1. \&T Let $A_{1}, A_{2} \ldots X_{k}$ be
open both in R^{2}. Then \exists a subject of these $B_{1} \ldots B_{l}$
which (1) disjoint ind
${ }^{12}\left(\frac{m}{\left(\bigcup_{i a}^{u}\right.} B_{i}\right) \geq \frac{1}{q} m\left(U_{i} A_{i}\right)$
If bisaball B^{*} is the
ball with same center as B
bat 3 times various
Lemma: A, B balls, $A \cap B \neq \phi$,

$$
\begin{array}{rl}
\frac{\text { rama }}{r_{A}} r_{B} & A \subseteq B^{\alpha} \\
\square & \leq r_{B}+2 r_{A} \\
& \leq 3 r_{B}
\end{array}
$$

Let B_{1} be the A; with langer radius: Remove all Ais whin interred B_{1}. Lat B_{2} be the
largest if the remain's Ais.
Remove A is whir internal B2. Choose Pg loges of be rem init. . . . Call ton $B_{1} \ldots \mathrm{Bl}_{1}$ Dis, by con stacuction.
Claim Each A_{i} is contain in some $B_{j}^{\alpha}\left(U A_{i} \subseteq \cup B_{j}^{\infty}\right)$. Pf. (aust): Ai one of the oj $B_{j}^{\prime} B_{j}^{\prime}$). So A_{i} was re moved at some $A t$ Let', so remove $3^{u n} s$ top $A_{1} \cap B_{3} \neq \beta \Rightarrow A_{i} \subseteq B_{3}^{\infty^{+}}$ if $\operatorname{rad}\left(A_{i}\right) \leq \operatorname{rar}\left(B_{3}\right)$ true sine $0 . \omega$ would have chose A_{i} instar of B_{3}

