Lecture 9

Linear programming (II) - simplex method

Emil Gustavsson

Fraunhofer-Chalmers Centre
November 23, 2017

- Consider LP in standard form

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \boldsymbol{c}^{\top} \boldsymbol{x}, \\
\text { subject to } & A x=b, \\
& x \geq \mathbf{0}
\end{aligned}
$$

- $A \in \mathbb{R}^{m \times n}$ is a given matrix, and b is a given vector,
- $\operatorname{rank}(A)=m, b \geq \mathbf{0}$.

Basic feasible solution (BFS)

Standard form polyhedron $P=\{x \mid A x=b, x \geq \mathbf{0}\}, A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=m$

A point \bar{x} is a basic feasible solution (BFS) if it is a basic solution that is feasible. That is, \bar{x} is a BFS if

- $\bar{x} \geq \mathbf{0}$,
- $\boldsymbol{A} \bar{x}=\boldsymbol{b}$, and
- the columns of \boldsymbol{A} corresponding to non-zero components of $\overline{\boldsymbol{x}}$ are linearly independent

Basic and non-basic variables

For any BFS $\overline{\boldsymbol{x}}$, we can reorder the variables according to

$$
\overline{\boldsymbol{x}}=\binom{\boldsymbol{x}_{B}}{\boldsymbol{x}_{N}}, \quad \boldsymbol{A}=(\boldsymbol{B}, \boldsymbol{N}), \quad \boldsymbol{c}=\binom{\boldsymbol{c}_{B}}{\boldsymbol{c}_{N}}
$$

such that

- $B \in \mathbb{R}^{m \times m}, \operatorname{rank}(B)=m$.
- $x_{N}=\mathbf{0}^{n-m}$.
- $x_{B}=B^{-1} b$ (as a consequence of $A \bar{x}=B x_{B}+N x_{N}=b$).

We call

- x_{B} the basic variables. If $x_{B} \ngtr \mathbf{0}$ then BFS \bar{x} is called degenerate.
- x_{N} the non-basic variables.
- B the basis matrix. Each BFS is associated with at least one basis.

Summary from last time

So far, we have seen

- All linear programs can be written in standard form.
- Extreme point $=$ basic feasible solution (BFS).
- If a standard form LP has finite optimal solution, then it has an optimal BFS.

We solve standard form LP by searching only the BFS's. This is the main characteristic of the simplex algorithm.

Graphic illustration

Start at a BFS, in this case $(0,0)^{T}$.

Graphic illustration

Find a feasible descent direction towards an adjacent BFS.

Graphic illustration

Move along the search direction until a new BFS is found.

Graphic illustration

Find a new feasible descent direction at the current BFS.

Graphic illustration

Move along the search direction.

Graphic illustration

Simplex method

If no feasible descent directions exist, the current BFS is declared optimal.

To develop the simplex algorithm, we translate geometric picture into algebraic calculations. We need to...

1. Determine whether or not current BFS is optimal.
2. Find a feasible descent direction at any BFS.
3. Determine the step-size to move along a feasible descent direction.
4. Update iterate, and go back to step 1.

We will discuss in this order: $2,3,4,1$.

Search direction

- Simplex method updates iterate according to: $\bar{x} \leftarrow \bar{x}+\theta d$
- d is search direction, to be discussed
- $\theta \geq 0$ is step-size, to be discussed
- At $\mathrm{BFS} \bar{x}=\binom{x_{B}}{x_{N}}$ with $A=(B, N)$; partition search $\operatorname{dir} d=\binom{d_{B}}{d_{N}}$.
- In simplex method, we update one non-basic variable at a time

$$
d_{N}=e_{j}, \quad e_{j} \text { is the } j \text {-th unit vector in } \mathbb{R}^{n-m} \text { for } j=1, \ldots, n-m
$$

- d_{B} is not arbitrary -it is decided by feasibility of $\bar{x}+\theta d$:

$$
A(\bar{x}+\theta d)=b \Longrightarrow A d=0 \xlongequal{A=(B, N)} d_{B}=-B^{-1} N e_{j}=-B^{-1} N_{j}
$$

We consider search directions: $d_{j}=\binom{-B^{-1} N_{j}}{e_{j}}, j=1, \ldots, n-m$

Search direction, numerical example

$$
B=\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right), N=\left(\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right), B^{-1}=\left(\begin{array}{cc}
0 & 1 / 2 \\
1 & -1 / 2
\end{array}\right), \quad N_{1}=\binom{1}{3}, \quad N_{2}=\binom{1}{4}
$$

First search direction:

$$
\left.d_{1}=\binom{-B^{-1} N_{1}}{e_{1}}=\left(\begin{array}{cc}
0 & -1 / 2 \\
-1 & 1 / 2
\end{array}\right)\binom{1}{3}\right)=\left(\begin{array}{c}
-3 / 2 \\
1 / 2 \\
1 \\
0
\end{array}\right)
$$

Second search direction:

$$
\left.d_{2}=\binom{-B^{-1} N_{2}}{e_{2}}=\left(\begin{array}{cc}
0 & -1 / 2 \\
-1 & 1 / 2 \\
& \binom{0}{1}
\end{array}\right)\binom{1}{4}\right)=\left(\begin{array}{c}
-2 \\
1 \\
0 \\
1
\end{array}\right)
$$

Reduced costs

- From \bar{x} to $\bar{x}+\theta d_{j}$, objective value change is

$$
c^{T}\left(\bar{x}+\theta d_{j}-\bar{x}\right)=\theta \cdot c^{T} d_{j}=\theta \cdot\left(c_{B}^{T}, c_{N}^{T}\right)\binom{-B^{-1} N_{j}}{e_{j}}:=\theta \cdot\left(\tilde{c}_{N}\right)_{j}
$$

$\left(\tilde{c}_{N}\right)_{j}:=\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right)_{j}$ is the reduced cost for non-basic var $\left(x_{N}\right)_{j}$ $\tilde{c}_{N}:=\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right)^{T}$ are reduced costs for all non-basic variables

- If $\left(\tilde{c}_{N}\right)_{j} \geq 0, d_{j}$ does not decrease objective value.
- If $\left(\tilde{c}_{N}\right)_{j}<0$, consider update $\bar{x}+\theta d_{j}$ with θ as large as possible since objective value change is $\theta \cdot\left(\tilde{c}_{N}\right)_{j}<0$ as long as $\theta>0$.

Reduced costs, numerical example

$$
B=\left(\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right), N=\left(\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right), B^{-1}=\left(\begin{array}{cc}
0 & 1 / 2 \\
1 & -1 / 2
\end{array}\right), c^{T}=(\underbrace{1,-1}_{c_{B}^{\top}}, \underbrace{3,0}_{c_{N}^{T}})
$$

Reduced costs (for non-basic variables) are

$$
\begin{aligned}
\tilde{c}_{N}^{T}=\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right) & =(3,0)-(1,-1)\left(\begin{array}{cc}
0 & 1 / 2 \\
1 & -1 / 2
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right) \\
& =(1,-3)
\end{aligned}
$$

- Search direction d_{1} does not decrease objective value;
- Search direction d_{2} may decrease objective value.

Reduced cost $\left(\tilde{c}_{N}\right)_{j}=\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right)_{j}=c^{T} d_{j}$

- $\left(\tilde{c}_{N}\right)_{j}$ is inner product of cost vector c and direction d_{j}.
- $\left(\tilde{c}_{N}\right)_{j}<0 \Longrightarrow d_{j}$ has positive projection along $-c$.

Question: Iterate moves along d_{j} with $\left(\tilde{c}_{N}\right)_{j}<0$, but how far?

Update along search direction

At BFS $\bar{x}=\left(x_{B}^{T}, \mathbf{0}\right)^{T}$, negative reduced cost for $\left(x_{N}\right)_{j}\left(\right.$ i.e., $\left.\left(\tilde{c}_{N}\right)_{j}<0\right)$.

- Iterate update

$$
\bar{x}+\theta d_{j}=\binom{x_{B}}{\mathbf{0}}+\theta\binom{d_{B}}{d_{N}}=\binom{x_{B}-\theta B^{-1} N_{j}}{\theta e_{j}}, \theta \geq 0
$$

- If $B^{-1} N_{j} \leq 0$ then $\bar{x}+\theta d_{j} \geq 0$ for all $\theta \geq 0$. Let $\theta \rightarrow \infty$, and we conclude that objective value is unbounded from below.
- If $B^{-1} N_{j} \not \leq 0$ some entry of $x_{B}-\theta B^{-1} N_{j}$ becomes 0 as θ increases.

$$
\theta \leq \theta^{*}=\min _{k:\left(B^{-1} N_{j}\right)_{k}>0} \frac{\left(x_{B}\right)_{k}}{\left(B^{-1} N_{j}\right)_{k}} \text {, and let } i \text { be s.t. } \theta^{*}=\frac{\left(x_{B}\right)_{i}}{\left(B^{-1} N_{j}\right)_{i}} .
$$

- Thus, we arrive at new iterate $\bar{x}+\theta^{*} d_{j}$ with $\left(x_{B}-\theta^{*} B^{-1} N_{j}\right)_{i}=0$. Note: θ^{*} can be zero if \bar{x} is degenerate!

Example, continued (1)

$\operatorname{BFS} \bar{x}=(1,1,0,0), B=\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right), N=\left(\begin{array}{ll}1 & 1 \\ 3 & 4\end{array}\right), c_{B}=\binom{1}{-1}, c_{N}=\binom{3}{0}$
Reduced costs:
$\tilde{c}_{N}^{T}=\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right)=(3,0)-(1,-1)\left(\begin{array}{cc}0 & 1 / 2 \\ 1 & -1 / 2\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 3 & 4\end{array}\right)=(1,-3)$
Search direction $d_{2}=(-2,1,0,1)^{T}$ may reduce objective value.
For d_{2}, updated iterate $\bar{x}+\theta d_{2}$ is
$\left.\binom{x_{B}-\theta B^{-1} N_{2}}{\theta e_{2}}=\binom{1}{1}-\theta\left(\begin{array}{cc}0 & 1 / 2 \\ 1 & -1 / 2\end{array}\right)\binom{1}{4}\right)=\binom{\binom{1}{1}-\theta\binom{2}{-1}}{\theta\binom{0}{1}}$
\Longrightarrow max step-size $\theta^{*}=\frac{\left(x_{B}\right)_{1}}{\left(B^{-1} N_{2}\right)_{1}}=\frac{1}{2}$

- Original BFS

$$
\bar{x}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)
$$

- Updated iterate with θ^{*}

$$
\bar{x}+\theta^{*} d_{2}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)+(1 / 2)\left(\begin{array}{c}
-2 \\
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
3 / 2 \\
0 \\
\mathbf{1} / \mathbf{2}
\end{array}\right)
$$

- First basic variable turns 0 , second non-basic variable turns positive

Iterate update, in picture

Updating $\bar{x}+\theta d_{j}$ either tells us objective value is unbounded (left picture), or a possibly new point $\bar{x}+\theta^{*} d_{j}$ is reached (right picture).

Question: What is $\bar{x}+\theta^{*} d_{j}$? Is it a BFS? How is it related to \bar{x} ?

Change of basis

From \bar{x} to $\bar{x}+\theta^{*} d_{j}$, the i-th basic variable $\left(x_{B}\right)_{i}$ becomes zero, whereas j-th non-basic variable $\left(x_{N}\right)_{j}$ (i.e., the $(m+j)$-th variable) becomes θ^{*} :

$$
\bar{x}=\left(\begin{array}{c}
\vdots \\
\left(x_{B}\right)_{i} \\
\vdots \\
\mathbf{0}
\end{array}\right) \quad \bar{x}+\theta^{*} d_{j}=\left(\begin{array}{c}
\vdots \\
0 \\
\vdots \\
\theta^{*} e_{j}
\end{array}\right)
$$

- Can show the columns $a_{1}, \ldots, a_{i-1}, a_{m+j}, a_{i+1}, \ldots, a_{m}$ are linearly independent (forming a new basis), and $\bar{x}+\theta^{*} d_{j}$ is indeed a BFS.
- We say $\left(x_{B}\right)_{i}$ leaves the basis to become non-basic variable, whereas $\left(x_{N}\right)_{j}$ enters the basis to become basic variable.
- Prop 8.13 in text shows \bar{x} and $\bar{x}+\theta^{*} d_{j}$ are in fact adjacent BFS's.

We have seen so far...

- At a BFS with $A=(B, N)$, compute search directions $d_{j}=\binom{-B^{-1} N_{j}}{e_{j}}, j=1, \ldots, n-m$.
- Evaluate the reduced costs $\tilde{c}_{N}:=\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right)^{T}$ to see which directions are profitable (which non-basic variable to enter basis).
- The consequence of updating $\bar{x}+\theta d_{j}$ for some d_{j} with $\left(\tilde{c}_{N}\right)_{j}<0-$ either objective value is unbounded or an adjacent BFS is reached.

But...

- What if $\tilde{c}_{N} \geq \mathbf{0}$, as all our (considered) search directions are not profitable?

Nonnegative reduced costs imply optimality:

Theorem

Let \bar{x} be a BFS associated with basis matrix B, and let $\tilde{c}_{N}=\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right)^{T}$ be the corresponding vector of reduced costs for the non-basic variables. If $\tilde{c}_{N} \geq 0$, then \bar{x} is optimal.

Proof: All feasible directions d at $\bar{x}=\left(x_{B}^{T}, x_{N}^{T}\right)^{T}$ are of the form

$$
d=\binom{-B^{-1} N d_{N}}{d_{N}} \Longrightarrow c^{T} d=\underbrace{\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right)}_{\tilde{c}_{N}^{T}} d_{N}
$$

$\tilde{c}_{N} \geq 0$ and $d_{N} \geq 0$ (i.e., feasible direction) implies $c^{T} d \geq 0$.

1. Assume we have an initial BFS $\bar{x}=\left(x_{B}^{T}, x_{N}^{T}\right)^{T}$ with $A=(B, N)$.
2. Compute reduced costs $\tilde{c}_{N}=\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right)^{T}$.

- If $\tilde{c}_{N} \geq \mathbf{0}$, then current BFS is optimal, terminate.
- If $\tilde{c}_{N} \nsupseteq \mathbf{0}$, choose some non-basic variable index j^{*} s.t. $\left(\tilde{c}_{N}\right)_{j}^{*}<0$ as incoming variable.

3. Compute $B^{-1} N_{j}$.

- If $B^{-1} N_{j} \leq 0$, then objective value is $-\infty$, terminate.
- If $B^{-1} N_{j} \not \leq 0$, compute $\theta^{*}=\min _{k:\left(B^{-1} N_{j}\right)_{k}>0} \frac{\left(x_{B}\right)_{k}}{\left(B^{-1} N_{j}\right)_{k}}$ and let i^{*} be an index solving that problem. Let i^{*} be the outgoing variable

4. Update basis. Replace variable j^{*} in the basis with variable i^{*}. Go to step 1.

Finite termination

Simplex algorithm terminates in finite number of steps if all BFS's are non-degenerate.

> Theorem
> If feasible set is nonempty and every BFS is non-degenerate, then the simplex algorithm terminates in finite number of iterations. At termination, two possibilities are allowed:
> (a) an optimal basis B found with the associated optimal BFS.
> (b) a direction d found s.t. $A d=0, d \geq 0$ and $c^{\top} d<0$, thus optimal objective value is $-\infty$.

Simplex algorithm + cycle-breaking rule (e.g. Bland's rule) \Longrightarrow finite termination even with degenerate BFS.

- The simplex algorithm works very well in practice.
- The simplex algorithm can, in the worst case, visits all $\binom{n}{m} \mathrm{BFS}$'s before termination - worst-case computation effort is exponential.
- Polynomial-time algorithms are available (e.g., ellipsoid algorithm, interior point algorithms). See coming lectures.
- So far, we assume we know an initial BFS to start simplex method. Q: How do we find an initial BFS?
A: We are lucky if the LP is of the special form

$$
\begin{aligned}
\underset{\boldsymbol{x}, \boldsymbol{y}}{\operatorname{minimize}} \quad c_{x}^{T} x+c_{y}^{T} y, & \\
\text { subject to } \quad \boldsymbol{A} \boldsymbol{x}+\boldsymbol{1}^{m} y & =\boldsymbol{b}, \\
\boldsymbol{x} & \geq \mathbf{0}^{n}, \\
\boldsymbol{y} & \geq \mathbf{0}^{m} .
\end{aligned}
$$

- We can let $\left(\boldsymbol{x}=\mathbf{0}^{n}, \boldsymbol{y}=\boldsymbol{b}\right)^{T}$ be the initial BFS with initial basis \boldsymbol{I}^{m}.

Q: What if our LP is not of the special form?
A: We create one by considering the Phase-I problem.

Phase-I problem for initial BFS

Phase-I problem introduces artificial variables a_{i} in every row.

$$
\begin{aligned}
& w^{*}=\operatorname{minimize} w=\left(\mathbf{1}^{m}\right)^{T} \boldsymbol{a} \\
& \text { subject to } \quad \boldsymbol{A} \boldsymbol{x}+\boldsymbol{I}^{m} \boldsymbol{a}=\boldsymbol{b} \\
& \boldsymbol{x} \quad \geq \mathbf{0}^{n} \\
& \boldsymbol{a} \geq \mathbf{0}^{m}
\end{aligned}
$$

- Why is this easier? Because $\boldsymbol{a}=\boldsymbol{b}, \boldsymbol{x}=\mathbf{0}^{n}$ is an initial BFS.
- $w^{*}=0 \Longrightarrow$ Optimal solution $\boldsymbol{a}^{*}=\mathbf{0}^{m}$ \boldsymbol{x}^{*} BFS in the original problem
- $w^{*}>0 \Longrightarrow$ There is no BFS to the original problem The original problem is infeasible

