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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We introduce slack variables(2p)
s1 and s2. Consider the following linear program:

minimize z = 2x1 − x2,

subject to x1 + x2 − s1 = 1,

x1 − 2x2 + s2 = 1,

x1, x2, s1, s2 ≥ 0.

By introducing an artificial variable a, we get the Phase I problem to

minimize w = a,

subject to x1 − 2x2 + s2 = 1,

x1 + x2 − s1 + a = 1,

x1, x2, s1, s2, a ≥ 0.

The starting basis is (s2, a)T. Calculating the reduced costs for the non-
basic variables x1, x2, and s1 we obtain c̃N = (−1,−1, 1)T, meaning that
x1 enters the basis. From the minimum ratio test, we get that a leaves the
basis.

Updating the basis we now have (s2, x1)
T in the basis meaning that w∗ = 0

and the basis found is corresponding to a basic feasible solution of the
original problem in the standard form, i.e., the Phase II problem.

Calculating the reduced costs, we obtain c̃N = (−3, 2)T. meaning that x2

enters the basis. From the minimum ratio test we get that x1 leaves the
basis.

Updating the basis we now have (s2, x2)
T in the basis. Calculating the

reduced costs, we obtain c̃N = (3,−1)T, meaning that s1 enters basis.
From the minimum ratio test we get that B−1Ns1

= (−1, 0)T ≤ 0, meaning
that the problem is unbounded.

b) The primal problem is unbounded, implying that cTx∗ = −∞. From weak(1p)
duality we have that bTy ≤ cTx∗ for all feasible y, meaning that the dual
problem is infeasible.
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Question 2(3p)

(linear inequalities)

Consider the linear program to

minimize
x

−cTx,

subject to Ax ≤ b,
(1)

and its standard form equivalence

minimize
x+,x−,s

−cTx+ + cTx−,

subject to Ax+ − Ax− + s = b,

x+ ≥ 0, x− ≥ 0, s ≥ 0.

(2)

The dual of (2) is to

maximize
p

bTp,

subject to ATp ≤ −c,

−ATp ≤ c,

p ≤ 0,

, (3)

and (3) is equivalent to

maximize
y

−bTy,

subject to ATy = c,

y ≥ 0.

(4)

If statement (a) holds, then the objective of (1) and (2) is bounded from below
by −d. Hence, there exists an optimal solution to the dual of (2), which is
(3). Consequently, by strong duality (cf. Theorem 10.6 in the text) the optimal
objective values of (3) and (4) are equal to that of (2), which is bounded from
below by −d. This implies that, for (4), there exists a vector y ≥ 0 such that
ATy = c and −bTy ≥ −d (i.e., bTy ≤ d). This statement is the same as (b).

Conversely, if (b) holds then (3) has at least one feasible solution with an objective
value bounded from below by −d. Hence, by weak duality (cf. Theorem 10.4 in
the text) every x feasible to (1) (i.e., Ax ≤ b) must satisfy −cTx ≥ −d. This
implies statement (a).
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Question 3(3p)

(the Frank–Wolfe algorithm)

Figure 1 shows the feasible set of the problem (i.e., the polyhedron with thick
black boundary lines) and some contours of the objective function. Th e optimal
solution is denoted by x⋆ (i.e., the red dot in the figure). x(k) for k = 0, 1, 2
denotes iterates visited by the Frank-Wolfe algorithm.
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Figure 1: Illustration of the Frank-Wolfe algorithm. The feasible set is a polyhe
dron with boundary denoted by the thick black lines. Some contours of the object
ive function are shown. The optimal solution x⋆ = (2.5, 0.5). The dotted lines
show the Frank-Wolfe iterations, with x(k), k = 0, 1, 2 denoting the i terates.

The details of the algorithm steps are as follows. Let X denote the feasible s
et. Let f(x1, x2) denote the objective function. For any given iterate x(k) =

(x
(k)
1 , x

(k)
2 ). The objective function gradient vector is

∇f(x
(k)
1 , x

(k)
2 ) =

[

12 4
4 18

] [

x
(k)
1

x
(k)
2

]

−

[

52
34

]

.

The search direction problem is

minimize
x∈X

∇f(x
(k)
1 , x

(k)
2 )

T
x. (1)
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If min
x∈X

∇f(x
(k)
1 , x

(k)
2 )

T
x ≥ ∇f(x

(k)
1 , x

(k)
2 )

T
x(k), then by optimality conditions (for

minimi zing a convex function over a convex feasible set) x(k) is optimal. Otherwi
se, let y(k) denote an optimal solution to the search direction problem. Th en the
exact minimization line search problem can be expressed into

minimize
α∈[0,1]

f(αx(k) + (1 − α)y(k)) ⇐⇒ minimize
α∈[0,1]

gα2 + hα,

where

g =
(

x(k) − y(k)
)T
[

6 2
2 9

]

(

x(k) − y(k)
)

h =
(

x(k) − y(k)
)T
([

12 4
4 18

]

y(k) −

[

52
34

])

.

(2)

The minimizing value of α, denoted by α(k), can be found using the optimality
condition to be

α(k) =



















0 if − h
2g

< 0

− h
2g

if 0 ≤ − h
2g

≤ 1

1 if − h
2g

> 1

. (3)

The iterate update formula is

x(k+1) = α(k)x(k) + (1 − α(k))y(k). (4)

Now we begin applying the Frank-Wolfe algorithm. At the first iteration with
x(0) = (2.5, 0), the objective function gradient is

∇f(x
(0)
1 , x

(0)
2 ) =

[

12 4
4 18

] [

x
(0)
1

x
(0)
2

]

−

[

52
34

]

=

[

12 4
4 18

] [

2.5
0

]

−

[

52
34

]

=

[

−22
−24

]

.

To solve the search direction problem in (1), it is sufficient to restrict the feasible
set to the set of all extreme points. That is,

minimize
x∈V

∇f(x
(0)
1 , x

(0)
2 )

T
x, (5)

where V is the set of all extreme points defined as

V =
{

(0, 0), (0, 2), (2, 1), (2.5, 0.5), (2.5, 0)
}

.

This amounts to finding the minimum among five numbers: 0, −48, −68, −67,
−55. The result is that y(0) = (2, 1). Applying the formula in (??) yields

g =

([

2.5
0

]

−

[

2
1

])T [

6 2
2 9

]([

2.5
0

]

−

[

2
1

])

= 8.5

h =

([

2.5
0

]

−

[

2
1

])T ([

12 4
4 18

] [

2
1

]

−

[

52
34

])

= −4
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According to (3), α(0) = 4
17

. Hence, by (4)

x(1) =
4

17
(
5

2
, 0) + (1 −

4

17
)(2, 1) = (

36

17
,
13

17
) ≈ (2.12, 0.76).

This is shown in Figure 1.

At the next iteration with x(1) = (36
17

, 13
17

), we have

∇f(x
(1)
1 , x

(1)
2 ) =

[

12 4
4 18

] [

x
(1)
1

x
(1)
2

]

−

[

52
34

]

=
1

17

[

−400
−200

]

≈

[

−23.53
−11.76

]

.

Solving (5) amounts to finding the minimum of 0, −4, −10, −11, −10. This leads
to y(1) = (2.5, 0.5). Applying (2) leads to

g = 1275
1156

≈ 1.10

h = 125
34

≈ 3.68.

Thus, according to (3) α(1) = 0, and from (4) x(2) = y(1) = (2.5, 0.5) as shown in
Figure 1.

At the final iteration with x(2) = (2.5, 0.5), we have

∇f(x
(2)
1 , x

(2)
2 ) =

[

−20
−15

]

.

Solving (5) leads to y(2) = x(2) = (2.5, 0.5). Thus, it holds that

min
x∈X

∇f(x
(2)
1 , x

(2)
2 )

T
x ≥ ∇f(x

(2)
1 , x

(2)
2 )

T
x(2).

By optimality conditions, x(2) = (2.5, 0.5) is the optimal solution to our problem.

Question 4(3p)

(modelling)

The decision variables are:

yi = 1, if school i is open, 0 otherwise

xij = 1, if students in area j attend school i, 0 otherwise
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Model

minimize
10
∑

i=1

ciyi + 2m
10
∑

i=1

J
∑

j=1

bjdijxij

subject to
J
∑

j=1

bjxij ≤ kiyi, i = 1, . . . , 10

10
∑

i=1

yi ≥ 7,

10
∑

i=1

xij = 1, j = 1, . . . , J

yi ∈ {0, 1}, i = 1, . . . , 10

xij ∈ {0, 1}, i = 1, . . . , 10

j = 1, . . . , J

The program is linear with integer variables.

Question 5

(true or false)

a) False. A simple example has f(x) = x2 for x ≤ 0, and x3+ | x | for x ≥ 0.(1p)

b) False. It provides a lower bound on the optimal value of the original (primal)(1p)
problem.

c) True. Theorem 10.15 (necessary and sufficient conditions for global optimal-(1p)
ity) shows that an optimal dual solution is a vector of Lagrange multipliers.

Question 6

(interior penalty methods)

a) All functions involved are in C1. The conditions on the penalty function(1p)
are fulfilled, since φ′(s) = 1/s2 ≥ 0 for all s < 0. Further, LICQ holds
everywhere. The answer is yes.
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b) With the given data, it is clear that the only constraint is (almost) ful-(2p)
filled with equality: (x6)

2
1 − (x6)2 ≈ −0.005422 ≈ 0. We set up the KKT

conditions to see whether it is fulfilled approximately. Indeed, we have the
following corresponding to the system ∇f(x6) + µ̂6∇g(x6) = 02:

(

−6.4094265
3.39524

)

+ 3.385

(

1.88778
−1

)

≈

(

−0.01929
0.01024

)

,

and the right-hand side can be considered near-zero. Since µ̂6 ≥ 0 we
approximately fulfill the KKT conditions.

For the last part, we establish that the problem is convex. The feasible set
clearly is convex, since g is a convex function and the constraint is on the
“≤”-form. The Hessian matrix of f is

(

12(x1 − 2)2 + 2 −4
−4 8

)

,

which is positive semidefinite everywhere (in fact, positive definite outside
of the region defined by x1 = 2); hence, f is convex on R

2. We conclude
that our problem is convex, and hence the KKT conditions imply global op-
timality. The vector x6 therefore is an approximate global optimal solution
to our problem.

Question 7

(the KKT conditions)

a) The KKT conditions are(2p)

∇f(x) + λ∇h(x) =







x2 + x3

x1 + x3

x1 + x2





+ λ







1
1
1





 = 0.

There is only one feasible point fulfilling the KKT conditions:

x̄ = (1, 1, 1)T with λ = −2.

b) Since the eigenvalues of the Hessian of the objective function(1p)

∇2f(x) =







0 1 1
1 0 1
1 1 0







are λ1 = λ2 = −1, λ3 = 2 the objective function is not convex, indicat-
ing that the problem is unbounded. The KKT point x̄ is not an optimal
solution.
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