$ approaches 0 in probability (WLLN),

A fun aside: the arc sign law for coin tossing

You play a game. Each minute you win or lose a dollar, each with probably $1 / 2$, independently each time. X_{i} is what you received at time i (either 1 or -1$)$ and $S_{n}:=\sum_{i=1}^{n} X_{i}$ is your total winnings at time n.

If you played a very very large number n of times and it turns out that $\frac{S_{n}}{n}<-.001$, would you have a right to say you have been very unlucky?

Answer: yes.
Since $\frac{S_{n}}{n}$ approaches 0 in probability (WLLN), $P\left(\frac{S_{n}}{n}<-.001\right) \leq P\left(\left|\frac{S_{n}}{n}-0\right| \geq .001\right)$ which goes to 0 as $n \rightarrow \infty$.

A fun aside: the arc sign law for coin tossing

A fun aside: the arc sign law for coin tossing

Now, lets say you played a very large number of times and you noticed that you were behind most of the time.

A fun aside: the arc sign law for coin tossing

Now, lets say you played a very large number of times and you noticed that you were behind most of the time. More specifically, you noticed that 90% of the time you were losing;

A fun aside: the arc sign law for coin tossing

Now, lets say you played a very large number of times and you noticed that you were behind most of the time. More specifically, you noticed that 90% of the time you were losing; i.e.

$$
\left|\left\{i \in\{1,2, \ldots, n\}: S_{i}<0\right\}\right| \geq .9 n .
$$

Could you claim you are unlucky?

A fun aside: the arc sign law for coin tossing

Now, lets say you played a very large number of times and you noticed that you were behind most of the time. More specifically, you noticed that 90% of the time you were losing; i.e.

$$
\left|\left\{i \in\{1,2, \ldots, n\}: S_{i}<0\right\}\right| \geq .9 n .
$$

Could you claim you are unlucky?
After all, things should even out in the end and you should be leading about half the time.

A fun aside: the arc sign law for coin tossing

Now, lets say you played a very large number of times and you noticed that you were behind most of the time. More specifically, you noticed that 90% of the time you were losing; i.e.

$$
\left|\left\{i \in\{1,2, \ldots, n\}: S_{i}<0\right\}\right| \geq .9 n .
$$

Could you claim you are unlucky?
After all, things should even out in the end and you should be leading about half the time.

Being able to claim you are very unlucky should mean that

A fun aside: the arc sign law for coin tossing

Now, lets say you played a very large number of times and you noticed that you were behind most of the time. More specifically, you noticed that 90% of the time you were losing; i.e.

$$
\left|\left\{i \in\{1,2, \ldots, n\}: S_{i}<0\right\}\right| \geq .9 n
$$

Could you claim you are unlucky?
After all, things should even out in the end and you should be leading about half the time.

Being able to claim you are very unlucky should mean that

$$
\lim _{n \rightarrow \infty} P\left(\left|\left\{i \in\{1,2, \ldots, n\}: S_{i}<0\right\}\right| \geq .9 n\right)=0
$$

A fun aside: the arc sign law for coin tossing

Now, lets say you played a very large number of times and you noticed that you were behind most of the time. More specifically, you noticed that 90% of the time you were losing; i.e.

$$
\left|\left\{i \in\{1,2, \ldots, n\}: S_{i}<0\right\}\right| \geq .9 n
$$

Could you claim you are unlucky?
After all, things should even out in the end and you should be leading about half the time.

Being able to claim you are very unlucky should mean that

$$
\lim _{n \rightarrow \infty} P\left(\left|\left\{i \in\{1,2, \ldots, n\}: S_{i}<0\right\}\right| \geq .9 n\right)=0
$$

False:

A fun aside: the arc sign law for coin tossing

Now, lets say you played a very large number of times and you noticed that you were behind most of the time. More specifically, you noticed that 90% of the time you were losing; i.e.

$$
\left|\left\{i \in\{1,2, \ldots, n\}: S_{i}<0\right\}\right| \geq .9 n .
$$

Could you claim you are unlucky?
After all, things should even out in the end and you should be leading about half the time.

Being able to claim you are very unlucky should mean that

$$
\lim _{n \rightarrow \infty} P\left(\left|\left\{i \in\{1,2, \ldots, n\}: S_{i}<0\right\}\right| \geq .9 n\right)=0
$$

False: the above limit is not zero

A fun aside: the arc sign law for coin tossing

Now, lets say you played a very large number of times and you noticed that you were behind most of the time. More specifically, you noticed that 90% of the time you were losing; i.e.

$$
\left|\left\{i \in\{1,2, \ldots, n\}: S_{i}<0\right\}\right| \geq .9 n .
$$

Could you claim you are unlucky?
After all, things should even out in the end and you should be leading about half the time.

Being able to claim you are very unlucky should mean that

$$
\lim _{n \rightarrow \infty} P\left(\left|\left\{i \in\{1,2, \ldots, n\}: S_{i}<0\right\}\right| \geq .9 n\right)=0
$$

False: the above limit is not zero and rather equals

$$
\frac{2}{\pi} \arcsin (\sqrt{.1})
$$

A fun aside: the arc sign law for coin tossing

A fun aside: the arc sign law for coin tossing

Doesn't the Weak Law of Large Numbers say

$$
\lim _{n \rightarrow \infty} P\left(\left|\left\{i \in\{1,2, \ldots, n\}: S_{i}<0\right\}\right| \geq .9 n\right)=0 ?
$$

A fun aside: the arc sign law for coin tossing

Doesn't the Weak Law of Large Numbers say

$$
\lim _{n \rightarrow \infty} P\left(\left|\left\{i \in\{1,2, \ldots, n\}: S_{i}<0\right\}\right| \geq .9 n\right)=0 ?
$$

Let $Y_{i}=1$ if you are leading at time i and $Y_{i}=0$ if you are losing at time i.
The WLLN should say that

A fun aside: the arc sign law for coin tossing

Doesn't the Weak Law of Large Numbers say

$$
\lim _{n \rightarrow \infty} P\left(\left|\left\{i \in\{1,2, \ldots, n\}: S_{i}<0\right\}\right| \geq .9 n\right)=0 ?
$$

Let $Y_{i}=1$ if you are leading at time i and $Y_{i}=0$ if you are losing at time i.
The WLLN should say that

$$
\frac{\sum_{i=1}^{n} Y_{i}}{n}
$$

converges in probability to $1 / 2$

A fun aside: the arc sign law for coin tossing

Doesn't the Weak Law of Large Numbers say

$$
\lim _{n \rightarrow \infty} P\left(\left|\left\{i \in\{1,2, \ldots, n\}: S_{i}<0\right\}\right| \geq .9 n\right)=0 ?
$$

Let $Y_{i}=1$ if you are leading at time i and $Y_{i}=0$ if you are losing at time i.
The WLLN should say that

$$
\frac{\sum_{i=1}^{n} Y_{i}}{n}
$$

converges in probability to $1 / 2$ and then the above limit should be 0 .

A fun aside: the arc sign law for coin tossing

Doesn't the Weak Law of Large Numbers say

$$
\lim _{n \rightarrow \infty} P\left(\left|\left\{i \in\{1,2, \ldots, n\}: S_{i}<0\right\}\right| \geq .9 n\right)=0 ?
$$

Let $Y_{i}=1$ if you are leading at time i and $Y_{i}=0$ if you are losing at time i.

The WLLN should say that

$$
\frac{\sum_{i=1}^{n} Y_{i}}{n}
$$

converges in probability to $1 / 2$ and then the above limit should be 0 .
What's happening? The WLLN is not applicable since the Y_{i} 's are not independent.

A fun aside: the arc sign law for coin tossing

Doesn't the Weak Law of Large Numbers say

$$
\lim _{n \rightarrow \infty} P\left(\left|\left\{i \in\{1,2, \ldots, n\}: S_{i}<0\right\}\right| \geq .9 n\right)=0 ?
$$

Let $Y_{i}=1$ if you are leading at time i and $Y_{i}=0$ if you are losing at time i.

The WLLN should say that

$$
\frac{\sum_{i=1}^{n} Y_{i}}{n}
$$

converges in probability to $1 / 2$ and then the above limit should be 0 .
What's happening? The WLLN is not applicable since the Y_{i} 's are not independent. In fact, they are very correlated.

Another cool example: St. Petersburg paradox

If X_{1}, X_{2}, \ldots are i.i.d. random variables with mean μ which you will receive,

Another cool example: St. Petersburg paradox

If X_{1}, X_{2}, \ldots are i.i.d. random variables with mean μ which you will receive, then it is reasonable to pay $n \mu$ dollars to play n times.

Another cool example: St. Petersburg paradox

If X_{1}, X_{2}, \ldots are i.i.d. random variables with mean μ which you will receive, then it is reasonable to pay $n \mu$ dollars to play n times. You would be happy to pay $n(\mu-\epsilon)$ dollars

Another cool example: St. Petersburg paradox

If X_{1}, X_{2}, \ldots are i.i.d. random variables with mean μ which you will receive, then it is reasonable to pay $n \mu$ dollars to play n times. You would be happy to pay $n(\mu-\epsilon)$ dollars since then your average winnings are

$$
\frac{S_{n}-n(\mu-\epsilon)}{n}=\frac{S_{n}-n \mu}{n}+\epsilon \text { which approaches } \epsilon \text { as } n \rightarrow \infty .
$$

Another cool example: St. Petersburg paradox

Another cool example: St. Petersburg paradox

Let X_{1}, X_{2}, \ldots be i.i.d. random variables with

$$
P\left(X_{1}=2^{i}\right)=\frac{1}{2^{i}} \text { for } i=1,2,3 \ldots
$$

Another cool example: St. Petersburg paradox

Let X_{1}, X_{2}, \ldots be i.i.d. random variables with

$$
P\left(X_{1}=2^{i}\right)=\frac{1}{2^{i}} \text { for } i=1,2,3 \ldots
$$

How much are you willing to pay to play n times?

Another cool example: St. Petersburg paradox

Let X_{1}, X_{2}, \ldots be i.i.d. random variables with

$$
P\left(X_{1}=2^{i}\right)=\frac{1}{2^{i}} \text { for } i=1,2,3 \ldots
$$

How much are you willing to pay to play n times? $\mu=\infty$

Another cool example: St. Petersburg paradox

Let X_{1}, X_{2}, \ldots be i.i.d. random variables with

$$
P\left(X_{1}=2^{i}\right)=\frac{1}{2^{i}} \text { for } i=1,2,3 \ldots
$$

How much are you willing to pay to play n times? $\mu=\infty$ You don't want to pay $n \infty$!

Another cool example: St. Petersburg paradox

Let X_{1}, X_{2}, \ldots be i.i.d. random variables with

$$
P\left(X_{1}=2^{i}\right)=\frac{1}{2^{i}} \text { for } i=1,2,3 \ldots
$$

How much are you willing to pay to play n times? $\mu=\infty$ You don't want to pay $n \infty$!

Answer: In order to play n times, you should be willing to pay $n \log n$ dollars.

Another cool example: St. Petersburg paradox

Let X_{1}, X_{2}, \ldots be i.i.d. random variables with

$$
P\left(X_{1}=2^{i}\right)=\frac{1}{2^{i}} \text { for } i=1,2,3 \ldots
$$

How much are you willing to pay to play n times? $\mu=\infty$ You don't want to pay $n \infty$!

Answer: In order to play n times, you should be willing to pay $n \log n$ dollars.

Theorem:

$$
\frac{S_{n}}{n \log n} \text { converges to } 1 \text { in probability }
$$

Another cool example: St. Petersburg paradox

Let X_{1}, X_{2}, \ldots be i.i.d. random variables with

$$
P\left(X_{1}=2^{i}\right)=\frac{1}{2^{i}} \text { for } i=1,2,3 \ldots
$$

How much are you willing to pay to play n times? $\mu=\infty$ You don't want to pay $n \infty$!

Answer: In order to play n times, you should be willing to pay $n \log n$ dollars.

Theorem:

$$
\frac{S_{n}}{n \log n} \text { converges to } 1 \text { in probability }
$$

but not a.s.

