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Exam instructions

When you answer the questions

Use generally valid theory and methods.
State your methodology carefully.

Only write on one page of each sheet. Do not use a red pen.
Do not answer more than one question per page.

At the end of the exam

Sort your solutions by the order of the questions.
Mark on the cover the questions you have answered.
Count the number of sheets you hand in and fill in the number on the cover.
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Question 1
(the simplex method)

Consider the following linear program:

maximize =z + 29
subject to 1 + x9 > 1,
Ty — X9 = —2,
x>0,
zo > 0.

(2p) a) Solve this problem using phase I (so that you begin with a unit matrix as
the first basis) and phase II of the simplex method.

Aid: utilize the identity

a b\ 1 d —b
c d)  ad—bc\—c a)’
(1p) b) If an optimal solution exists, use your calculations to decide if it unique. If

the problem is unbounded, use your calculations to specify the direction of
unboundedness.

(3p) Question 2
(modeling)
An airplane has a route that takes it from city 1 to city n by going from city @
toi+ 1, wheret =1,...,n— 1. Let
e w; be the weight, excluding fuel, of the plane on flight from city ¢ to ¢ + 1,
1=1,....,n—1,
e ¢; be the cost of fuel per unit weight at city ¢, 1 =1,...,n,

e [; be the maximum amount of fuel that can be purchased in city i, i =
1,...,n,
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e M the maximum weight of fuel that can be loaded into the plane.

Let z; be the variables denoting the total combined weight of the plane, including
fuel, at takeoff from city ¢, i = 1,...,n — 1. Assume that the amount of fuel (in
weight units) needed to fly from city ¢ toi+ 1, ¢ =1,...,n — 1, is ;z;, where
a; are given positive constants. Formulate a linar program that determines how
much fuel one should buy at each city, such that the total fual cost for completing
the trip is minimized.

Question 3
(interior penalty methods)

Consider the problem to

minimize f(x) = (z; — 2)* + (z1 — 219)?,

subject to g(x) 1= 25 — 25 < 0.

We attack this problem with an interior penalty (barrier) method, using the

barrier function ¢(s) = —s~!. The penalty problem is to
mmlﬂlgllze f(x) + vxs(x), (1)
TER™
where xg(x) = ¢(g(x)), for a sequence of positive, decreasing values of the

penalty parameter v.

We repeat a general convergence result for the interior penalty method below.

THEOREM 1 (convergence of an interior point algorithm) Let the objective func-
tion f : R®™ — R and the functions g;, ¢ = 1,...,m, defining the inequality
constraints be in C*(R™). Further assume that the barrier function ¢ : R_ — R
is in C' and that ¢/'(s) > 0 for all s < 0.

Consider a sequence {x}} of points that are stationary for the sequence of prob-
lems (1) with v = vy, for some positive sequence of penalty parameters {vy}
converging to 0. Assume that limy .. oy = &, and that LICQ holds at x
Then, @ is a KKT point of the problem at hand.
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In other words,

@y, stationary in (1)
T, — & as k — +o00 p = & stationary in our problem.
LICQ holds at x

(1p) a) Does the above theorem apply to the problem at hand and the selection of
the penalty function?

(2p) b) Implementing the above-mentioned procedure, the first value of the penalty
parameter was set to vy = 10, which is then divided by ten in each iteration,
and the initial problem (1) was solved from the strictly feasible point (0,1)".
The algorithm terminated after six iterations with the following results:
x ~ (0.94389,0.89635)T, and the multiplier estimate [given by v (g(xs))]
f1g ~ 3.385. Confirm that the vector xg is close to being a KKT point. Are
the KKT point(s) globally optimal? Why/Why not?

Question 4
(Lagrangian duality)

Consider the quadratic problem

1
minimize EwTQa} +c'z, (1)
subject to Ax > b,

where @ is a symmetric matrix.

(1p) a) Assume that @ is positive definite. Construct the Lagrangian dual problem
by relaxing all the constraints and show that the dual problem itself is a
quadratic problem.

Hint: An explicit solution to the problem min,cx L(x, ) can be found for
each p.

(1p) b) Is the dual function always strictly concave if Q is positive definite? If so,
provide a proof. If not, provide a counter example.

(1p) c¢) Consider the following properties:
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i) the primal is a convex problem;
ii) the dual is a convex problem;
iii) the dual objective function ¢ is differentiable;
iv) the duality gap is zero (i.e. ¢* = f*).
Which of these hold when @ is positive definite? Which properties do the

primal and dual problems have when @ has a negative eigenvalue? Motivate
your answers!

(3p) Question 5
(optimality conditions)
Farkas’ Lemma can be stated as follows:

Let A be an m x n matrix and b an m x 1 vector. Then exactly one of the

systems
Ax = b, ()
x > 0",
and
Aty <on, (1I)
by >0,

has a feasible solution, and the other system is inconsistent.

Prove Farkas’ Lemma.

(3p) Question 6
(LP duality)

Consider the problem to

minimize cTaz,

subject to Axz > b (P)
x > 0",



(3p)
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where A € R™*" b € R™ and ¢ € R" are given matrices.

Assume that the program (P) has multiple optimal solutions. You are therefore
interested in finding an optimal solution to (P) that has the minimum value with
respect to another linear objective function, eT@. Formulate a linear program
which will yield such an optimal solution, without first solving the problem (P).

Hint: There is a means to describe the set of primal-dual optimal solutions to
(P) as a system of linear inequalities.

Question 7
(sequential linear programming)

Consider the following nonlinear programming problem: find &* € R™ that solves
the problem to

minimize f(x), (1a)
subject to g;(x) <0, i=1,...,m, (1b)
h;(x) =0, j=1,...,¢, (lc

where f:R"™ — R, g;, and h; : R" — R are given functions in C' on R™.

We are interested in establishing that the classic Sequential Linear Programming
(SLP) subproblem tells us whether an iterate x; € R" satisfies the KKT con-
ditions or not, thereby establishing a natural termination criterion for the SLP
algorithm.

Given the feasible iterate aj, the SLP subproblem is to
minimize V f(xx)p, (
p
subject to g;(xx) + V() 'p <0, i=1,...,m, (
h](wk;) + Vh](a:k)Tp = O, j = 1, ce ,g, (20
—1<p, <1, s=1,...,n. (2d

This subproblem is natural: it is based on a linearization of both the objective
function and the constraint functions, whereby it resembles the Frank—Wolfe
method. The main difference, of course, is that the problem (1) has general and
perhaps nonlinear constraints which in the subproblem (2) therefore are replaced
by first-order Taylor approximations.
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Establish the following statement: the vector xj is a KKT point in the problem
(1) if and only if p = 0™ is a globally optimal solution to the SLP subproblem
(2). In other words, the SLP algorithm terminates if and only if @) is a KKT
point in the original problem (1).

Hint: Compare the KKT conditions of (1) and (2).




