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Penalty functions, | Penalties

» Consider the optimization problem to

minimize f(x),

. (1)
subject to x € S,

where S C R" is non-empty, closed, and f : R” — R is differentiable

> Basic idea behind all penalty methods: to replace the problem (1)
with the equivalent unconstrained one:

minimize f(x)+ xs(x),

0, if xeS,
xs(x) :{

where

400, otherwise

is the indicator function of the set S
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Penalty functions, Il Penalties

> Feasibility is top priority; only when achieving feasibility can we
concentrate on minimizing f

» Computationally bad: non-differentiable, discontinuous, and even
not finite (though it is convex provided S is convex).

> Better: numerical “warning” before becoming infeasible or
near-infeasible

» Approximate the indicator function with a numerically better
behaving function
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Exterior penalty methods, | Exterior penalty

SUMT (Sequential Unconstrained Minimization Techniques)

> Suppose

S={xeR"|gi(x)<0, i=1,...,m,
hi(x)=0, j=1,...,0},

» Choose C° penalty function ¢ : R — R, s.t. ¢(s) =0 <= s=0
» Typical choices: 11(s) = |s|, or 12(s) = s?

» Approximate indicator function as

xs(x) = vys(x) = I/(Z’L/J( max{0, gi(x)}) + Zd}(@-(x)))
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Exterior penalty methods, Il Exterior penalty

> S={x|—-x<0,x<1} N

» Indicator function

0 ifo<x<1 ]
xs(x) = .
oo otherwise

> vXs approximates ys from
below (vXxs < xs) % o py . -

» Penalty function v(s) = s?

> Approximate function (i.e. substitute for indicator function)

VYs = u((max{O,x —1})2 + (max{o, —x})z)
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Example Exterior penalty

» v > 0 is penalty parameter

> v¥s(x) = xs(x) as v — oo.

> Approximate function (i.e. substitute for indicator function)

vXs = V((max{O,x —1})% + (max{0, —x})2)
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Example Exterior penalty

> Let S={x€R?| - <0,(x1 —1)>+x3 =1}
> Let Y(s) = s2. Then,
Xs(x) = [max{0, =} ” + [(a = 1)* + x5 — 1J?

» Graph of x5 and S:

Vo =« v w A& o
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Exterior penalty method, principle Exterior penalty

> Consider increasing sequence {v,} with lim vy = co
k—ro0

» Corresponding to a sequence of approximate problems
minimize f(x) + vxs(x) (2)
xERM

with optimal solutions x;,

> If {x; } has limit point X, then X optimal solution to (1)
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Properties of the penalty problem Exterior penalty

> Let x* be optimal solution to

mir;iengize f(x) (1)

> For any v > 0, let x; be optimal solution to

mini?gize f(x) +vxs(x) (2)
xeR"

with ¥s(x) = X7 v (max{0, gi(x)}) + iy ¢ (hi(x))

> Lower bound on f(x*)

V>0, F(x3) 4 rXs(xh) < F(x*) + vvs(x*) B0 £(x*)

> (1) convex + () convex + ¥(s) / for s >0 = (2) convex
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The algorithm and its convergence properties, | Exterior penalty

» Assume global optimal solution exists in original problem

minimize f(x) (1)

XxXES
> For any v > 0, assume x;; global optimal solution exists for

mini?gize f(x) +vxs(x) (2)
xeR"

Then, % limit point of {x}} as v — co = X optimal to (1)

> Statement concerns global optimal solutions to (1) and (2)

> Statement useful if and only if (2) convex
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The algorithm and its convergence properties, || Exterior penalty

> Letf, g (i=1,....,m),and h; (j =1,...,¢), bein C*

Assume that the penalty function 1 is in C! and that +’(s) > 0 for
all s > 0. Consider a sequence v, — 0.

Xy stationary in (2) with vy
X, — X as k — +o00

LICQ holds at X

% feasible in (1)

= X stationary (KKT) in (1)

» From the proof we obtain estimates of Lagrange multipliers: the
optimality conditions of (2) gives that

i~ v [max{0,gi(xe)}] and A} ~ vy [y (xe)]
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Computational considerations Exterior penalty

> vlarge = f(x)+ vxs(x) difficult to minimize (cf. indicator
function)

> If we increase v slowly a good guess is that x;, ~ x;

Vk—1"

» This guess can be improved.
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Interior penalty methods, | Interior penalty

>

Consider inequality constrained optimization

minimize f(x) withS={xeR"|g(x)<0,i=1,...,m} (1)

xES

v

Assume strictly feasible point exists: & € R" s.t. g;(X) <0 for all

v

Interior penalty (barrier) method approximates S from inside

v

If a globally optimal solution to (1) is on the boundary of the
feasible region, the method generates a sequence of interior points
that converge to it
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Interior penalty methods, Il Interior penalty

> Approximate xs from above

vyl olei(x)], i gi(x) <0, Vi,
400, otherwise,

xs(x) <vis(x) = {

» ¢:R_ — R,, continuous, lim @(sk) = oo
s,k<0, sx—0_

» Typical examples: ¢1(s) = —s71; ¢a(s) = — log[min{1, —s}]

> The differentiable logarithmic barrier function ¢,(s) = — log(—s)

> ¢o(s) < 0if s < —1, but same convergence theory

> g; convex + ¢ convex + ¢  for s <0 = vys convex
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Example Interior penalty
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Figure: Feasible set is S = {x | —x < 0,x < 1}. Barrier function
¢(s) = —1/s, barrier parameter v = 0.01.
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Example Interior penalty

Consider S = {x € R| —x < 0}. Choose ¢ = ¢; = —s~1. Graph of the
barrier function vXs in below figure for various values of v (note how
Vs converges to xs as v} 0!):

— v=1
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Algorithm and its convergence Interior penalty

> Penalty problem:

minimize f(x)+ vxs(x) (2)

> Global optimal solutions to (2) — global optimal solution to (1)

» Convergence of stationary points also holds:

Let fand g; (i=1,...,m), an ¢ be in C!, and that ¢/(s) > 0 for
all s < 0. Consider sequence v, — 0. Then:

Xy stationary in (3) with vy
Xg — X as k — +00 p = X stationary (KKT) in (1)
LICQ holds at X

> 6(s) = 61(s) = ~1/s, then ¢/(s) = 1/s —> {1 /g?(xu)} = v

TMAO947 — Lecture 14 Constrained optimization



Interior point (polynomial) method for LP, | Interior penalty

> Consider the LP
minimize — bTy,
subject to ATy +s=c, (3)
s>0",
and the corresponding KKT conditions:
ATy +s=c,
Ax = b, (4)
x>0" s>0" x"s=0
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Interior point (polynomial) method for LP, Il Interior penalty

> Apply barrier method for (3), taking care of s > 0. Subproblem:

n
minimize — b’y — ”Z log(s;)
j=1

subject to ATy +s=c¢

» The KKT conditions for subproblem:

ATy+s:c,
Ax = b, (5)
xjsi=v, j=1,...,n

> (5): (4) with complementary slackness perturbed by v
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Interior point (polynomial) method for LP, 11l Interior penalty

Optimal solutions to subproblems

n
minimize — b’y — ”Z log(s;)
j=1

subject to ATy +s=c

for different v's form the central
path.
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Sequential quadratic programming (SQP), first attempt SQP

minimize f(x)
(x)<0
h(x) =0

Consider problem SubJeCt to g(x

> We have good solution methods for quadratic programs (QP)
(e.g., simplicial decomposition and gradient projection method)

> At iterate xi, approximate original problem with QP subproblem.
Find search direction p by solving QP subproblem

minimize 1pTV2f(x)p + V(i) p
p

IN

subject to () + Vai(x) p
hi(xe) + Vhi(x) T p

Il
-

Il
-
\'\

» Suggested method does not always work!
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Sequential quadratic programming (SQP), first attempt SQP

15 “~_decteasing objective
AN

Consider problem —1=0
. 2

min —x; — %(XQ) 0
X

st. () +(0e)’—1=0 .

Optimal solution (1,0)7, consider QP subproblem at x; = 1.1, x, = 0:
minimize —p; — %(pg)2
P
subject to p; +0.0955 =0

QP subproblem unbounded — bad linear approx. of nonlinear constraint!
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SQP, improved QP subproblem

» Linearized constraints might be too inaccurate!

» Account for nonlinear constraints in objective — Lagrangian idea.
L(x, pks Ak) = £(x) + 1 g(x) + AL h(x).
> Solve (improved) QP subproblem to find search direction p:
minil;nize pTV2 L(xk, ik, A )p + Vi(x) p

subject to gi(xk) + Vg,-(xk)Tp <0, i=1,....,m
hi(x) + Vhilx) ' p =0, j=1,...,1

» Direction p, with multipliers pgy1, Ak+1, define Newton step for
solving (nonlinear) KKT conditions (see text for more).

» Lagrangian Hessian V2 L(x, ik, A\x) may not be positive definite.
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SQP, working QP subproblem SQP

> Given xx € R" and a vector (11, Ak) € RT x RY, choose a positive
definite matrix By € R"™". By ~ V2 L(x, lk, \k)

> Solve
minimize %pTka-l-Vf(xk)Tp, (6a)
p
subject to gi(xk) + Vgi(xx)'p<0,i=1,...,m, (6b)
hj(xk)—i—th(xk)Tp:O,j:1,...,€ (6C)

» Working version of SQP search direction subproblem

» Quadratic convergence near KKT points. What about global
convergence? Perform line search with some merit function.
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Basic SQP, algorithm steps

1. Initialize iterate with (xo, tto, Ao), Bo and merit function M.

2. At iteration k with (X, tk, Ak) and B, solve QP subproblem for
search direction py:

minimize %pTka + Vf(xk)Tp
P

IA
o
Il
-
3

subject to  gi(x) + Vgi(x) " p
hi(x) +Vhi(x) p =0, j=1,...,1
Let 7 and A} be optimal multipliers of QP subproblem. Define
AXx = py, Ap= pf — g, A=, — Mg
3. Perform line search to find a, > 0 s.t. M(xx + axrAx) < M(xx).

4. Update iterates:
Xkt1 = Xk + DX, g1 = i + DAL, A1 = A + AN

5. Stop if converge, otherwise update By to Byi1; go to step 2.
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Merit SQP, exact penalty function

Merit function as non-differentiable exact penalty function Pe:

m l
¥s(x) == Z maximum {0, gi(x)} + > _ [h;(x)],

Po(x) := f(x) + v¥s(x)

> For large enough v, solution to QP subproblem (6) defines a
descent direction for Pe at (X, fix, Ak)-

» For large enough v, reduction in P, implies progress towards KKT
point in the original constrained optimization problem.

» Compare convergence results for exterior penalty methods.
» See text for more (Proposition 13.10).
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*Convergence of merit SQP met

» Combining the descent direction property and exact penalty function
property, one can prove convergence of the merit SQP method.

> Convergence of the SQP method towards KKT points can be
established under additional conditions on the choices of matrices

{B«}
1. Matrices By bounded
2. Every limit point of {Bj} positive definite
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Remarks

> Selecting the value of v is difficult

> No guarantees that the subproblems (6) are feasible; we assumed
above that the problem is well-defined

» P, is only continuous; some step length rules infeasible
> Fast convergence not guaranteed (the Maratos effect)

> Penalty methods in general suffer from ill-conditioning. For some
problems the ill-conditioning is avoided

» Exact penalty SQP methods suffer less from ill-conditioning, and
the number of QP:s needed can be small. They can, however, cost
a lot computationally

» fmincon in MATLAB is an SQP-based solver
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