© Relationship between indep: an Λ prod. Exercise $X_{n_{1}}$... X_{n} are indep
Really. X_{1}, X_{n} rus on (Ω, F, p) are index. if $\forall B_{1}, \ldots B_{n}$ Bowel sets

$$
\begin{aligned}
& \text { indep if } \forall B_{1},--X_{n} \\
& P_{1}\left(w: X_{1}(w) \in B_{1}, X_{2}(w) \in B_{2} \cdots X_{n}(w) \in B_{n}\right) \\
& n_{n}
\end{aligned}
$$

of

Recall The LaN of a RU X is the pros.
move on $(R, B) \quad M_{X}(B):=P\left(\mathbb{X}^{-1}(B)\right)$
hew. bet: The joint Lan or dist of rvs. I_{1}. In re fines on $(\Omega, 5, B)$

$$
\text { is a } p m o n\left(\mathbb{R}^{n}, B^{n}\right), M_{X_{1}} X_{n}
$$

$$
\begin{aligned}
& \text { is a } p m o n\left(\mathbb{R}^{n}, B^{n}\right), M_{X_{1}}-\Psi_{n} \\
& M_{X_{1}} \mathbb{I}_{n}(B)^{\prime}:=P\left(w:\left(X_{1}(w)-X_{n}(w)\right) \in B\right) \quad B \in B^{n}
\end{aligned}
$$

$$
\frac{\Delta_{1,-\cdots} \times n}{\mu_{1} \times \mu_{2} \times \mu_{n}\left(\bar{X}_{1} \times I_{2} \cdots \times I_{n}\right)}
$$

$$
=I_{i=1}^{n} \mu\left(X_{i}\right) \text {. In order to }
$$

Keep things simple. assume $M\left(\bar{X}_{i}\right)=1$ Inf. product more of Lee more
on $[0,1]^{n}$.
$\left([0,1]^{n}, B^{n}, \frac{m \times \lambda m}{n}\right)$ well know. move to int. prod

$$
\begin{aligned}
& X=[0,1]^{N} \quad N \text { pos. integers } \\
& =\left\{\left(a_{1}, a_{2}, a_{3} \ldots\right): a_{i} \in[0,1] \forall i .\right.
\end{aligned}
$$

Lot Q^{60} be the smallest σ - alg contring sets of the form

$$
\begin{aligned}
& \frac{B_{1} \times B_{2} \ldots \times B_{n} \times[0,1] \times[0,1] \times[0,1] \ldots}{\text { eod } B_{1} \in B_{1}}=\left\{\begin{array}{l}
\left(a_{1}, a_{2},--\right)! \\
a_{1} \in B_{1}, a_{2}, B_{2}-a_{n} \in B_{n}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { edoh } B_{1} \in B_{1}=\left\{\begin{array}{ll}
\left(a_{1}, a_{2}, \ldots\right. &) \\
a_{1} \in B_{1}, a_{2}, B_{2}-a_{n} \in B_{n}
\end{array}\right\} \\
& \text { We } m \text { Les more on }(0,1) \text {. }
\end{aligned}
$$

Thm: \exists a pm. m^{∞} on $\left(A, B^{+\infty}\right)$ st. $\forall n \quad \forall B_{1},-B_{n} \in \mathbb{D}_{1}$,

$$
\begin{aligned}
& \text { st. } \forall n \quad \forall B_{1,}, B_{n} \in\left(\mathbb{D}_{1}\right) \\
& m\left(B_{1} \times B_{2} \times \cdots \times B_{n} \times[0,1] \times[0,1] \cdots\right)
\end{aligned}
$$

$$
=m\left(B_{1}\right) m\left(B_{2}\right)-m\left(B_{n}\right) .
$$

Remanks:
(1) one cendo uretble products.
(2) versions of thiv for "noh product thigg"

- Kol. extanson theorem.
(3) Canbe techniqual; need some togoligicel ass uptires in jenerd.

Ewier pand
Thr. on $k X\left([0,1)^{N}, B^{(0)}, m^{(\infty)}\right)$

Law of I_{i} is m i, X_{i}^{\prime} 's are inden.
Pf. Lot $X_{i}:[0,1]^{N} \rightarrow[0,1]$ be

$\forall B \in \mathbb{Q}_{1}, \mathbb{X}_{i}^{-1}(B)=\left\{\left(a_{1} \ldots\right): \mathbb{X}_{i}\left(a_{1} \ldots\right) \in B\right\}$ $=\left\{\left(a_{1}-\right): a_{i} \in(B)\right.$
$=[0,1] \times[0,1] \cdots \times\left[\begin{array}{c}{[0,1] \times} \\ i-1 \\ i\end{array}\right.$
$\in \mathbb{Q}^{60}$.

Con strut on inf. \# of uniform RUS.
e. what if we wand t constrall $1 / 2$ insp. nu' $\Psi_{1} \ldots P\left(\Psi_{i}\right)=\begin{aligned} & 1 \\ & 0 \\ & 0\end{aligned} \frac{1}{2}$.
Talk our $X_{1} X_{L}$ —.

$$
Y_{i}=\left[\begin{array}{lll}
1 & \mathbb{X}_{i} \in\left[0, Y_{2}\right] \\
0 & \mathbb{Z}_{i} \in\left[y_{2}, 1\right]
\end{array}\right.
$$

Exeasisf. Show Y_{i} 's ave RU's, indef and their Law

$$
\begin{equation*}
\frac{\delta_{1}+\delta_{0}}{2} \tag{0}
\end{equation*}
$$

If Y_{1}. ave id, $\exists f:(0,1) \rightarrow R$.
st $Y_{i}=f\left(X_{i}\right)$ works.
Lying. $f(x) \neq F_{Y}^{-1}(x)$

Construdt N^{∞} on $\left(E O, 1^{N}, B^{\infty}\right) \mid L \cdot 2 Q$ is not 2σ-ale.
byapilying prec. theovem.
Lot $X=[0,1]^{N}$. Los f_{n} be the σ-als generated by seds of the form $\left\{B_{1} \times B_{2} x-\times B_{n} \times[0,1] \times(0,1] \ldots\right\}$
\qquad

$$
\frac{F_{1} \leq F_{2}\left(S_{2} f_{2}\right.}{\operatorname{los} \underbrace{\infty}_{n=1} f_{n}}
$$

L. Q is an als.

Pf. Lt $A, B \in \varphi \Rightarrow A \in F_{n}$ somen n. $B \in F_{m} \quad \operatorname{los} N=m a x\{n, m\} \quad f_{N} \Rightarrow A \cup B \in f_{N} \subseteq Q$ exercive.$~$

$$
L_{d} A_{n}=[0,1 / 2] \times[0,12]-\cdots \times\left[0, \frac{2}{2}\right] \times[0,1] \cdots
$$

$A_{n} \in F_{n} \subseteq a$.
$\bigcap_{n=1}^{\infty 0} A_{n}=\left[0, y_{1}\right] \times\left[0, \frac{1}{2} x \times\left[0, y_{2}\right]\right.$
$\eta_{n o t}$ in Q since nod in f_{n} for any n.
Define a pre msse on C

$$
\begin{aligned}
& \text { Define a pre msve on } \\
& \mu_{0}^{\infty}\left(B_{1} \times B_{2} \ldots \times B_{n} \times[0,1] \times[0,1] \cdots\right)
\end{aligned}
$$

$$
=\frac{n}{i=1} m\left(B_{i}\right)
$$

Just as for produt moves,
this extendstara p.m. on f_{n}. basically h-1in mesjum

Claim:
If true, the μ_{0}^{∞} extents to
 we NTS $\mu_{0}^{\infty}\left(U A_{i}\right)=\sum_{i=1}^{\infty} \mu_{0}^{\infty 0}\left(A_{i}\right)$. Remark. \geq easy

$$
\begin{aligned}
& \mu_{0}^{\infty}\left(U A_{i}\right) \geq \mu_{0}^{\infty}\left(\bigcup_{i=1}^{n} A_{i}\right) \\
& =\sum_{i=1}^{n} \mu_{0}^{\infty}\left(A_{i}\right) \forall n
\end{aligned}
$$

$$
T_{n}=\bigcup_{j=n}^{\infty} A_{j}
$$

$\mathrm{N}_{\substack{0 \\ \text { to }}} T_{1} \geq T_{2} \geq T_{3}$. and not $\bigcap_{n=1}^{\infty} T_{n}=\phi \quad$ Exerci-1
$\rightarrow \mu_{0}^{\infty}\left(T_{n}\right) \longrightarrow 0$ cont form above cont be used

2 a stumer $\mu_{0}^{20}\left(T_{n}\right) \longrightarrow \varepsilon_{0}>0$.
Note $T_{n} \neq \beta, T_{1} \geq T_{2} \geq \ldots{ }_{n=\pi}^{n} T_{n}=\phi$. could not happen if $T_{n}{ }^{n \pi}$ comped
Eden Estimate Tr from in side by a closed set C_{n}.
Find $C_{n} \subseteq T_{n}$ closed. st

$$
\left.\frac{r_{0} i n}{\mu_{0}^{\infty}\left(T_{n}\right.}>C_{n}\right) \subset \frac{\varepsilon_{0}}{\sum_{1}}
$$

Let $B_{n}=\bigcap_{i=1}^{n} C_{i} \quad B_{n} \leq C_{n} \leqslant T_{n} \forall$

$$
B_{1} \geq B_{2} \supseteq B_{3} \ldots
$$

$$
\begin{aligned}
& \Rightarrow \bigcap_{n=1}^{\infty} T_{n} \neq p \neq 4
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{0}^{\infty}\left(T_{n} \backslash B_{n}\right)=\mu_{0}^{00}\left(T_{n}-\bigcap_{i=1}^{n} C_{i}\right) \\
& \leq \mu_{0}^{\infty}\left(\bigcup_{i=1}^{n}\left(T_{i}-C_{i}\right)\right) \\
& \leqslant \sum_{i=1}^{n} \mu_{0}^{\infty}\left(T_{i} C_{i}\right) \\
& \begin{array}{l}
\leq \sum_{i n}^{\sum_{i}} \frac{\varepsilon_{0}}{i 2} \leq \frac{\varepsilon_{0}}{2} \\
B \omega_{0}+\mu_{0}^{0}\left\langle T_{n} \geq \varepsilon_{0} \Rightarrow \mu_{0}^{\infty}\left(B_{n}\right)>\varepsilon_{0}\right.
\end{array} \\
& \square
\end{aligned}
$$

