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What’s coming?

Deeper aspects of measure theory.

The main theorems of this chapter are the Radon-Nikodym Theorem and
the Lebesgue Decomposition Theorem.

We will need a lot of preliminary work, including the so-called Hahn and
Jordan Decomposition theorems.
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Signed measures

Definition
If (X ,M) is a measurable space, a signed measure is a map ν fromM to
[−∞,∞] satisfying

(i) ν(∅) = 0.
(ii) At most one of the values ±∞ are assumed.
(iii) If A1,A2, . . . , are (pairwise) disjoint elements ofM, then

ν(
⋃
i

Ai ) =
∑
i

ν(Ai ).

Remarks:
a. A measure is a signed measure.
b. If µ1 and µ2 are finite measures (or if at least one is a finite measure),
then µ1 − µ2 is a signed measure. (Prove this!).
c. Condition (ii) is there to avoid having ∞−∞.
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Signed measures

First goal (Jordan Decomposition Theorem): Every signed measure has the
form µ1 − µ2 with µ1 and µ2 being measures with at least one being a
finite measure

and where µ1 and µ2 will "live on different parts of the
space": i.e., mutually singular.

Definition
If ν is a signed measure on (X ,M), a set A ∈M is called a positive set if
ν(B) ≥ 0 for all B ⊆ A with B ∈M. A is called a negative set if
ν(B) ≤ 0 for all B ⊆ A with B ∈M. A is called a null set if ν(B) = 0 for
all B ⊆ A with B ∈M. (Note that a set is null if and only if it is both a
positive and a negative set.)
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A trivial but illustrative example
Example: X = {1, 2, 3, 4},M is all subsets,

µ({1}) = −2, µ({2}) = 3, µ({3}) = −1 and µ({4}) = 1.
The measure of other sets is just obtained by adding up the pieces.

µ({2, 3}) = 2 but {2, 3} is not a positive set since it contains {3} which
has negative measure.

Note X = {2, 4} ∪ {1, 3} and that {2, 4} is a positive set and {1, 3} is a
negative set.

Note also that if we define µ1 and µ2 by
µ1({1}) = 0, µ1({2}) = 3, µ1({3}) = 0 and µ1({4}) = 1 and
µ2({1}) = 2, µ2({2}) = 0, µ1({3}) = 1 and µ1({4}) = 0, then

µ = µ1 − µ2

and µ1 and µ2 "live on different parts of X".
This is the picture we want in general.
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Hahn Decomposition Theorem

Theorem

(Hahn Decomposition Theorem) If ν is a signed measure on (X ,M), then
X can be partitioned into two sets P,N (P ∪ N = X , P ∩ N = ∅) with
P,N ∈M

where P is a positive set and N is a negative set. There is
“almost uniqueness” in that if (P ′,N ′) is another such partition, then
P4P ′ and N4N ′ are each null sets.

Simple Example: Consider ([0, 1],B[0,1]) and let m be Lebesgue measure.
Let

ν(A) := m(A ∩ [0,
3
4
])−m(A ∩ (

3
4
, 1]).

Then a Hahn decomposition is given by ([0, 3
4 ], (

3
4 , 1]).
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Key lemma for the Hahn Decomposition Theorem

First two fairly easy fact about signed measures; these are Propositions 3.1
and Lemma 3.2 in F.

(i) The continuity from below and from above for measures applies to
signed measures as well.
(ii) A measurable subset of a positive set is a positive set (trivial) and a
countable union of (not necessarily disjoint) positive sets is a positive set
(easy).

Lemma

Let ν be a signed measure on (X ,M) which does not take the value ∞. If
ν(A) > 0, then there exists a measurable B ⊆ A where ν(B) > 0 and B is
a positive set.

Read lecture notes.
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Let ν be a signed measure on (X ,M) which does not take the value ∞. If
ν(A) > 0, then there exists a measurable B ⊆ A where ν(B) > 0 and B is
a positive set.
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Proof of the Hahn Decomposition Theorem

Assume WLOG ∞ is not obtained by ν.

Let

m = sup{ν(E ) : E is a positive set}.

If m = 0, then the lemma implies that every subset has nonpositive
measure and hence X is a negative set.

Otherwise, we choose a sequence of positive sets (Pj) so that

lim
j→∞

ν(Pj) = m.

Letting P =
⋃

j Pj , we have that P is a positive set. Therefore, we have
ν(P) = m since ν(P) ≥ ν(Pj) for all j . This implies that m <∞.

If we can show that Pc is a negative set, we would be done.
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Proof of the Hahn Decomposition Theorem

If Pc is not a negative set, then there exists E ⊆ Pc with ν(E ) > 0.

By the key lemma, E contains a subset F which is a positive set and with
ν(F ) > 0.

Then P ∪ F would be a positive set with ν-measure larger than m.
Contradiction. QED
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Mutual singularity

Definition
Two measures µ and ν on (X ,M) are mutually singular , µ⊥ν,

if X can
be partitioned into two disjoint sets E and F inM so that
µ(E ) = 0 = ν(F ). So µ "lives on F" and ν "lives on E". (For signed
measures, the definition needs to be modified.)

Example: Let X = [0, 1] with the Borel sets.

Let µ be Lebesgue measure restricted to [1/2, 1] meaning
µ(A) = m(A ∩ [1/2, 1]).

Let ν be Lebesgue measure restricted to [0, 1/2] meaning
ν(A) = m(A ∩ [0, 1/2]).

Then µ and ν are mutually singular with E = [0, 1/2] and F = (1/2, 1].
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Mutual singularity

Example: Let X = [0, 1] with the Borel sets.

Let µ be Lebesgue measure restricted to [1/2, 1].

Let ν be Lebesgue measure restricted to [0, 1/2] plus a unit point mass at
3/4. So ν(A) = m(A ∩ [0, 1/2]) + δ3/4(A).

Then µ and ν are mutually singular with E = [0, 1/2] ∪ {3/4} and
F = (1/2, 1]\{3/4}.

Example: The Cantor measure and Lebesgue measure. E = C and F = C c .
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The Jordan Decomposition Theorem

Theorem

(Jordan Decomposition Theorem) If ν is a signed measure on (X ,M),
then there exist unique measures ν+ and ν− so that ν+ and ν− are
mutually singular and

ν = ν+ − ν−.

Let µ1 be Lebesgue measure restricted to [0, 3/4] and µ2 be Lebesgue
measure restricted to [1/4, 1].

What is the Jordan decomposition of ν := µ1 − µ2?

Is ν+ and ν− just µ1 and µ2?

No. µ1 and µ2 are not mutually singular.

Instead one should take ν+ to be Lebesgue measure restricted to [0, 1/4]
and ν− to be Lebesgue measure restricted to [3/4, 1].
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Proof of The Jordan Decomposition Theorem
Let P,N be a Hahn decomposition of ν.

Let ν+ be the “restriction of ν to P”, meaning

ν+(A) := ν(A ∩ P)

Note that ν+ is a measure since P is a positive set.

Let ν− be the “restriction of ν to N” but “reversed”, meaning

ν−(A) := −ν(A ∩ N).

Note that ν− is a measure since N is a negative set.

ν+(N) = 0 = ν−(P) and so ν+⊥ν−.
Also

(ν+ − ν−)(A) = ν+(A)− ν−(A) = ν(A ∩ P) + ν(A ∩ N) = ν(A).

QED
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Absolute continuity

Definition
Given two measures ν and µ on (X ,M), we say that ν is absolutely
continuous with respect to µ,

written ν � µ, if

µ(A) = 0 implies that ν(A) = 0.

The following is a simple but central example illustrating this concept.
Consider a measure space (X ,M, µ) and a function f ∈ L+((X ,M, µ)).
Define the measure ν on (X ,M) by

ν(A) :=

∫
A
f (x)dµ(x).

(Convince yourself this is a measure; uses linearity of the integral and the
Monotone Convergence Theorem.) ν is called f µ and one has ν � µ.
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The Radon-Nikodym Theorem (converse of the previous
example)

Theorem

Let ν and µ be two measures on (X ,M) with ν � µ and with ν and µ
being σ-finite.

Then there exists a measurable function
f0 : (X ,M)→ [0,∞) such that for all A ∈M,

ν(A) :=

∫
A
f0(x)dµ(x).

One can modify f0 on a set of µ-measure 0 and the above will still be true.
However, f0 is unique in the sense that if g0 is another such function, then

µ{x : f0(x) 6= g0(x)} = 0.

This is false if one does not assume σ-finiteness.
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The Radon-Nikodym Theorem

Remarks:
1. The f0 above is called the Radon-Nikodym Derivative of ν with respect
to µ.
2. If µ is Lebesgue measure on (R,B) and ν is the distribution (or law) of
a random variable which is absolutely continuous with respect to µ, then
the Radon-Nikodym Derivative of ν with respect to µ is simply the
“probability density function” from elementary probability.
3. (Kolmogorov) The Radon-Nikodym Theorem is crucial in advanced
probability when one deals with the subtle concept of conditioning.
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Illustration of The Radon-Nikodym Theorem in a simple case

Let X = {1, 2, 3} (full σ-algebra).

Let µ = (1/3, 0, 4) , ν1 = (0, 5, 8) and ν2 = (2, 0, 1).

Then ν1 6� µ but ν2 � µ and the Radon-Nikodym derivative of ν2 with
respect to µ is the function (6, 0, 1/4). Or in fact (6, x , 1/4) for any x
since this is just a change on a set of µ measure 0.

If you take a smaller σ-algebra, then one could have ν1 � µ. For example,
{∅,X , {1, 2}, {3}}.
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Proof of The Radon-Nikodym Theorem for finite measure
spaces

Define

F := {f : X → [0,∞) :

∫
A
f (x)dµ(x) ≤ ν(A) ∀A ∈M}.

Note F is nonempty since f ≡ 0 is in F . Let

m := sup{
∫

f (x)dµ(x) : f ∈ F}.

Note that m ≤ ν(X )(<∞).

claim: There exists f0 ∈ F for which
∫
f0(x)dµ(x) = m; i.e. the

supremum above is achieved.
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Proof of The Radon-Nikodym Theorem for finite measure
spaces

Subclaim: If h1, h2 ∈ F , then max{h1, h2} ∈ F .

Subproof: One sees this by noting that for all A ∈M,∫
A
max{h1, h2}dµ(x) =

∫
A∩{h1≥h2}

h1(x)dµ(x) +

∫
A∩{h1<h2}

h2(x)dµ(x)

≤ ν(A ∩ {h1 ≥ h2}) + ν(A ∩ {h1 < h2}) = ν(A).

qed
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Proof of The Radon-Nikodym Theorem for finite measure
spaces

Now choose h1, h2, . . . ⊆ F so that

lim
n→∞

∫
hn(x)dµ(x) = m.

If we let
gn := max{h1, h2, . . . , hn}

we have that (1) each gn ∈ F from the subclaim, (2) g1 ≤ g2 ≤ g3 . . . and

lim
n→∞

∫
gn(x)dµ(x) = m.
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Proof of The Radon-Nikodym Theorem for finite measure
spaces

Finally, letting
f0 := lim

n→∞
gn,

we have by MCT (1) f0 ∈ F and (2)
∫
f0(x)dµ(x) = m.

For (1) for all A,∫
A
f0(x)dµ(x) = lim

n

∫
A
gn(x)dµ(x) ≤ ν(A).

For (2), ∫
f0(x)dµ(x) = lim

n

∫
A
gn(x)dµ(x) = m.

QED (claim)
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Proof of The Radon-Nikodym Theorem for finite measure
spaces

Recall where we are.

F := {f : X → [0,∞) :

∫
A
f (x)dµ(x) ≤ ν(A) ∀A ∈M}.

m := sup{
∫

f (x)dµ(x) : f ∈ F}.

claim: There exists f0 ∈ F for which
∫
f0(x)dµ(x) = m.

This f0 will turn out to be our Radon Nikodym derivative.
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Proof of The Radon-Nikodym Theorem for finite measure
spaces

Now, letting
ν0 := ν − f0µ,

ν0 is a measure. We want to show that ν0 = 0. (Idea: if not, we can push
m up.)

If ν0(X ) > 0, choose ε > 0 (µ(X ) <∞) so that

ν0(X )− εµ(X ) > 0. (1)

Let (P,N) be a Hahn decomposition for the signed measure ν0 − εµ.

One should think that P is where ν0 "is larger" than εµ and N is where ν0
"is smaller" than εµ.
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Proof of The Radon-Nikodym Theorem for finite measure
spaces

Note that
f0 + εIP ∈ F

since for all A ∈M∫
A
(f0 + εIP)dµ(x) =

∫
A
f0dµ(x) + εµ(P ∩ A) ≤

∫
A
f0dµ(x) + ν0(P ∩ A)

≤
∫
A
f0dµ(x) + ν0(A) = ν(A).

Since ∫
(f0 + εIP)dµ(x) =

∫
f0dµ(x) + εµ(P) = m + εµ(P),

we see that µ(P) = 0. Since ν � µ, we have that ν(P) = 0 and hence
(ν0 − εµ)(P) = 0, contradicting (1).
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Proof of uniqueness in The Radon-Nikodym Theorem for
finite measure spaces

For uniqueness, one notes that if µ{x : f0(x) 6= g0(x)} > 0,

then WLOG
µ{x : f0(x) > g0(x)} > 0 which yields∫

{x :f0(x)>g0(x)}
f0(x)dµ(x) >

∫
{x :f0(x)>g0(x)}

g0(x)dµ(x)

contradicting the fact that each integral equals ν{x : f0(x) > g0(x)}.
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The Lebesgue Decomposition Theorem

Theorem

(Lebesgue Decomposition Theorem) Let ν and µ be two measures on
(X ,M) with ν and µ being σ-finite. Then there exist unique measures νac
and νs so that

ν = νac + νs

and
νac � µ and νs⊥µ (and hence we also have νs⊥νac).

• If ν � µ, then νac = ν, νs = 0 and if ν⊥µ, then νac = 0, νs = ν.
• This is false if one does not assume σ-finiteness.
• There is a version for signed measures.
• We do the proof for the finite measure case.
• We do not prove the uniqueness.
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The Lebesgue Decomposition for a simple example

Let X = {1, 2, 3} (full σ-algebra).

Let ν = (0, 5, 8) and µ = (1/3, 0, 4).

What is the Lebesgue Decomposition of ν with respect to µ?

ν = (0, 5, 8) = (0, 0, 8) + (0, 5, 0) = νac + νs .
Also what is the Radon Nikodym derivative of νac with respect to µ? The
function (0, 0, 2). Or in fact (0, x , 2) for any value of x since this is just a
change on a set of µ measure 0.

October 1, 2021 27 / 36



The Lebesgue Decomposition for a simple example

Let X = {1, 2, 3} (full σ-algebra).

Let ν = (0, 5, 8) and µ = (1/3, 0, 4).

What is the Lebesgue Decomposition of ν with respect to µ?

ν = (0, 5, 8) = (0, 0, 8) + (0, 5, 0) = νac + νs .
Also what is the Radon Nikodym derivative of νac with respect to µ? The
function (0, 0, 2). Or in fact (0, x , 2) for any value of x since this is just a
change on a set of µ measure 0.

October 1, 2021 27 / 36



The Lebesgue Decomposition for a simple example

Let X = {1, 2, 3} (full σ-algebra).

Let ν = (0, 5, 8) and µ = (1/3, 0, 4).

What is the Lebesgue Decomposition of ν with respect to µ?

ν = (0, 5, 8) = (0, 0, 8) + (0, 5, 0) = νac + νs .
Also what is the Radon Nikodym derivative of νac with respect to µ? The
function (0, 0, 2). Or in fact (0, x , 2) for any value of x since this is just a
change on a set of µ measure 0.

October 1, 2021 27 / 36



The Lebesgue Decomposition for a simple example

Let X = {1, 2, 3} (full σ-algebra).

Let ν = (0, 5, 8) and µ = (1/3, 0, 4).

What is the Lebesgue Decomposition of ν with respect to µ?

ν = (0, 5, 8) = (0, 0, 8) + (0, 5, 0) = νac + νs .

Also what is the Radon Nikodym derivative of νac with respect to µ? The
function (0, 0, 2). Or in fact (0, x , 2) for any value of x since this is just a
change on a set of µ measure 0.

October 1, 2021 27 / 36



The Lebesgue Decomposition for a simple example

Let X = {1, 2, 3} (full σ-algebra).

Let ν = (0, 5, 8) and µ = (1/3, 0, 4).

What is the Lebesgue Decomposition of ν with respect to µ?

ν = (0, 5, 8) = (0, 0, 8) + (0, 5, 0) = νac + νs .
Also what is the Radon Nikodym derivative of νac with respect to µ?

The
function (0, 0, 2). Or in fact (0, x , 2) for any value of x since this is just a
change on a set of µ measure 0.

October 1, 2021 27 / 36



The Lebesgue Decomposition for a simple example

Let X = {1, 2, 3} (full σ-algebra).

Let ν = (0, 5, 8) and µ = (1/3, 0, 4).

What is the Lebesgue Decomposition of ν with respect to µ?

ν = (0, 5, 8) = (0, 0, 8) + (0, 5, 0) = νac + νs .
Also what is the Radon Nikodym derivative of νac with respect to µ? The
function (0, 0, 2).

Or in fact (0, x , 2) for any value of x since this is just a
change on a set of µ measure 0.

October 1, 2021 27 / 36



The Lebesgue Decomposition for a simple example

Let X = {1, 2, 3} (full σ-algebra).

Let ν = (0, 5, 8) and µ = (1/3, 0, 4).

What is the Lebesgue Decomposition of ν with respect to µ?

ν = (0, 5, 8) = (0, 0, 8) + (0, 5, 0) = νac + νs .
Also what is the Radon Nikodym derivative of νac with respect to µ? The
function (0, 0, 2). Or in fact (0, x , 2) for any value of x since this is just a
change on a set of µ measure 0.

October 1, 2021 27 / 36



The proof of the Lebesgue Decomposition Theorem (uses
the proof of the Radon-Nikodym Theorem)

Recall

(1) F := {f : X → [0,∞) :

∫
A
f (x)dµ(x) ≤ ν(A) ∀A ∈M}.

(2) m := sup{
∫

f (x)dµ(x) : f ∈ F}.

(3) There exists f0 ∈ F for which
∫
f0(x)dµ(x) = m.

(4) ν0 := ν − f0µ,

For the RNT, we had shown that ν0 = 0 when we had assumed that ν � µ.
Now we will show that ν0⊥µ completing the proof with νac := f0µ and
νs := ν0.
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The proof of the Lebesgue Decomposition Theorem (uses
the proof of the Radon-Nikodym Theorem)

Let (εn) be a decreasing sequence of numbers in (0, 1) converging to 0. Let
(Pn,Nn) be a Hahn decomposition for the signed measure ν0 − εnµ.

Case 1: There exists n with µ(Pn) > 0. This leads to a contradiction
exactly as in case 2 in the RNT. Do only a review.

One shows that g0 := f0 + εnIPn ∈ F and
∫
g0dµ(x) = m + εnµ(Pn) > m,

a contradiction.
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The proof of the Lebesgue Decomposition Theorem (uses
the proof of the Radon-Nikodym Theorem)

Case 2:
µ(Pn) = 0 for each n.

Let P :=
⋃

n Pn and N :=
⋂

n Nn.
• (P,N) is a partition since

Pc = (
⋃
n

Pn)
c =

⋂
n

Pc
n =

⋂
n

Nn = N

• µ(P) = 0.
• Also, for each n, we have

ν0(N) ≤ ν0(Nn) ≤ εnµ(Nn) ≤ εnµ(X ).

This gives ν0(N) = 0 and so ν0⊥µ.
QED
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Another simpler decomposition

Given any σ-finite measure space (X ,M, µ) with single points being
measurable (which is basically always the case),

we can always decompose
µ into an atomic piece and a continuous piece as follows. If A is the set of
atoms, we can write

µ = µ|A + µ|Ac .

Then µ|A is atomic, µ|Ac is continuous and these measures are mutually
singular.
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Full decomposition on (R ,B)

Theorem

Let µ be a σ-finite measure on (R,B).

Then µ can be decomposed
uniquely as

µ = µd + µsc + µac

where µd is an atomic measure (“d” for discrete), µsc is a continuous
measure which is mutually singular with respect to Lebesgue measure and
µac is absolutely continuous with respect to Lebesgue measure. Also, the
three measures are mutually singular.

The exact same theorem and proof works in Rn with n-dimensional
Lebesgue measure.
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Full decomposition on (R ,B)

• If X is a random variable with for example either a normal or
exponential distribution, its law would only have the third piece in the
above decomposition.

• If X is a random variable with for example a Poisson or geometric
distribution, its law would only have the first piece in the above
decomposition.
• The existence of a random variable which contains the second piece is

quite surprising to people studying probability. If the law of X would
only have the second piece in its decomposition, it would mean that X
has no point masses but nonetheless there does not exist a probability
density function.
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Proof of the Full decomposition on (R ,B)

Proof:
We first decompose µ into an atomic piece µd and a continuous measure
µc .

µ = µd + µc .

We now apply the Lebesgue Decomposition Theorem to write

µc = µsc + µac

where µsc⊥m and µac � m. Now combine.
QED
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Alternative description of absolute continuity

Proposition: Let µ and ν be measures with ν finite.

Then ν � µ if and
only if for every ε > 0, there exists δ > 0 so that

µ(A) < δ implies that ν(A) < ε.

In particular, if f ∈ L+,1(X ,M, µ), then for every ε > 0, there exists δ > 0
so that

µ(A) < δ implies that
∫
A
f dµ < ε.

Proof:
The “if” direction is essentially immediate (and does not require that ν be
finite).
If µ(A) = 0, then µ(A) < δ for every δ > 0 and hence ν(A) < ε for every
ε > 0. So ν(A) = 0.
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Alternative description of absolute continuity

If the statement on the RHS fails, then there would exist an ε0 > 0 and
sets (An) with µ(An) ≤ 1/2n and ν(An) ≥ ε0.

Let A := lim supAn. The Borel Cantelli Lemma tells us that µ(A) = 0.

We will show that ν(A) ≥ ε0 which contradicts ν � µ.

For each n,

ν(
∞⋃
k=n

Ak) ≥ ε0.

Now n→∞ using continuity from above for ν (ν is a finite measure) gives
ν(A) ≥ ε0.
QED
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