TMA947/MMG621 NONLINEAR OPTIMISATION

Date: 21-01-02
Time:
$8^{30}-13^{30}$
Aids:
All aids are allowed, but cooperation is not allowed
Number of questions: 7; passed on one question requires 2 points of 3 .
Questions are not numbered by difficulty.
To pass requires 10 points and three passed questions.

Examiner: Ann-Brith Strömberg

Exam instructions

When you answer the questions

Use generally valid theory and methods. State your methodology carefully.

Only write on one page of each sheet. Do not use a red pen.
Do not answer more than one question per page.

Question 1

(Simplex method)
Consider the problem to

$$
\begin{aligned}
& \text { minimize } \quad f(\boldsymbol{x}):=-4 x_{1}+x_{2}, \\
& \text { subject to } \quad x_{1}-x_{2} \leq 2 \text {, } \\
& -x_{1}+2 x_{2} \leq 1 \text {, } \\
& x_{1}, \quad x_{2} \geq 0 .
\end{aligned}
$$

$(0.5 p)$ a) Formulate the problem on the standard form for linear optimization problems.
$(1.5 p)$ b) Solve the problem using the simplex method. Present an optimal solution in the original variables.
$\mathbf{(1 p)} \quad$ c) Consider modifying the problem by including the variable x_{3} as follows

$$
\begin{aligned}
& \operatorname{minimize} \quad f(\boldsymbol{x}):=-4 x_{1}+x_{2}+x_{3}, \\
& \text { subject to } \\
& x_{1}-x_{2}+x_{3} \leq 2, \\
& -x_{1}+2 x_{2}-3 x_{3} \leq 1, \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0 .
\end{aligned}
$$

Solve the problem using the simplex method using the optimal basis from b) as initial basis. Present an optimal solution or a ray of unboundedness in the original variables

(3p) Question 2

(Farkas Lemma)
Let $B, C \in \mathbb{R}^{m \times n}$ be matrices and $\boldsymbol{v} \in \mathbb{R}^{m}$ a vector. Assume that there exists a vector $\boldsymbol{z} \leq \mathbf{0}^{n}$ such that

$$
B \boldsymbol{z}=C \boldsymbol{z}+\boldsymbol{v}
$$

Show that there cannot exist a vector $\boldsymbol{y} \in \mathbb{R}^{m}$ such $\boldsymbol{v}^{\mathrm{T}} \boldsymbol{y}>0$ and $C^{\mathrm{T}} \boldsymbol{y} \leq B^{\mathrm{T}} \boldsymbol{y}$.

Question 3

(KKT conditions)
Consider the following optimization problem, where \boldsymbol{c} is a nonzero vector in \mathbb{R}^{n} :

$$
\begin{aligned}
& \max \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \\
& \text { s.t. } \boldsymbol{x}^{\mathrm{T}} \boldsymbol{x} \leq 1
\end{aligned}
$$

(1p) a) Show that $\overline{\boldsymbol{x}}=\boldsymbol{c} /\|\boldsymbol{c}\|$ is a KKT point.
$(2 p) \quad$ b) Show that $\overline{\boldsymbol{x}}$ is the unique global optimal solution.

(3p) Question 4

(Gradient projection)

The gradient projection algorithm is a generalization of the steepest descent method to constrained optimization problems over convex sets. Given a feasible point \boldsymbol{x}^{k}, the next point is obtained according to $\boldsymbol{x}^{k+1}=\operatorname{Proj}_{X}\left(\boldsymbol{x}^{k}-\alpha_{k} \nabla f(\boldsymbol{x})\right)$, where X is the convex set over which we minimize, $\alpha_{k}>0$ is the step length, and $\operatorname{Proj}_{X}(\boldsymbol{y})=$ $\arg \min _{\boldsymbol{x} \in X}\|\boldsymbol{x}-\boldsymbol{y}\|$.

Consider the problem to

$$
\begin{aligned}
\text { minimize } & f(\boldsymbol{x})=x_{1}^{2}+2 x_{2}^{2}-2 x_{1} x_{2}-2 x_{1}-3 x_{2}+8 \\
\text { subject to } & \boldsymbol{x} \in X,
\end{aligned}
$$

where X is the rectangle $X=\left\{\boldsymbol{x} \in \mathbb{R}^{2} \mid 0 \leq x_{1} \leq 3\right.$ and $\left.0 \leq x_{2} \leq 2\right\}$
Start at the point $\boldsymbol{x}^{0}=(0,0)^{\mathrm{T}}$ and perform two iterations of the gradient projection algorithm using step lengths $\alpha_{k}=1$ for all k. You may solve the projection problem in the algorithm graphically. Is the point obtained a global/local minimum? Motivate why/why not.

(3p) Question 5

(Modelling)

Consider a Sudoku, i.e., a 3×3 matrix of cells where each cell is a 3×3 matrix of tiles; the Sudoku thus forms a 9×9 matrix of tiles. Each tile is to be assigned a number from one to nine such that the number is unique in the row, column, and cell containing the tile. The numbers of some tiles are given; an example of a Sudoku is illustrated in Figure 1.
$(1.5 p)$ a) Create a binary linear model of the feasible assignments of a Sudoku. Let $x_{i j k}$ denote the binary decision choice of assigning number k to row i and column

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Figure 1: A Sudoku. j, where $i, j, k \in\{1, \ldots, 9\}$. Let $(i, j, k) \in A$ denote the set of initially given numbers, i.e., $x_{i j k}=1$ for all $(i, j, k) \in A$.
hint: Introduce the sets C_{l} containing the tiles (i, j) in cell $l, l=1, \ldots, 9$.
$(1.5 p)$ b) Assume that the Sudoku has a feasible solution $\overline{\boldsymbol{x}}$. Add a linear objective function to your model in a) such that $\overline{\boldsymbol{x}}$ is an optimal solution if and only if it is the only feasible solution. Show that any other feasible solution $\tilde{\boldsymbol{x}} \neq \overline{\boldsymbol{x}}$ has a better objective value.

Question 6

(true or false)

Indicate for each of the following three statements whether it is true or false. Motivate your answers!
(1p) a) Let S be a nonempty, closed and convex set in \mathbb{R}^{n}, and let $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ be defined as $f(\boldsymbol{y})=\min _{\boldsymbol{x} \in S}\|\boldsymbol{y}-\boldsymbol{x}\|$.
Claim: The function f is convex.
(1p) b) Claim: If the KKT conditions are sufficient, then they are also necessary.
$\mathbf{(1 p)}$ c) Claim: For the phase I (when a BFS is not known a priori) problem of the simplex algorithm, the optimal value is always zero.

(3p) Question 7

(Lagrangian relaxation and decomposition)
Consider the problem to

$$
\begin{array}{cc}
\operatorname{minimize} & \\
\text { subject to } & i \in \mathcal{I}, \\
\sum_{j \in \mathcal{J}} p_{i j} x_{i j} \leq z, & i \in \mathcal{J}, \\
\sum_{i \in \mathcal{I}} x_{i j}=1, & j \in \mathcal{I}, j \in \mathcal{J}, \\
x_{i j} & \in\{0,1\}, \tag{5}\\
z \in \mathbb{R} . &
\end{array}
$$

Here \mathcal{I} denotes a set of machines and \mathcal{J} denotes a set of tasks, $x_{i j}$ denotes the decision to perform task j by machine i, and $p_{i j}$ denotes the corresponding processing time. The variable z denotes the makespan, i.e., the time at which the last machine is finished.
(1p) a) Lagrangian relax constraints (2) with multipliers $u_{i}, i \in \mathcal{I}$. Let $h(\boldsymbol{u})$ denote the value of the dual function and show that $h(\boldsymbol{u})=-\infty$ if $\sum_{i \in \mathcal{I}} u_{i} \neq 1$.
$(\mathbf{1 . 5 p})$ b) Assume that $\sum_{i \in \mathcal{I}} \bar{u}_{i}=1$ and show that evaluating $h(\overline{\boldsymbol{u}})$ reduces to solving \mathcal{J} separate optimization problems. State the optimal solution to each of these Lagrangian subproblems and the resulting formula for $h(\overline{\boldsymbol{u}})$.
$\mathbf{(0 . 5 p)}$ c) Show that the Lagrangian subproblem solution forms a primal feasible solution for some value of z.

