TMA947/MMG621 NONLINEAR OPTIMISATION

Date: 19-10-31
Examiner: Michael Patriksson

Note: the solutions presented here are brief in relation to the requirements on your answers, in particular regarding your motivations.

Question 1

(the simplex method)
(1p) a) The dual problem in standard form becomes:

$$
\begin{array}{llll}
\operatorname{minimize} \\
\text { subject to } & 2 y_{1}+y_{2}+\frac{1}{2} y_{3}+\frac{1}{2} y_{4}, \\
& -y_{3}+y_{4}-s_{1} & =1, \\
& y_{1}+y_{2} & +y_{3} & -y_{4} \\
y_{1}, & y_{2}, & y_{3}, & y_{4}, \\
& s_{1}, & s_{2} \geq 0
\end{array}
$$

$(1.5 \mathrm{p})$ b) Introducing the artificial variable a_{1}, phase I gives the problem

$$
\begin{aligned}
& \begin{array}{llr}
\operatorname{minimize} & & \begin{array}{c}
a_{1}, \\
\text { subject to } \\
\\
\\
\\
\\
\\
\\
y_{1}+y_{1}-y_{2}+y_{3}-y_{4}-y_{4}-s_{1} \\
+a_{1}
\end{array}=1, \\
& =1,
\end{array} \\
& y_{1}, \quad y_{2}, \quad y_{3}, \quad y_{4}, \quad s_{1}, \quad s_{2}, \quad a_{2} \geq 0 .
\end{aligned}
$$

Using the starting basis $\left(a_{1}, y_{2}\right)^{T}$ gives

$$
\boldsymbol{B}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \boldsymbol{N}=\left(\begin{array}{ccccc}
2 & -1 & 1 & -1 & 0 \\
1 & 1 & -1 & 0 & -1
\end{array}\right), \boldsymbol{x}_{B}=\binom{1}{1}, \boldsymbol{c}_{B}=\binom{1}{0}, \boldsymbol{c}_{N}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

The reduced costs, $\overline{\boldsymbol{c}}_{N}^{T}=\boldsymbol{c}_{N}^{T}-\boldsymbol{c}_{B}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}$, for this basis is $\overline{\boldsymbol{c}}_{N}^{T}=\left(\begin{array}{llll}-2, & 1, & -1, & 1\end{array}\right)$, which means that y_{1} enters the basis. $\boldsymbol{B}^{-1} \boldsymbol{N}_{1}=\left(\begin{array}{ll}2 & 1\end{array}\right)^{T}$ thus the minimum ratio test implies that a_{1} leaves.
Thus, we move on to phase II using the basis $\left(y_{1}, y_{2}\right)^{T}$, and

$$
\boldsymbol{B}=\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right), \boldsymbol{N}=\left(\begin{array}{cccc}
-1 & 1 & -1 & 0 \\
1 & -1 & 0 & -1
\end{array}\right), \boldsymbol{x}_{B}=\binom{\frac{1}{2}}{\frac{1}{2}}, \boldsymbol{c}_{B}=\binom{2}{1}, \boldsymbol{c}_{N}=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0 \\
0
\end{array}\right)
$$

The new reduced costs are $\overline{\boldsymbol{c}}_{N}^{T}=\left(0,1, \frac{1}{2}, 1\right)$. Since the reduced costs are all non-negative, the current BFS is optimal. The optimal solution to the dual problem is hence $\left(y_{1}, y_{2}, \quad y_{3}, y_{4}\right)=\left(\frac{1}{2}, \frac{1}{2}, 0,0\right)$ with the objective value of $\frac{3}{2}$.
$(.5 p)$ c) Since the primal variables of our original problem are the dual variables of the dual problem, we get that $\boldsymbol{x}^{T}=\boldsymbol{c}_{B}^{T} \boldsymbol{B}^{-1}=\left(\frac{1}{2}, 1\right)$.

Question 2

(unconstrained optimization)

a) For the steepest descent method:

$$
\boldsymbol{p}=-\nabla f\left(\boldsymbol{x}^{0}\right)=(-4,0)^{T}
$$

b) For Netwon's method:

$$
\boldsymbol{p}=-\left[\nabla^{2} f(\boldsymbol{x})\right]^{-1} \nabla f\left(\boldsymbol{x}^{0}\right)=(-4 / 3,-2 / 3)^{T}
$$

c) For Levemberg-Marquardt method:

$$
\boldsymbol{p}=-\left[\nabla^{2} f(\boldsymbol{x})+\gamma I\right]^{-1} \nabla f\left(\boldsymbol{x}^{0}\right)=(-4 / 9,2 / 9)^{T}
$$

The methods a) and c) always finds descent directions (if γ is chosen large enough)

(3p) Question 3

(Lagrangian relaxation)

Lagrangian relax the first constraint, we can get:

$$
\begin{gathered}
L(\boldsymbol{x}, \mu)=x_{1}-2 x_{2}+\mu\left(2-x_{1}+x_{2}\right)=(1-\mu) x_{1}+(\mu-2) x_{2}+2 \mu . \\
q(\mu)=\min _{\boldsymbol{x}} L(\boldsymbol{x}, \mu)=\left\{\begin{array}{lll}
7 \mu-10, & \mu \in[0,1.5) & x_{1}=0, x_{2}=5 \\
0.5, & \mu=1.5 & x_{1}+x_{2}=5 \\
5-3 \mu & \mu \in(1.5, \infty) & x_{1}=5, x_{2}=0 .
\end{array}\right.
\end{gathered}
$$

So $q^{*}=0.5, \mu^{*}=1.5$. Since the constraints are affine, by strong duality, we can get $z^{*}=q^{*}=0.5$.
For complementary slackness, we need to fulfill $\mu_{i}^{*} g_{i}\left(\boldsymbol{x}^{*}\right)=0$, since $\mu \neq 0$, so $g_{i}\left(\boldsymbol{x}^{*}\right)=0$, which means $2-x_{1}+x_{2}=0$. Combine with $x_{1}+x_{2}=5$, we can get $x^{*}=(3.5,1.5)^{T}$. We can check that $\left(x^{*}, \mu^{*}\right)$ fulfilled all the conditions listed in Theorem 6.8, so x^{*} is the optimal solution for the original problem. The optimal value is 0.5 .

(3p) Question 4

(KKT conditions)
(2p) a) The KKT conditions are

$$
\nabla f(\boldsymbol{x})+\lambda \nabla h(\boldsymbol{x})=\left(\begin{array}{l}
x_{2}+x_{3} \\
x_{1}+x_{3} \\
x_{1}+x_{2}
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

There is only one feasible point fulfilling the KKT conditions:

$$
\overline{\boldsymbol{x}}=(4,4,4)^{T}
$$

with $\gamma=-8$.
$(\mathbf{1 p}) \quad$ b) The problem is undounded. Take $x_{1}=M, x_{2}=M$ and $x_{3}=12-2 M$ which is feasible. The objective value is $x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}=M^{2}+M(12-2 M)+$ $M(12-2 M)=24 M-3 M^{2}$. Let M tend to infinity and you get an undounded solution.

(3p) Question 5

(modelling)
Variables, let

- $x_{i j}$ equal to one if the piece of length l_{i} is cut from the board of length L_{j}, and equal to zero otherwise, $i=1, \ldots, N, j=1, \ldots, M$.
- y_{j} equal to one if the board of length L_{j} is purchased, $j=1, \ldots, M$.
- z_{k} be the number of times a discount has been retrieved for board of type k, $k=1, \ldots, K$.

$$
\begin{array}{rlr}
\operatorname{minimize} & \sum_{j=1}^{M} p_{j} y_{j}-\sum_{k=1}^{K} d_{k} z_{k}, & \\
\text { s.t. } & \sum_{i=1}^{N} l_{i} x_{i j} \leq L_{j} y_{j}, & j=1, \ldots, M \\
& \sum_{j=1}^{M} x_{i j}=1, & \\
& \sum_{j \in S_{k}} y_{j} \geq 4=1, \ldots, N, \\
x_{i j} \in\{0,1\}, & i=1, \ldots, N, & j=1, \ldots, M \\
y_{j} \in\{0,1\}, & j=1, \ldots, M . \\
z_{k} \in \mathbb{Z}^{+}, & j=1, \ldots, K .
\end{array}
$$

Question 6

(true or false)
(1p) a) True. The KKT conditions becomes

$$
\begin{gathered}
\nabla f(\boldsymbol{x})+\sum_{i=1}^{3} \mu_{i} \nabla g_{i}(\boldsymbol{x})=\binom{1}{0}+\mu_{1}\binom{-x_{2}}{2 x_{2}-x_{1}+1}+\mu_{2}\binom{-1}{0}+\mu_{3}\binom{0}{-1}=\binom{0}{0} \\
g_{i}(\boldsymbol{x}) \leq 0, \mu_{i} \geq 0, \mu_{i} g_{i}(\boldsymbol{x})=0, i=1,2,3
\end{gathered}
$$

Where $\mu_{2}>0 \Rightarrow \boldsymbol{x}=\binom{0}{0}$ and $\mu_{2}=0$ leads to an inconsistent system.
(1p) b) True. We check if the gradient cone and tangent cone are equal. The gradient cone is $G\left(\boldsymbol{x}^{*}\right)=\left\{\boldsymbol{p} \in \mathbb{R}^{2} \mid x_{2} \leq 0, x_{1} \geq 0, x_{2} \geq 0\right\}=\left\{\boldsymbol{p} \in \mathrm{R}^{2} \mid x_{1} \geq 0, x_{2}=0\right\}$. For the tangent cone, let $\left\{\boldsymbol{x}^{k}\right\} \subset S$ be any sequence of points converging to \boldsymbol{x}^{*}, thus for any $\varepsilon>0 \exists K$ such that $\boldsymbol{x}_{1}^{k} \leq \varepsilon, \forall k \geq K$. Assuming that $\boldsymbol{x}_{2}^{k}>0$ leads to a contradiction that $\boldsymbol{x}_{1}^{k}>1$ thus $\boldsymbol{x}_{2}^{k}=0, \forall k \geq K$. We thus get that $G\left(\boldsymbol{x}^{*}\right)=T_{S}\left(\boldsymbol{x}^{*}\right)$, i.e., Abadie's CQ holds.
$\mathbf{(1 p)}$ c) False. Since any sequence of converging points must satisfy $\boldsymbol{x}_{2}^{k}=0$, we have that there exist no sequence of strict interior points that converge to \boldsymbol{x}^{*}.

(3p) Question 7

(convergence of an exterior penalty method)
See Theorem 13.3 in the course book.

