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Question 1

(the simplex method)

a)

b)

To transform the problem to standard form, the sign on the first constraint
must be changed. Then subtract a non-negative slack variable s; in the
first constraint and add one non-negative slack variable s5 in the second. A
BFS cannot be found directly, hence begin with phase 1 with an artificial
variable ¢ > 0 added in the first constraint - the slack varible s, can be used
as the other basic variable. The objective is to minimize w = a. Start with
the BF'S given by (a, s2). In the first iteration of the simplex algorithm, x,
is the only variable with a negative reduced cost (—1), and is therefore the
only eligable incoming variable. The minimum ratio test shows that either
a or sy can be removed from the basis. By choosing a as the outgoing
variable, we can proceed to phase 2.

The reduced costs in the first iteration of the phase 2 problem are

Clzy 0551 = (1,6,1) >0,
and thus the optimality condition is fulfilled for the current basis. We have
xy = (1,0)", or in the original variables, * = (x1, 29, 23)* = (0,1,0)7,
with the optimal value z* = 1.

At the obtained optimal solution all reduced cost are strictly greater than
zero, hence the obtained optimal solution must be unique.
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Question 2

(modelling)
(2p) a) One possibility is the following formulation:

minimize  f(x) = p(—c'x) + (1 — p)x" Ve,
subject to sz =1,
i=1
szZO7 izl,...7n7

where p € [0, 1] is a parameter balancing the two objectives. To show that
the obtained solution a* is efficient assume that it is not. Then there is
another solution y* such that ¢"y* < ¢"x* and y*"'Vy* < *"'Vax*. But
then obviously f(y*) < f(«*) which is a contradiction to &* being optimal.

Another possible formulation is:

minimize  f(x) := —¢'=x,
subject to x"Va <,

x1207 ’i:17...7n7

where b is a parameter setting the maximum value of the variance objective.
Also here, the efficiency can be shown through contradiction.

(1p) b) By varying the parameter values p and b, respectively, different efficient
solutions can be found.

(3p) Question 3
(interior penalty method)
The logarithmic penalty function is

P(x;v) = 2 (z1 + 1)* + 3(z2 + 1)? — vlog z1 — vlog zs.
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It is convex, and the first order optimality conditions is

N $1+1—ﬁ (0
e (2111 (2)

which gives a unique optimal solution

) —1+\/1+4y<1>
x"(v) = :
2 1
due to the requirement z; > 0,79 > 0. As v — oo, we get z* = (0,0)7.

It converges to a KKT-point. According to Theorem 13.6, we can guarantee
convergence to a KKT-point if LICQ holds.

Question 4

(necessary local and sufficient global optimality conditions)

(Ip)  a) See Proposition 4.23.
(2p)  b) See Theorem 4.24.

Question 5

(Lagrangian duality)

(1p) a) From the stationarity conditions for the Lagrangian we get that
1 (p) =
0, 4<p,
respectively,
za(p) =
0, 8 < p.

We then get the following expression for the Lagrangian dual function, to
be maximized over p > 0:

—(3/8)p* +2u—12, 0<p <4,
—2, > 8.
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The corresponding derivatives then are:

—(3/4pu+2, 0<pu<A4,

q' (1) = —(1/4)p, 4<p<s,

It is clear that ¢ is concave and differentiable for every p > 0. It is in fact
strictly concave.

b) Setting ¢’(u) = 0 as a first trial, we obtain that ¢’(u) = 0 for u = 8/3. Since
the dual problem is convex this is the optimal dual solution: p* = 8/3. The
corresponding objective value is ¢(u*) = —9%.

¢) The Lagrangian optimal solution in @ for u = p* is, from a), x = (2/3,4/3)T.
This is feasible in the primal problem, and f(x) = ¢(u*) so it is also optimal,
by the weak duality theorem. According to duality theory for convex prob-
lems over polyhedral sets, all primal optimal solutions are generated from
Lagrangian optimal solutions given an optimal dual vector. Since x(u*)
here is the unique vector &* = (2/3,4/3)T this must also be the unique
optimal solution to the primal problem.

Question 6
(convexity)

The objective function is convex and the constraint
|Az|? =x"AT Az < 1

is convex since it is quadratic and the Hessian AT A is positive definite, since
A is invertible. (It is positive semidefinite even if it is not invertible, and hence
convex.) This means that the problem is convex. The optimal solution can be
computed from the KKT-conditions since e.g. Slater CQ holds.

c+22ATAz =0
|Az|; <1

A(llAz)3 - 1) =0

Since the objective function is linear with nonzero gradient, the optimal solution
must be at the boundary of the constraint. The first condition gives

1
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and hence

l=2"ATAz = )\ = \/%CT (ATA)i1 c= 1A "¢|».

2

The optimal solution is

. 1 -1
= _7||A’Tc||2 (ATA) c.

Question 7

(linear programming duality and matrix games)

a) Under the given conditions we have that
Z* = minimum {c'z | Az >b, = >0"}
= maximum {b'y| ATy <ec, y>0m}
= maximum { (—c)'y | -Ay < -b, y>0"}
= maximum { (—c)'y | Ay >b, y>0"}

*

= —Z s
which implies that z* = 0.
b) The self-dual skew symmetric LP problem sought is

e T
minimize ¢l —b'y,

. 0 —AT\ (x —c
subject to ( A 0nxm> <y> > b >7




