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Consider the unconstrained optimization problem to

minimize f(x), (1)
xR

where f € C° on R" (f is continuous). Mostly, we assume that f € C! holds (f is continuously
differentiable), sometimes even C?. The choice of the algorithm depends on the size of the prob-
lem, availability of V f(z) and V? f(z), convexity of f and if the goal is to find a local or the global
minimum.

Most algorithms for unconstrained optimization problems are what we call line search type algo-
rithms.

Definition. Line search type algorithm

Step 0: Starting point xo € R”. Let k := 0.

Step 1: Find search direction p;, € R”

Step 2: Perform line search, i.e., find oy, > 0 such that f(xi + oip;,) < f(xk)

Step 3: Let 41 := T, + aiPy-

Step 4: If termination criteria is fulfilled then stop! Otherwise, let k := k + 1 and go to Step 1.

f(zr +apy)

(677 «

Most algorithms we consider are inherently local, meaning that the search direction p,, is only
based on the information at the current point xy, that is, f(xy), V f(xx), and V2 f(zy).

Think of a near-sighted mountain climber. The climber is in a deep fog and can only check his or
her barometer for the height and feel the steepness of the slope under her feet.
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Step 1: Search directions

Vector p,, is a descent direction at xy, if f(zx + ap;,) < f(x) for all @ € (0, ] for some § > 0.

Let f € C! in some neighborhood of x; € R”, if Vf(x;) # 0, then p, = —V f(xy) is a descent
direction for f at x;, (follows from optimality conditions). This search step is called steepest descent
direction because it solves the problem to

minimize Vf(x)"

p.
peR™:|pl|=1

Let Q@ € R™ " be an arbitrary symmetric, positive definite matrix. Then p, = —QV f(xy) is a
descent direction for f at x;, because

V(@) P, =~V (k) QV f(zk) <0,
due to the positive definiteness of Q.

Examples:

— Steepest descent: Q = I,
— Newton's method: Q = [V? f(xy)] L.

We will now derive Newton's method. First assume that V? f(z) is positive definite. A second-order
Taylor approximation is then:

1
F(@x+p) = f(@e) = V(@) 'p+ 5P V2 f(@1)P = ¢, (P)
We now try to minimize this approximation by setting the gradient of ¢, (p) to zero:

Vo, (p) = Vf(zr) + V> f(zr)p =10 & V2 f(zr)p = =V f (@)

Now by choosing the vector fulfilling this we obtain p, = —[V?f(xx)] 'V f(z)) as the search
direction. When n = 1, we get that py, = — f'(xy)/f" (zx).

When the Hessian V2 f(zy) is positive definite this search direction is a descent direction. But
when V?f(z},) is negative definite (may be also non invertible), the search direction is an ascent
direction, meaning that Newton’s method does differentiate between minimization and maxi-
mization problem. The solution to this problem is to modify V?f(z) by adding a diagonal ma-
trix vI such that (V2 f(z) +~I) is positive definite (this can always be done, why?). This method
is called the Levenberg-Marquardt modification. We thus take as search direction

pp = — [V2f(xi) +7I] " V().

Note that

— Steepest descent: v = oo,

— Newton’s method: v = 0.
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What happens when we can not compute V2 f(x)? Try to approximate the Hessian in some way
choosing approximate matrix Bj. From Taylor expansion for V f(x;) we have that

V2 f(@)(wr — xr1) ~ Vf(wr) — Vf(@p_1)
so the approximate matrix B, has to fulfill
By (x — xp—1) = V (k) = Vf(@p-1).
Many different choices of By, exist, and they lead to what is called quasi-Newton methods.

To summarize:

Steepest descent: V()
Netwon’s method: v? f(wk)pk = -V f(zg)
Levenberg-Marquardt:  (V2f(zy,) +~I)p, = —Vf(z1)
Quasi-Newton: Byp, = —Vf(xzk).

Step 2: Line search

In each iteration one would like to solve
minimize p(a) := f(xr + apy).
a>0

The optimality conditions for the problem are
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These conditions state that if o* > 0, then ¢’(a*) = 0, which implies that
Vi(zy +a’py) TP =0,

meaning that the search direction p,, is orthogonal to the gradient of f at x, + a*p,,.
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However, solving the line search problem to optimality is unnecessary. The optimal solution to
the original problem lies elsewhere anyway. Examples of methods to choose step lengths oy,

— Interpolation: Use f(zx), V f(zx), and V f(z1) T p,, to approximate ¢ = f(x + ap,,) quadrat-
ically. Then minimize this approximation of ¢ analytically.

— Newton’s method: Repeatimprovements from a quadratic approximation: a = a—¢'(a)/¢" ()

— Golden section: Derivative-free method which shrinks an interval wherein a solution to

¢'(a) = 0 lies.

We will often use what is denoted as the Armijo rule. The idea is to choose a step length a which
provides sufficient decrease in f. We have that

f(xr + apy) ~ f(zp) + oV f(zr) " py,

for very small values of & > 0, meaning that we predict that the objective function will decrease
with aV f(zx)Tp, if we move a step length « in the direction of p,. Now this might be too
optimistic, and we will therefore accept the step length if the actual decrease is at least a fraction
o (p is small, typically p € [0.001,0.01]) of the predicted decrease, i.e., we will accept « if

[l +apy) — f(xr) < paV f(xp) py,

or equivalently, if
(@) = (0) < pag'(0).
We usually start with « = 1. If this is not fulfilled, then choose o := «/2.

©(0) + ay’(0) ©(0) 4 pay'(0)

Figure 1: The interval (R) accepted by the Armijo step length rule
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Convergence

In order to state a convergence result for the algorithm, we make an additional assumption for
the search directions. We need the directions p,, to fulfill

Vf(‘fk)Tpk
T T = 5 Prll = s2||V f(xx]], and pll <M )
Vi@nl o =5 Pl = sellV (@il 1Pl

for some s1,s2 > 0, where the first inequality makes the angle between p;, and V f(x;) stay
between 0 and 7/2, but not too close to /2. The second inequality makes sure that the only
case when p,, can be zero is when the gradient is zero. These two conditions guarantee a certain
descent quality.

Theorem (convergence of unconstrained algorithm). Suppose f € C* and for the starting point
the level set {x € R™ | f(x) < f(xo)} is bounded. Consider the iterative algorithm described above.
Suppose that for all k, p,, fulfills (2) and oy, is chosen according to the Armijo rule. Then

a) the sequence {xy,} is bounded,
b) the sequence { f (xy)} is descending and lower bounded, and

c) every limit point of {x},} is a stationary point.
Proof. See Theorem 11.4 in the book. O

If we add the assumption that f is a convex function, then we can show that

optimum exists = {z}} converges to an optimal solution.

Step 4: Termination criteria

We can not terminate the algorithm when V f(x;) = 0, since this rarely happens. We need to have
some tolerance level. Three examples are

a) |V f(xp)| <e1(1+|f(xk)]), where g1 > 0 is small.
b) f(xk-1) — f(xr) < ea(1+ |f(xr)]), where e5 > 0 is small.

o) |ler — zp—1|| < e3(1+ ||zk|), where g5 > 0 is small.

Can also use the max-norm || - || instead.
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A note on trust region methods

Trust region methods use a quadratic approximation of the function around the current iterate
x, avoid a line search but instead bound the length of the search direction. Let

Pun () = [(@0) + VI (@) D+ 39" VS (0.

Since this is a local approximation, we restrict our approximation to a trust region in the neighbor-
hood of z, i.e., we trust the model in the region where ||p|| < Aj. We then solve the problem
to

minimize g, (p),
subject to [|p|| < Ap.

and let the solution be p,,. Then we update our iterate as ;1 = x; +p,. We also update the trust
region parameter Aj;, depending on the progress so far (actual reduction/predicted reduction).
The method is robust and possess strong convergence. More detailed information about trust
region methods can be found in the book on pages 301-302.

A note on black-box functions

In some cases the value of the objective function f(x) is given through some unknown simulation
procedure. This implies that we do not have a clear representation of the gradient of the objective
function. In some cases, we can perform numerical differentiation and approximate the partial
derivatives as, e.g.,

of (@) _ f(x+ae)— f(x)

Ox; « ’

where e; = (0,...,0,1,0,...,0)7T is the unit vector in R™.

If the simulation is not accurate, we get a bas derivative information. We can use derivative-free
methods instead. These try to build a model f of the objective function f from evaluating the
objective function at some specific test points and optimize the model f instead of the function f.



