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Penalty functions, I Penalties

◮ Consider the optimization problem to

minimize f (x),

subject to x ∈ S ,
(1)

where S ⊂ R
n is non-empty, closed, and f : Rn → R is differentiable

◮ Basic idea behind all penalty methods: to replace the problem (1)
with the equivalent unconstrained one:

minimize f (x) + χS(x),

where

χS(x) =

{
0, if x ∈ S ,

+∞, otherwise

is the indicator function of the set S
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Penalty functions, II Penalties

◮ Feasibility is top priority; only when achieving feasibility can we
concentrate on minimizing f

◮ Computationally bad: non-differentiable, discontinuous, and even
not finite (though it is convex provided S is convex).

◮ Better: numerical “warning” before becoming infeasible or
near-infeasible

◮ Approximate the indicator function with a numerically better
behaving function
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Exterior penalty methods, I Exterior penalty

SUMT (Sequential Unconstrained Minimization Techniques)

◮ Suppose

S = { x ∈ R
n | gi (x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , ℓ },

◮ Choose C 0 penalty function ψ : R → R+ s.t. ψ(s) = 0 ⇐⇒ s = 0

◮ Typical choices: ψ1(s) = |s|, or ψ2(s) = s2

◮ Approximate indicator function as

χS(x) ≈ νχ̌S(x) := ν

( m∑

i=1

ψ
(
max{0, gi (x)}

)
+

ℓ∑

j=1

ψ
(
hj(x)

))
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Exterior penalty methods, II Exterior penalty

◮ S = {x | −x ≤ 0, x ≤ 1}

◮ Indicator function

χS(x) =

{
0 if 0 ≤ x ≤ 1

∞ otherwise

◮ νχ̌S approximates χS from
below (νχ̌S ≤ χS)

◮ Penalty function ψ(s) = s2

◮ Approximate function (i.e. substitute for indicator function)

νχ̌S = ν
(
(max{0, x − 1})2 + (max{0,−x})2

)
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Example Exterior penalty

◮ ν > 0 is penalty parameter

◮ νχ̌S(x) → χS(x) as ν → ∞.
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◮ Approximate function (i.e. substitute for indicator function)

νχ̌S = ν
(
(max{0, x − 1})2 + (max{0,−x})2

)
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Example Exterior penalty

◮ Let S = { x ∈ R
2 | −x2 ≤ 0, (x1 − 1)2 + x22 = 1 }

◮ Let ψ(s) = s2. Then,

χ̌S(x) = [max{0,−x2}]
2 + [(x1 − 1)2 + x22 − 1]2

◮ Graph of χ̌S and S :
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Exterior penalty method, principle Exterior penalty

◮ Consider increasing sequence {νk} with lim
k→∞

νk = ∞

◮ Corresponding to a sequence of approximate problems

minimize
x∈Rn

f (x) + νχ̌S(x) (2)

with optimal solutions x∗νk

◮ If {x∗νk
} has limit point x̂ , then x̂ optimal solution to (1)
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Properties of the penalty problem Exterior penalty

◮ Let x∗ be optimal solution to

minimize
x∈S

f (x) (1)

◮ For any ν > 0, let x∗ν be optimal solution to

minimize
x∈Rn

f (x) + νχ̌S(x) (2)

with χ̌S(x) =
∑m

i=1 ψ
(
max{0, gi (x)}

)
+
∑ℓ

j=1 ψ
(
hj(x)

)

◮ Lower bound on f (x∗)

∀ν > 0, f (x∗ν) + νχ̌S(x
∗

ν) ≤ f (x∗) + νχ̌S(x
∗)

χ̌S (x
∗)=0
= f (x∗)

◮ (1) convex + ψ(·) convex + ψ(s) ր for s ≥ 0 =⇒ (2) convex
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The algorithm and its convergence properties, I Exterior penalty

◮ Assume global optimal solution exists in original problem

minimize
x∈S

f (x) (1)

◮ For any ν > 0, assume x∗ν global optimal solution exists for

minimize
x∈Rn

f (x) + νχ̌S(x) (2)

Then, x̂ limit point of {x∗ν } as ν → ∞ =⇒ x̂ optimal to (1)

◮ Statement concerns global optimal solutions to (1) and (2)

◮ Statement useful if and only if (2) convex
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The algorithm and its convergence properties, II Exterior penalty

◮ Let f , gi (i = 1, . . . ,m), and hj (j = 1, . . . , ℓ), be in C 1

Assume that the penalty function ψ is in C 1 and that ψ′(s) ≥ 0 for
all s ≥ 0. Consider a sequence νk → ∞.

xk stationary in (2) with νk
xk → x̂ as k → +∞

LICQ holds at x̂
x̂ feasible in (1)





=⇒ x̂ stationary (KKT) in (1)

◮ From the proof we obtain estimates of Lagrange multipliers: the
optimality conditions of (2) gives that

µ∗

i ≈ νkψ
′[max{0, gi (xk)}] and λ∗j ≈ νkψ

′[hj(xk)]
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Computational considerations Exterior penalty

◮ ν large =⇒ f (x) + νχ̌S(x) difficult to minimize (cf. indicator
function)

◮ If we increase ν slowly a good guess is that x∗νk
≈ x∗νk−1

.

◮ This guess can be improved.

TMA947 – Lecture 14 Constrained optimization 12 / 28



Interior penalty methods, I Interior penalty

◮ Consider inequality constrained optimization

minimize
x∈S

f (x) with S = { x ∈ R
n | gi (x) ≤ 0, i = 1, . . . ,m } (1)

◮ Assume strictly feasible point exists: x̂ ∈ R
n s.t. gi (x̂)< 0 for all i

◮ Interior penalty (barrier) method approximates S from inside

◮ If a globally optimal solution to (1) is on the boundary of the
feasible region, the method generates a sequence of interior points
that converge to it
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Interior penalty methods, II Interior penalty

◮ Approximate χS from above

χS(x) ≤ νχ̂S(x) :=

{
ν
∑m

i=1 φ[gi (x)], if gi (x) < 0, ∀ i ,

+∞, otherwise,

◮ φ : R− → R+, continuous, lim
sk<0, sk→0−

φ(sk) = ∞

◮ Typical examples: φ1(s) = −s−1; φ2(s) = − log[min{1,−s}]

◮ The differentiable logarithmic barrier function φ̃2(s) = − log(−s)

◮ φ̃2(s) < 0 if s < −1, but same convergence theory

◮ gi convex + φ convex + φր for s < 0 =⇒ νχ̂S convex

TMA947 – Lecture 14 Constrained optimization 14 / 28



Example Interior penalty

Figure: Feasible set is S = {x | −x ≤ 0, x ≤ 1}. Barrier function
φ(s) = −1/s, barrier parameter ν = 0.01.
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Example Interior penalty

Consider S = { x ∈ R | −x ≤ 0 }. Choose φ = φ1 = −s−1. Graph of the
barrier function νχ̂S in below figure for various values of ν (note how
νχ̂S converges to χS as ν ↓ 0!):
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Algorithm and its convergence Interior penalty

◮ Penalty problem:

minimize f (x) + νχ̂S(x) (2)

◮ Global optimal solutions to (2) → global optimal solution to (1)

◮ Convergence of stationary points also holds:

Let f and gi (i = 1, . . . ,m), an φ be in C 1, and that φ′(s) ≥ 0 for
all s < 0. Consider sequence νk → 0. Then:

xk stationary in (3) with νk
xk → x̂ as k → +∞

LICQ holds at x̂



 =⇒ x̂ stationary (KKT) in (1)

◮ φ(s) = φ1(s) = −1/s, then φ′(s) = 1/s2 =⇒ {νk/g
2
i (xk)} → µ̂i .
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Interior point (polynomial) method for LP, I Interior penalty

◮ Consider the LP

minimize − bT y ,

subject to AT y + s = c ,

s ≥ 0n,

(3)

and the corresponding KKT conditions:

AT y + s = c ,

Ax = b,

x ≥ 0n, s ≥ 0n, xT s = 0

(4)
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Interior point (polynomial) method for LP, II Interior penalty

◮ Apply barrier method for (3), taking care of s ≥ 0. Subproblem:

minimize − bT y − ν
n∑

j=1

log(sj)

subject to AT y + s = c

◮ The KKT conditions for subproblem:

AT y + s = c ,

Ax = b,

xj sj = ν, j = 1, . . . , n

(5)

◮ (5): (4) with complementary slackness perturbed by ν
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Interior point (polynomial) method for LP, III Interior penalty

Optimal solutions to subproblems

minimize − bT y − ν

n∑

j=1

log(sj)

subject to AT y + s = c

for different ν’s form the central
path.
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Sequential quadratic programming (SQP), first attempt SQP

Consider problem

minimize
x

f (x)

subject to g(x) ≤ 0

h(x) = 0

◮ We have good solution methods for quadratic programs (QP)
(e.g., simplicial decomposition and gradient projection method)

◮ At iterate xk , approximate original problem with QP subproblem.
Find search direction p by solving QP subproblem

minimize
p

1
2p

T∇2f (xk)p +∇f (xk)
T
p

subject to gi (xk) +∇gi (xk)
T
p ≤ 0, i = 1, . . . ,m

hj(xk) +∇hj(xk)
T
p = 0, j = 1, . . . , l

◮ Suggested method does not always work!
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Sequential quadratic programming (SQP), first attempt SQP

Consider problem

min
x

−x1 −
1
2 (x2)

2

s.t. (x1)
2
+ (x2)

2
− 1 = 0
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decreasing objective

Optimal solution (1, 0)T , consider QP subproblem at x1 = 1.1, x2 = 0:

minimize
p

−p1 −
1
2 (p2)

2

subject to p1 + 0.0955 = 0

QP subproblem unbounded – bad linear approx. of nonlinear constraint!
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SQP, improved QP subproblem SQP

◮ Linearized constraints might be too inaccurate!

◮ Account for nonlinear constraints in objective – Lagrangian idea.

L(x , µk , λk) = f (x) + µT
k g(x) + λTk h(x).

◮ Solve (improved) QP subproblem to find search direction p:

minimize
p

1
2p

T∇2
xxL(xk , µk , λk)p +∇f (xk)

T
p

subject to gi (xk) +∇gi (xk)
T
p ≤ 0, i = 1, . . . ,m

hj(xk) +∇hj(xk)
T
p = 0, j = 1, . . . , l

◮ Direction p, with multipliers µk+1, λk+1, define Newton step for
solving (nonlinear) KKT conditions (see text for more).

◮ Lagrangian Hessian ∇2
xxL(xk , µk , λk) may not be positive definite.
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SQP, working QP subproblem SQP

◮ Given xk ∈ R
n and a vector (µk , λk) ∈ R

m
+ × R

ℓ, choose a positive
definite matrix Bk ∈ R

n×n. Bk ≈ ∇2
xxL(xk , µk , λk)

◮ Solve

minimize
p

1

2
pTBkp +∇f (xk)

Tp, (6a)

subject to gi (xk) +∇gi (xk)
Tp ≤ 0, i = 1, . . . ,m, (6b)

hj(xk) +∇hj(xk)
Tp = 0, j = 1, . . . , ℓ (6c)

◮ Working version of SQP search direction subproblem

◮ Quadratic convergence near KKT points. What about global
convergence? Perform line search with some merit function.

TMA947 – Lecture 14 Constrained optimization 24 / 28



Basic SQP, algorithm steps SQP

1. Initialize iterate with (x0, µ0, λ0), B0 and merit function M.

2. At iteration k with (xk , µk , λk) and Bk , solve QP subproblem for
search direction pk :

minimize
p

1
2p

TBkp +∇f (xk)
T
p

subject to gi (xk) +∇gi (xk)
T
p ≤ 0, i = 1, . . . ,m

hj(xk) +∇hj(xk)
T
p = 0, j = 1, . . . , l

Let µ∗

k and λ∗k be optimal multipliers of QP subproblem. Define
∆x = pk , ∆µ = µ∗

k − µk , ∆λ = λ∗k − λk .

3. Perform line search to find αk > 0 s.t. M(xk + αk∆x) < M(xk).

4. Update iterates:
xk+1 = xk + αk∆x , µk+1 = µk + αk∆µ, λk+1 = λk + αk∆λ.

5. Stop if converge, otherwise update Bk to Bk+1; go to step 2.
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Merit SQP, exact penalty function SQP

Merit function as non-differentiable exact penalty function Pe :

χ̌S(x) :=

m∑

i=1

maximum {0, gi (x)}+

ℓ∑

j=1

|hj(x)|,

Pe(x) := f (x) + νχ̌S(x)

◮ For large enough ν, solution to QP subproblem (6) defines a
descent direction for Pe at (xk , µk , λk).

◮ For large enough ν, reduction in Pe implies progress towards KKT
point in the original constrained optimization problem.

◮ Compare convergence results for exterior penalty methods.
◮ See text for more (Proposition 13.10).
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∗Convergence of merit SQP method SQP

◮ Combining the descent direction property and exact penalty function
property, one can prove convergence of the merit SQP method.

◮ Convergence of the SQP method towards KKT points can be
established under additional conditions on the choices of matrices
{Bk}

1. Matrices Bk bounded
2. Every limit point of {Bk} positive definite
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Remarks SQP

◮ Selecting the value of ν is difficult

◮ No guarantees that the subproblems (6) are feasible; we assumed

above that the problem is well-defined

◮ Pe is only continuous; some step length rules infeasible

◮ Fast convergence not guaranteed (the Maratos effect)

◮ Penalty methods in general suffer from ill-conditioning. For some
problems the ill-conditioning is avoided

◮ Exact penalty SQP methods suffer less from ill-conditioning, and
the number of QP:s needed can be small. They can, however, cost
a lot computationally

◮ fmincon in MATLAB is an SQP-based solver
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