TMA947/MMG621 NONLINEAR OPTIMISATION

Date: 20-08-18
Examiner: Ann-Brith Strömberg

Note: the solutions presented here are brief in relation to the requirements on your answers, in particular regarding your motivations.

Question 1

(Simplex method)
$(0.5 p)$ a) The problem on standard form is:

$$
\begin{aligned}
& \operatorname{minimize}-x_{1}+x_{2} \\
& \text { subject to } 2 x_{1}+x_{2}-s_{1}=2 \\
& x_{1}-x_{2}+s_{2}=2 \\
& x_{1}, \quad x_{2}, \quad s_{1}, \quad s_{2} \geq 0
\end{aligned}
$$

$(1.5 p)$ b) Utilizing that s_{2} can be for the initial BFS, the phase I problem is

$$
\begin{array}{ll}
\operatorname{minimize} & +a_{1} \\
\text { subject to } 2 x_{1}+x_{2}-s_{1} & +a_{1}
\end{array}=2 \begin{aligned}
& =2 \\
& x_{1}-x_{2}+s_{2} \\
& x_{1}, \quad x_{2}, \quad s_{1}, \quad s_{2}, \quad a_{1}
\end{aligned}=0
$$

Our basic variables are $\left(a_{1}, s_{2}\right)$ and our non-basic are $\left(x_{1}, x_{2}, s_{1}\right)$, we get

$$
B=B^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], N=\left[\begin{array}{ccc}
2 & 1 & -1 \\
1 & -1 & 0
\end{array}\right], c_{B}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], c_{N}=\mathbf{0}, x_{B}=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

The reduced costs for the non-basic variables are

$$
\bar{c}_{N}^{T}=c_{N}^{T}-\bar{c}_{B}^{T} B^{-1} N=-\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & -1 \\
1 & -1 & 0
\end{array}\right]=\left[\begin{array}{lll}
-2 & -1 & 1
\end{array}\right],
$$

by the minimum reduced cost rule, x_{1} enter the basis. We have that $B^{-1} N_{1}=$ $\left[\begin{array}{l}2 \\ 1\end{array}\right]$, the minimum ratio test is thus

$$
\underset{i \mid\left(B^{-1} N_{1}\right)_{i}>0}{\operatorname{argmin}} \frac{\left(x_{B}\right)_{i}}{\left(B^{-1} N_{1}\right)_{i}}=\underset{i \mid\left(B^{-1} N_{1}\right)_{i}>0}{\operatorname{argmin}}\left[\begin{array}{ll}
\frac{2}{2} & \frac{2}{1}
\end{array}\right]
$$

And thus a_{1} leaves the basis and Phase I is complete.
Our basic variables are $\left(x_{1}, s_{2}\right)$ and our non-basic are $\left(x_{2}, s_{1}\right)$, we get

$$
B=\left[\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right], B^{-1}=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
-\frac{1}{2} & 1
\end{array}\right], N=\left[\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right], c_{B}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], c_{N}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], x_{B}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The reduced costs for the non-basic variables are

$$
\bar{c}_{N}^{T}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]-\underbrace{\left[\begin{array}{ll}
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
-\frac{1}{2} & 1
\end{array}\right]}_{=\left[\begin{array}{ll}
-\frac{1}{2} & 0
\end{array}\right]}\left[\begin{array}{cc}
1 & -1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{ll}
\frac{3}{2} & -\frac{1}{2}
\end{array}\right],
$$

by the minimum reduced cost rule, s_{1} enter the basis. We have that $B^{-1} N_{2}=$ $\left[\begin{array}{c}-\frac{1}{2} \\ \frac{1}{2}\end{array}\right]$, the only positive denominator in the minimum ratio test corresponds to s_{2}, which leaves the basis.

Our basic variables are $\left(x_{1}, s_{1}\right)$ and our non-basic are $\left(x_{2}, s_{2}\right)$, we get

$$
B=\left[\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right], B^{-1}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right], N=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right], c_{B}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], c_{N}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], x_{B}=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

The reduced costs for the non-basic variables are

$$
\bar{c}_{N}^{T}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]-\underbrace{\left[\begin{array}{ll}
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right]}_{=\left[\begin{array}{ll}
0 & -1
\end{array}\right]}\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \geq 0
$$

since the reduced costs are all non-negative, we conclude that the current basis is optimal, and the values of the original variables are $\boldsymbol{x}=(2,0)$.
$\mathbf{(1 p)}$ c) Since the reduced costs of s_{2} is strictly positive we deduce that $s_{2}^{*}=0$. We let x_{2} enter the basis and do the minimum ratio test. Note that $B^{-1} N_{1}=\left[\begin{array}{l}-1 \\ -3\end{array}\right]$ imply that the entire ray

$$
x_{B}=B^{-1} b-\gamma B^{-1} N_{1}, x_{2}=\gamma, s_{2}=0, \gamma \geq 0
$$

is feasible. Since the reduced costs of x_{2} is zero we yield that the ray is a set of optimal solutions. Returning to the original variables we get that $\boldsymbol{x}=(2+\gamma, \gamma)$ is an optimal solution for each $\gamma \geq 0$. Noting that this is precisely the set for which $s_{2}=0$ and thus it equals the set of optimal solutions.

Question 2

(Representation theorem)

(2p) a) Let $x_{i}, i \in I$ be the extreme points and $d_{j}, j \in J$ be the extreme directions of P, respectively. Then we have by the representation theorem that

$$
P=\left\{\sum_{i \in I} \lambda_{i} x_{i}+\sum_{j \in J} \mu_{j} d_{j} \mid \sum_{i \in I} \lambda_{i}=1, \boldsymbol{\lambda}, \boldsymbol{\mu} \geq 0\right\} .
$$

Now, consider the optimal solution $x^{*} \in P$ that exists by assumption, i..e, $f\left(x^{*}\right) \leq$ $f(x), x \in P$.
First we will show that $\mu^{*}=0$ or that such a choice exists. Let $j \in J$ be such that $\mu_{j}^{*}>0$ and consider the line segment between $\mu_{j}^{1}=0, \mu_{j}^{2}=2 \mu_{j}^{*}$, and let x^{1}, x^{2} be the corresponding points, by the concavity of f we have that $f\left(x^{1}\right) / 2+f\left(x^{2}\right) / 2 \leq f\left(x^{*}\right)$. Hence, by the optimality of x^{*} we yield that $f\left(x^{1}\right)=$ $f\left(x^{2}\right)=f\left(x^{*}\right)$, showing that $\mu_{j}=0$ is also a optimal choice.
Similarly assume that x^{*} is an optimal solution but not an extreme point. By the concavity of f we have that

$$
f\left(x^{*}\right)=f\left(\sum_{j \in I} \lambda_{i} x_{i}\right) \geq \sum_{j \in I} \lambda_{i} f\left(x_{i}\right)
$$

However, since $f\left(x_{i}\right) \geq f\left(x^{*}\right)$, we get that $\lambda_{i}=0$ if $f\left(x_{i}\right)>f\left(x^{*}\right)$ and for $\lambda_{i}>0$, $f\left(x^{i}\right)=f\left(x^{*}\right)$. Thus, x^{*} is a convex combination of optimal extreme points.
$(1 \mathbf{p}) \quad$ b) Consider the counter-example, $f(x)=x^{2}, P=[-1,1]$, the extreme-points are clearly non-optimal.

(3p) Question 3

(Convexity)
$(1.5 p)$ a) Consider $\bar{x}=\lambda x^{1}+(1-\lambda) x^{2}$.

$$
\begin{aligned}
f(\bar{x}) & =\max \left\{f_{1}(\bar{x}), f_{2}(\bar{x}), \ldots, f_{k}(\bar{x})\right\} \\
& \text { since } f_{i}(x) \text { convex } \\
& \leq \max \left\{\lambda f_{1}\left(x^{1}\right)+(1-\lambda) f_{1}\left(x^{2}\right), \ldots, \lambda f_{k}\left(x^{1}\right)+(1-\lambda) f_{k}\left(x^{2}\right)\right\} \\
& \leq \lambda \max \left\{f_{1}\left(x^{1}\right), \ldots, f_{k}\left(x^{1}\right)\right\}+(1-\lambda) \max \left\{f_{1}\left(x^{2}\right), \ldots, f_{k}\left(x^{2}\right)\right\} \\
& =\lambda f\left(x^{1}\right)+(1-\lambda) f\left(x^{2}\right)
\end{aligned}
$$

By the definition of a convex function, f is convex.
$(1.5 p)$ b) Let $g_{1}, g_{2}, \ldots, g_{k}: R^{n} \rightarrow R$ be concave functions. Consider the function g defined by $g(\mathbf{x})=\min \left\{g_{1}(\mathbf{x}), g_{2}(\mathbf{x}), \ldots, g_{k}(\mathbf{x})\right\} . g$ is a concave function.
Proof: Set $\bar{f}_{1}=-g_{1}, \ldots, \bar{f}_{k}=-g_{k}$. We get $\bar{f}=-g$. Since $g_{1}, g_{2}, \ldots, g_{k}$ are concave functions, $f_{1}, f_{2}, \ldots, f_{k}$ are convex functions. From above, we know f is convex, so g is concave.

(3p) Question 4

(Linear programming) Use Strong duality to realize that the dual problem to (1) also must have an optimal solution, and hence, a feasible solution.

This feasibility does not change if \boldsymbol{b} is perturbed to $\boldsymbol{b}+\delta \boldsymbol{b}$, independently of $\delta \boldsymbol{b}$. Which, by using Weak duality, implies that the perturbed problem cannot be unbounded.

(3p) Question 5

(modeling) Using the variables and parameters introduced in the question but extending to also include v_{0} and z_{0}, we yield that the problem is to

$$
\begin{array}{rlrl}
\operatorname{minimize} & l & \\
\text { subject to } & \sum_{k=1}^{K} f_{k} v_{k} & & \\
z_{k}-z_{k-1} & =l v_{k}, & k=1, \ldots, K \\
\frac{m}{l}\left(v_{k}-v_{k-1}\right) & =f_{k}-m g, & & k=1, \ldots, K \\
f_{k} & \leq b, & & k=1, \ldots, K \\
f_{k}, z_{k} & \geq 0, & k=1, \ldots, K \\
z_{K} & =\bar{z} & & \\
v_{0}=z_{0} & =0 & & \tag{7}
\end{array}
$$

Question 6

(true or false)
(1p) a) False. The Simplex method is used for linear optimization problems.
$(1 p) \quad$ b) True. See theorem regarding sufficiency of the KKT conditions for convex optimization problems in the textbook.
(1p) c) True. See theorem in the textbook regarding subgradients.

(3p) Question 7

(Exterior penalty method)
Using the quadratic penalty function, the penalty problem is given as follows:

$$
\begin{gathered}
\operatorname{minimize} \quad F_{\nu}(\boldsymbol{x})=2 e^{x_{1}}+3 x_{1}^{2}+2 x_{1} x_{2}+4 x_{2}^{2}+\nu\left[3 x_{1}+2 x_{2}-6\right]^{2} \\
\nabla F_{\nu}(\boldsymbol{x})=\left[\begin{array}{c}
2 e^{x_{1}}+6 x_{1}+2 x_{2}+6 \nu\left[3 x_{1}+2 x_{2}-6\right] \\
2 x_{1}+8 x_{2}+4 \nu\left[3 x_{1}+2 x_{2}-6\right]
\end{array}\right]
\end{gathered}
$$

Since the penalty parameter $\nu=10$, we get

$$
\begin{gathered}
F_{\nu}(\boldsymbol{x})=2 e^{x_{1}}+3 x_{1}^{2}+2 x_{1} x_{2}+4 x_{2}^{2}+10\left[3 x_{1}+2 x_{2}-6\right]^{2} \\
\nabla F_{\nu}(\boldsymbol{x})=\left[\begin{array}{c}
2 e^{x_{1}}+186 x_{1}+122 x_{2}-360 \\
122 x_{1}+88 x_{2}-240
\end{array}\right]
\end{gathered}
$$

Apply steepest descent method with exact line search,
$\boldsymbol{x}^{1}=(1,1)^{T}, \nabla F_{\nu}(\boldsymbol{x})=\left[\begin{array}{c}2 e-52 \\ -30\end{array}\right], d^{1}=-\nabla F_{\nu}(\boldsymbol{x})=\left[\begin{array}{c}52-2 e \\ 30\end{array}\right]$.
Solve the minimization problem $\min F_{\nu}\left(\boldsymbol{x}^{1}+\lambda d^{1}\right)$, we get the step length $\lambda^{*}=0.004$, so

$$
\boldsymbol{x}^{2}=\boldsymbol{x}^{1}+\lambda^{*} d^{1}=[1.86,1.12]^{T}
$$

