Chalmers/GU Mathematics sciences \mathbf{EXAM}

TMA947/MMG621 NONLINEAR OPTIMISATION

Date:	21-01-02					
Time:	$8^{30} - 13^{30}$					
Aids:	All aids are allowed, but cooperation is not allowed					
Number of questions:	7; passed on one question requires 2 points of 3.					
	Questions are <i>not</i> numbered by difficulty.					
	To pass requires 10 points and three passed questions.					
Examiner:	Ann-Brith Strömberg					

Exam instructions

When you answer the questions

Use generally valid theory and methods. State your methodology carefully.

Only write on one page of each sheet. Do not use a red pen. Do not answer more than one question per page.

Question 1

(Simplex method)

Consider the problem to

minimize
$$f(\boldsymbol{x}) := -4x_1 + x_2,$$

subject to $x_1 - x_2 \leq 2,$
 $-x_1 + 2x_2 \leq 1,$
 $x_1, \quad x_2 \geq 0.$

- (0.5p) a) Formulate the problem on the standard form for linear optimization problems.
- (1.5p) b) Solve the problem using the simplex method. Present an optimal solution in the original variables.
- (1p) c) Consider modifying the problem by including the variable x_3 as follows

minimize
$$f(\boldsymbol{x}) := -4x_1 + x_2 + x_3,$$

subject to $x_1 - x_2 + x_3 \le 2,$
 $-x_1 + 2x_2 - 3x_3 \le 1,$
 $x_1, \quad x_2, \quad x_3 \ge 0.$

Solve the problem using the simplex method using the optimal basis from b) as initial basis. Present an optimal solution or a ray of unboundedness in the original variables

(3p) Question 2

(Farkas Lemma)

Let $B, C \in \mathbb{R}^{m \times n}$ be matrices and $v \in \mathbb{R}^m$ a vector. Assume that there exists a vector $z \leq 0^n$ such that

$$B\boldsymbol{z} = C\boldsymbol{z} + \boldsymbol{v}.$$

Show that there cannot exist a vector $\boldsymbol{y} \in \mathbb{R}^m$ such $\boldsymbol{v}^{\mathrm{T}} \boldsymbol{y} > 0$ and $C^{\mathrm{T}} \boldsymbol{y} \leq B^{\mathrm{T}} \boldsymbol{y}$.

Question 3

(KKT conditions)

Consider the following optimization problem, where c is a nonzero vector in \mathbb{R}^n :

$$\max \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x},$$

s.t. $\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x} \leq 1$

- (1p) a) Show that $\bar{\boldsymbol{x}} = \boldsymbol{c}/||\boldsymbol{c}||$ is a KKT point.
- (2p) b) Show that \bar{x} is the unique global optimal solution.

(3p) Question 4

(Gradient projection)

The gradient projection algorithm is a generalization of the steepest descent method to constrained optimization problems over convex sets. Given a feasible point \boldsymbol{x}^k , the next point is obtained according to $\boldsymbol{x}^{k+1} = \operatorname{Proj}_X (\boldsymbol{x}^k - \alpha_k \nabla f(\boldsymbol{x}))$, where X is the convex set over which we minimize, $\alpha_k > 0$ is the step length, and $\operatorname{Proj}_X(\boldsymbol{y}) = \arg\min_{\boldsymbol{x} \in X} ||\boldsymbol{x} - \boldsymbol{y}||$.

Consider the problem to

minimize
$$f(\boldsymbol{x}) = x_1^2 + 2x_2^2 - 2x_1x_2 - 2x_1 - 3x_2 + 8$$
,
subject to $\boldsymbol{x} \in X$,

where X is the rectangle $X = \{ \boldsymbol{x} \in \mathbb{R}^2 \mid 0 \le x_1 \le 3 \text{ and } 0 \le x_2 \le 2 \}$

Start at the point $\mathbf{x}^0 = (0, 0)^{\mathrm{T}}$ and perform two iterations of the gradient projection algorithm using step lengths $\alpha_k = 1$ for all k. You may solve the projection problem in the algorithm graphically. Is the point obtained a global/local minimum? Motivate why/why not.

(3p) Question 5

(Modelling)

Consider a Sudoku, i.e., a 3×3 matrix of cells where each cell is a 3×3 matrix of tiles; the Sudoku thus forms a 9×9 matrix of tiles. Each tile is to be assigned a number from one to nine such that the number is unique in the row, column, and cell containing the tile. The numbers of some tiles are given; an example of a Sudoku is illustrated in Figure 1.

	1452							
5	3			7				
6			1	9	5			
	9	8					6	
8				6		-		3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

- d column Figure 1: A Sudoku.
- (1.5p) a) Create a binary linear model of the feasible assignments of a Sudoku. Let x_{ijk} denote the binary decision choice of assigning number k to row i and column j, where $i, j, k \in \{1, \ldots, 9\}$. Let $(i, j, k) \in A$ denote the set of initially given numbers, i.e., $x_{ijk} = 1$ for all $(i, j, k) \in A$.

hint: Introduce the sets C_l containing the tiles (i, j) in cell l, l = 1, ..., 9.

(1.5p) b) Assume that the Sudoku has a feasible solution \bar{x} . Add a linear objective function to your model in a) such that \bar{x} is an optimal solution if and only if it is the only feasible solution. Show that any other feasible solution $\tilde{x} \neq \bar{x}$ has a better objective value.

Question 6

(true or false)

Indicate for each of the following three statements whether it is true or false. Motivate your answers!

- (1p) a) Let S be a nonempty, closed and convex set in \mathbb{R}^n , and let $f : \mathbb{R}^n \to \mathbb{R}$ be defined as $f(\boldsymbol{y}) = \min_{\boldsymbol{x} \in S} ||\boldsymbol{y} - \boldsymbol{x}||$. Claim: The function f is convex.
- (1p) b) *Claim:* If the KKT conditions are sufficient, then they are also necessary.
- (1p) c) Claim: For the phase I (when a BFS is not known a priori) problem of the simplex algorithm, the optimal value is always zero.

(3p) Question 7

(Lagrangian relaxation and decomposition)

Consider the problem to

subject

minimize
$$z$$
, (1)

to
$$\sum_{i \in \mathcal{I}} p_{ij} x_{ij} \le z,$$
 $i \in \mathcal{I},$ (2)

$$\sum_{i \in \mathcal{I}} x_{ij} = 1, \qquad \qquad i \in \mathcal{J}, \qquad (3)$$

$$x_{ij} \in \{0, 1\}, \qquad j \in \mathcal{I}, j \in \mathcal{J},$$

$$(4)$$

$$z \in \mathbb{R}.$$
 (5)

Here \mathcal{I} denotes a set of machines and \mathcal{J} denotes a set of tasks, x_{ij} denotes the decision to perform task j by machine i, and p_{ij} denotes the corresponding processing time. The variable z denotes the makespan, i.e., the time at which the last machine is finished.

- (1p) a) Lagrangian relax constraints (2) with multipliers u_i , $i \in \mathcal{I}$. Let $h(\boldsymbol{u})$ denote the value of the dual function and show that $h(\boldsymbol{u}) = -\infty$ if $\sum_{i \in \mathcal{I}} u_i \neq 1$.
- (1.5p) b) Assume that $\sum_{i \in \mathcal{I}} \bar{u}_i = 1$ and show that evaluating $h(\bar{u})$ reduces to solving \mathcal{J} separate optimization problems. State the optimal solution to each of these Lagrangian subproblems and the resulting formula for $h(\bar{u})$.
- (0.5p) c) Show that the Lagrangian subproblem solution forms a primal feasible solution for some value of z.