TMA947/MMG621

 NONLINEAR OPTIMISATIONDate: 18-08-21
Examiner: Michael Patriksson

Note: the solutions presented here are brief in relation to the requirements on your answers, in particular regarding your motivations.

(3p) Question 1

(the simplex method)
Rewrite the problem into standard form by and adding/subtracting slack variables s_{1} and s_{2} to the left-hand side in the first and second constraint, respectively. Moreover, let $z:=-z$ to get the problem on minimization form. Thus, we get the following linear program:

$$
\begin{array}{lll}
\operatorname{minimize} z=-3 x_{1}-2 x_{2}, & \\
\text { subject to } & 2 x_{1}+3 x_{2}+s_{1} & =1, \\
& x_{1}- & x_{2},-s_{2}=4, \\
& x_{1}, \quad x_{2}, \quad s_{1}, \quad s_{2} \geq 0
\end{array}
$$

Introducing the artificial variable a, phase I gives the problem

$$
\begin{array}{lrl}
\operatorname{minimize} \quad w=a, & & =1, \\
\text { subject to } & 2 x_{1}+3 x_{2}+s_{1} & \\
& x_{1}-x_{2}-s_{2}+a & =4, \\
& x_{1} & x_{2} .
\end{array}
$$

Using the starting basis $\left(s_{1}, a\right)^{T}$ gives

$$
\boldsymbol{B}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \boldsymbol{N}=\left(\begin{array}{ccc}
2 & 3 & 0 \\
1 & -1 & -1
\end{array}\right), \boldsymbol{x}_{B}=\binom{1}{4}, \boldsymbol{c}_{B}=\binom{0}{1}, \boldsymbol{c}_{N}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

The reduced costs, $\overline{\boldsymbol{c}}_{N}^{T}=\boldsymbol{c}_{N}^{T}-\boldsymbol{c}_{B}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}$, for this basis is $\overline{\boldsymbol{c}}_{N}^{T}=\left(\begin{array}{lll}-1 & 1 & 1\end{array}\right)$, which means that x_{1} enters the basis. The minimum ratio test implies that s_{1} leaves.

Updating the basis we now have $\left(x_{1}, a\right)^{T}$ in the basis. Calculating the reduced costs, we obtain $\overline{\boldsymbol{c}}_{N}^{T}=\left(\begin{array}{lll}5 / 2 & 1 / 2 & 1\end{array}\right)$, meaning that the current basis is optimal. The optimal solution is thus $a^{*}=7 / 2$, since $a^{*}>0$, so the original problem is infeasble.

Since the original problem is infeasible, so it is neither existing an optimal solution nor unbounded.

Question 2

(1p) a) The LP dual problem is to:

$$
\begin{aligned}
\text { miximize } & \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} \\
\text { subject to } & A^{\mathrm{T}} y \leq c, \\
& y \geq 0^{m}
\end{aligned}
$$

$(\mathbf{2 p}) \quad$ b) If the dual problem has a finite optimal solution, then so does the primal problem. If the dual problem is unbounded, then the primal problem is infeasible. See Theorem 10.6 (Strong Duality Theorem).

Question 3

(feasible direction methods)
$(2 \mathbf{p}) \quad$ a) For the Frank-Wolfe algorithm, $y_{1}=(1,0)^{\mathrm{T}}, x_{1}=(0,1)^{\mathrm{T}}, y_{2}=(0,0)^{\mathrm{T}}$, $x_{2}=(9 / 20,3 / 20)^{\mathrm{T}}$.
$(\mathbf{1 p}) \quad$ b) For the simplicial decomposition algorithm, $P_{0}=\emptyset, y_{1}=(1,0)^{\mathrm{T}}, P_{1}=$ $(1,0)^{\mathrm{T}}, x_{1}=(3 / 4,1 / 4)^{\mathrm{T}}, y_{2}=(0,0)^{\mathrm{T}}, P_{2}=(1,0)^{\mathrm{T}} \bigcup(0,0)^{\mathrm{T}}, x_{2}=(1 / 2,0)^{\mathrm{T}}$,

(3p) Question 4

(on the SQP algorithm and the KKT conditions)
The result is based on a comparison between the KKT conditions of the original problem,

$$
\begin{align*}
\operatorname{minimize} & f(\boldsymbol{x}), \tag{1a}\\
\text { subject to } & g_{i}(\boldsymbol{x}) \leq 0, \tag{1b}\\
h_{j}(\boldsymbol{x})=0, & i=1, \ldots, m, \tag{1c}\\
& j=1, \ldots, \ell,
\end{align*}
$$

and those of the SQP subproblem,

$$
\begin{array}{rlr}
\underset{p}{\operatorname{minimize}} & \frac{1}{2} \boldsymbol{p}^{\mathrm{T}} \boldsymbol{B}_{k} \boldsymbol{p}+\nabla f\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}} \boldsymbol{p}, \\
\text { subject to } & g_{i}\left(\boldsymbol{x}_{k}\right)+\nabla g_{i}\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}} \boldsymbol{p} \leq 0, \quad i=1, \ldots, m, \\
& h_{j}\left(\boldsymbol{x}_{k}\right)+\nabla h_{j}\left(\boldsymbol{x}_{k}\right)^{\mathrm{T}} \boldsymbol{p}=0, \quad j=1, \ldots, \ell . \tag{2c}
\end{array}
$$

We first note that the latter problem is a convex one (the matrix \boldsymbol{B}_{k} was assumed to be positive semidefinite), and that the solution \boldsymbol{p}_{k} is characterized by its KKT conditions, since the constraints are linear (so that Abadie's CQ is fulfilled). It remains to compare the two problems' KKT conditions. With $\boldsymbol{p}_{k}=\mathbf{0}^{n}$ they are in fact identical!

(3p) Question 5

(modelling)
Sets:
$I:=\{1, \ldots, 10\}$, the set of schools.
The decision variables are:

$$
x_{i}= \begin{cases}1 & \text { keep school } i, \\ 0 & \text { otherwise }\end{cases}
$$

where $i \in I$.

$$
y_{i j}= \begin{cases}1 & \text { home area } j \text { go to school } i, \\ 0 & \text { otherwise },\end{cases}
$$

where $i \in I, j \in J$.
Model:

$$
\begin{array}{lrl}
\operatorname{minimize} \quad x_{i} c_{i}+m b_{j} d_{i j}, & \\
\text { subject to } \quad \sum_{i \in I} x_{i} \leq 9, & \\
\sum_{i \in I} x_{i} \geq 7, & \\
\sum_{j \in J} b_{j} y_{i, j} \leq k_{i}, & i \in I, \\
y_{i, j} \leq x_{i}, & i \in I, j \in J, \\
\sum_{i \in I} y_{i, j} & =1, & j \in J, \\
x_{i} & \in\{0,1\}, & i \in I, \\
d_{i j} & \in\{0,1\}, \quad i \in I, j \in J .
\end{array}
$$

Question 6

(true or false)
(1p) a) False. The original problem can be infeasible, which means the optimal value for phase I is higher than 0 , like question 1 in this exam.
(1p) b) True. Since $\nabla f(\boldsymbol{x}) \neq \mathbf{0}^{n}$, and \boldsymbol{G} is a symmetric and positive definite matrix of dimension $n \times n$, we have that $\nabla f(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{d}=-\nabla f(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{G}^{-1} \nabla f(\boldsymbol{x})<0$, so \boldsymbol{d} is a decent direction. By defination of decent direction, the clam is true.
$(1 \mathbf{p}) \quad$ c) False. For example, $g(\boldsymbol{x})=-x^{2}$ is concave, but $\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid g(\boldsymbol{x}) \leq-1\right\}$ is not convex.

(3p) Question 7

(the gradient projection algorithm)
$\nabla f(\boldsymbol{x})=\left(2 x_{1}-2 x_{2}-2,4 x_{2}-2 x_{1}-3\right)^{\mathrm{T}}, x_{0}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{0}\right)=(2,3)^{\mathrm{T}}, x_{1}=(2,2)^{\mathrm{T}}$, $x_{1}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{1}\right)=(4,1)^{\mathrm{T}}, x_{2}=(3,1)^{\mathrm{T}}$.

Since the feasible set is convex, there exists an interior point, so the Slater CQ holds. Since it is a convex problem, so the KKT conditions are both necessary and sufficient. $(3,1)^{\mathrm{T}}$ is not a KKT point, so it is neither a global nor a local minimum.

