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Question 1

(the simplex method)

a) To transform the problem to standard form, the sign on the first constraint(2p)
must be changed. Then subtract a non-negative slack variable s1 in the
first constraint and add one non-negative slack variable s2 in the second. A
BFS cannot be found directly, hence begin with phase 1 with an artificial
variable a ≥ 0 added in the first constraint - the slack varible s2 can be used
as the other basic variable. The objective is to minimize w = a. Start with
the BFS given by (a, s2). In the first iteration of the simplex algorithm, x2

is the only variable with a negative reduced cost (−1), and is therefore the
only eligable incoming variable. The minimum ratio test shows that either
a or s2 can be removed from the basis. By choosing a as the outgoing
variable, we can proceed to phase 2.

The reduced costs in the first iteration of the phase 2 problem are

c̃T

(x1,x3,s1) = (1, 6, 1) ≥ 0,

and thus the optimality condition is fulfilled for the current basis. We have
x∗

B = (1, 0)T, or in the original variables, x∗ = (x1, x2, x3)
∗ = (0, 1, 0)T,

with the optimal value z∗ = 1.

b) At the obtained optimal solution all reduced cost are strictly greater than(1p)
zero, hence the obtained optimal solution must be unique.
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Question 2

(modelling)

a) One possibility is the following formulation:(2p)

minimize f(x) := µ(−c̄Tx) + (1 − µ)xTV x,

subject to
n
∑

i=1

xi = 1,

xi ≥ 0, i = 1, . . . , n,

where µ ∈ [0, 1] is a parameter balancing the two objectives. To show that
the obtained solution x∗ is efficient assume that it is not. Then there is
another solution y∗ such that c̄Ty∗ < c̄Tx

�

and y∗TV y∗ < x∗TV x∗. But
then obviously f(y∗) < f(x∗) which is a contradiction to x∗ being optimal.

Another possible formulation is:

minimize f(x) := −c̄Tx,

subject to xTV x ≤ b,
n
∑

i=1

xi = 1,

xi ≥ 0, i = 1, . . . , n,

where b is a parameter setting the maximum value of the variance objective.
Also here, the efficiency can be shown through contradiction.

b) By varying the parameter values µ and b, respectively, different efficient(1p)
solutions can be found.

Question 3(3p)

(interior penalty method)

The logarithmic penalty function is

P (x; ν) = 1
2
(x1 + 1)2 + 1

2
(x2 + 1)2 − ν log x1 − ν log x2.
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It is convex, and the first order optimality conditions is

∇P (x; ν) =

(

x1 + 1 − ν

x1

x2 + 1 − ν

x2

)

=

(

0
0

)

,

which gives a unique optimal solution

x∗(ν) =
−1 +

√
1 + 4ν

2

(

1
1

)

.

due to the requirement x1 > 0, x2 > 0. As ν → ∞, we get x∗ = (0, 0)T.
It converges to a KKT-point. According to Theorem 13.6, we can guarantee
convergence to a KKT-point if LICQ holds.

Question 4

(necessary local and sufficient global optimality conditions)

a) See Proposition 4.23.(1p)

b) See Theorem 4.24.(2p)

Question 5

(Lagrangian duality)

a) From the stationarity conditions for the Lagrangian we get that(1p)

x1(µ) =







(4 − µ)/2, 0 ≤ µ ≤ 4,

0, 4 ≤ µ,

respectively,

x2(µ) =







(8 − µ)/4, 0 ≤ µ ≤ 8,

0, 8 ≤ µ.

We then get the following expression for the Lagrangian dual function, to
be maximized over µ ≥ 0:

q(µ) =















−(3/8)µ2 + 2µ − 12, 0 ≤ µ ≤ 4,

−(1/8)µ2 − 8, 4 ≤ µ ≤ 8,

−2µ, µ ≥ 8.
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The corresponding derivatives then are:

q′(µ) =















−(3/4)µ + 2, 0 ≤ µ ≤ 4,

−(1/4)µ, 4 ≤ µ ≤ 8,

−2, µ ≥ 8.

It is clear that q is concave and differentiable for every µ ≥ 0. It is in fact
strictly concave.

b) Setting q′(µ) = 0 as a first trial, we obtain that q′(µ) = 0 for µ = 8/3. Since(1p)
the dual problem is convex this is the optimal dual solution: µ∗ = 8/3. The
corresponding objective value is q(µ∗) = −91

3
.

c) The Lagrangian optimal solution in x for µ = µ∗ is, from a), x = (2/3, 4/3)T.(1p)
This is feasible in the primal problem, and f(x) = q(µ∗) so it is also optimal,
by the weak duality theorem. According to duality theory for convex prob-
lems over polyhedral sets, all primal optimal solutions are generated from
Lagrangian optimal solutions given an optimal dual vector. Since x(µ∗)
here is the unique vector x∗ = (2/3, 4/3)T this must also be the unique
optimal solution to the primal problem.

Question 6(3p)

(convexity)

The objective function is convex and the constraint

‖Ax‖2
2 = xTATAx ≤ 1

is convex since it is quadratic and the Hessian ATA is positive definite, since
A is invertible. (It is positive semidefinite even if it is not invertible, and hence
convex.) This means that the problem is convex. The optimal solution can be
computed from the KKT-conditions since e.g. Slater CQ holds.

c + 2λATAx = 0

‖Ax‖2
2 ≤ 1

λ
(

‖Ax‖2
2 − 1

)

= 0

Since the objective function is linear with nonzero gradient, the optimal solution
must be at the boundary of the constraint. The first condition gives

x = − 1

2λ

(

ATA
)

−1
c,
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and hence

1 = xTATAx ⇒ λ =

√

1
4
cT
(

ATA
)

−1
c = 1

2
‖A−Tc‖2.

The optimal solution is

x∗ = − 1

‖A−Tc‖2

(

ATA
)

−1
c.

Question 7

(linear programming duality and matrix games)

a) Under the given conditions we have that(1p)

z∗ = minimum { cTx | Ax ≥ b, x ≥ 0n }
= maximum { bTy | ATy ≤ c, y ≥ 0m }
= maximum { (−c)Ty | −Ay ≤ −b, y ≥ 0n }
= maximum { (−c)Ty | Ay ≥ b, y ≥ 0n }
= −z∗,

which implies that z∗ = 0.

b) The self-dual skew symmetric LP problem sought is(2p)

minimize cTx − bTy,

subject to

(

0m×n −AT

A 0n×m

)(

x

y

)

≥
(

−c

b

)

,

(x, y) ≥ 0n × 0m.


