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Question 1

(Simplex method)

(0.5p) a) The problem on standard form is:

minimize  f(x) := —4x, + 2o,
subject to T1— Xo+ St =2,
—T1+ 229 +85 =1,
Ty, X9, S1, So >0.

(1.5p) b) We can start directly in phase two since the slack variables provides an initial
feasible basis.

First iteration: we have xp = (81, 82),$N = (x1>$2)>B = (1) (1)1’

N = [_11 _21] cp = m e =1[-4 1],Bb= m

Checking optimality:

iy =cy—cgBT'N=[-4 1] [0 0] { 11 _21} =[-4 1]
Not optimal, minimum reduce costs indicate z; enter the basis.

Minimum ratio test: B~'N; = {_11}

B~'b i
argmin ( )

in{>,—}
————— = argmin{—, —
ie(B-1N1);>0 (B71N1); 1

hence, s; leaves the basis.

Second iteration: we have xp = (z1,2),2ny = (22,51), B = _11 ﬂ B! =

[ o[ g [ -t -]

Checking optimality:

Lt _IBIN=[1 044 0] {‘21 (1)} -3 4]

Not optimal, minimum reduce costs indicate x5 enter the basis.

Minimum ratio test: B~'N; = {_11]

gmin Z00 i 3
argmin T — argming, —, —
ie(B-1N1);>0 (B71N1); 1

hence, s, leaves the basis.
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Third iteration: we have zp = (x1,22),xny = (81,82), B = 1 _1} B =

o[y S 5] -t - ]

Checking optimality:

10

Tt _IBIN=[0 0] +[7 3 {0 :

]:[7 3 >0

The solution in the original variables are 1 = 5, x5 = 3.

c) Continuing the third iteration, we have a new non-basic variable .

1 10
$N:(x3731732),N:|:_3 0 1},0}\}:[1 0 0].

Checking optimality:

iy=cy—cgBT'N=1[1 0 0]+[7 3] {_13 (1) (1)}:[—1 7 3]

Not optimal, minimum reduce costs indicate x3 enter the basis.

Minimum ratio test: B~'N; = {:ﬂ < 0, hence the problem is unbounded.
The ray of unboundedness in the original variables is x1 = 5+t, x5 = 3+ 2t, 23 =
t,t > 0.

Question 2
(Farkas Lemma)

We have that there exists a vector z < 0 such that Bz — Cz = v. Which means that
for x = —z it holds that

(C — B)x =,

x > 0.

v

Using Farkas lemma we then know that there can not exist any w € R™ such that

(C—B)'u >0,

viu < 0.

So there can not exist any y € R™ with CTy < BTy and vy > 0.
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(3p) Question 3

(KKT conditions)

(1p) a) Set f(x) = —c'z, g(x) = 'x — 1. The KKT conditions are

Vf(x)+pVg(z) = —c+ 2uz,
g (x)
0

0,
0.

v

When & = ¢/||c||, p = ||c||/2, all the conditions are fulfilled. So Z is a KKT
point.

(2p) b) Since the objective function and the feasible set are both convex, the problem
is convex. Thus KKT conditions are sufficient. Since the feasible set is convex
and 0 is an interior point, Slater CQ holds. Thus KKT conditions are necessary.
To solve the KKT system, suppose & is a KKT point. If g(z) < 0, then u = 0,
but Vf(x) = ¢ # 0, contradiction. Thus g(&) = 0, u > 0. & = ¢/2pu, plug it
into g(&) = 0, we get & = ¢/||c||. So, & is an unique KKT point. Since KKT
conditions are both necessary and sufficient, & is an unique global optimal.

(3p) Question 4
(Gradient projection)

Iteration 1: We have V f(z°) = (—2,—3)". We need to project the point (0,0)" —
(—2,-3)T = (2,3)7 on the feasible region X. We graphically see that this projection
is obtained by taking the point (2,2). Hence, ' = (2,2)7.

Iteration 2: We have Vf(z') = (—2,1)7. We need to project the point (2,2)" —
(=2, 1)T = (4,1)T on the feasible region X. We graphically see that this projection is
obtained by taking the point (3,1). Hence, 2 = (3,1).

The obtained point is neither a global nor a local minimum. This can be checked by,
e.g., the KKT conditions and realizing that the point is not a stationary point.
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(3p) Question 5

(modeling)

(1.5p) a) Definitions of additional sets

e [:={1,...,9} be the index set of rows.
o J:={1,...,9} be the index set of columns.
o L:={1,...,9} be the index set of cells.
e K :={1,...,9} be the index set of numbers.

The set of feasible solution S to the Sudoku is defined by:

injkzla jeJkekK,
el

D wpe=1, ielkek,
Jj€J

Z.l’ijk:l, le Lk € K,
(4.9)€C

> e =1, iel,jel,
keK

Tijk = 17 (iaja k) € A7

zijr € {0,1}, 1el,jeJkeK.

(1.5p) b) Consider the objective function, to be minimized
@) =232 D T
i€l jeJ keK

Let & € S and assume that @ # x. Let l;;ij be the number assigned to tile (i, j)
in solution &. Note that there exists by assumption at least one tile (i, j) such
that Z;;z,, = 0. We yield that

f(x) = Z Z@jfc” < Z Zl = Z Z Tijhy, Tijhy, = T(2).
iel jeJ iel jeJ icl jeJ

Thus, & is not an optimal solution. O

Question 6

(true or false)

(1p) a) True. By Weierstrass theorem, f(y) = mingcs ||y — || has an optimal solution.
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Suppose the optimal solution for f(y') is x!. For f(y?) the optimal solution is

.

M)+ 1= Nf(y?)
N e 1 . : 2
=Amin{[|y” — (|} + (1 - A) min{|jy” — |}
=My — 2|+ (1= N)|ly* — 2]
(by triangle-inequality )
>|[A(y' — ') + (1= N (y* — 2?)]]
=[Ay' + (1= Ny* = (! + (1= N)z?)|
since S is convex, ' and x? belong to S, Ax' + (1 — A\)z? also belong to S
> min{| D, + (1~ A)ys] — ]}
=f(Ay; + (1= Ny,)

Thus, the function f is convex.

(1p) b) False. Suppose the feasible set is 22 + x5 < 0, 22 — x5 < 0, and the objective
function (to be minimized) is f = z;. Since the only feasible point is (0,0)7,
and the objective function is convex, the problem is convex. Thus, the KKT
conditions are sufficient. But at point (0,0)7, the gradient cone is (a,0)” where
a € R, and the tangent cone is (0,0)7, so they are not the same. Thus, the KKT
conditions are not necessary.

(1p)  c¢) False. If no feasible solution exists, the optimal value is > 0. If feasible solutions
exist, the optimal value is = 0.

(3p) Question 7

(Lagrangian relaxation and decomposition)

(1p) a) The Lagrangian dual function is

h(u) = inf { (1 — Zuz> z+ Z U; Zpijxij

1€ €L jeJ

Zﬂfijzl,jéj,xijEB,ZER}

iel
Since there are no constraints on z we yield that h(u) = —oo unless the coefficient
1= crusis zero, ie, > . s u; = 1.

(1.5p) b) Note that there is no constraint that connects variables from different tasks and
the objective is linear. By also assuming ) ., %; = 1 we yield

h(ﬁ) = Zmln {Z aipijxij Zl’ij = 1,1’@‘ S B,Z S ]}

= icT iel

The constraints can be read as choose one machine for each task, hence choosing
a machine with (tied) smallest objective coefficient is optimal. Hence, let i} €
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argmin,; 4;pi;, j € J. The minimizer of the Lagrangian function at @ is thus
Tij = 1 for j € J and otherwise zero. We yield

h(u) = ZI{&H Wipij
JjeET

(0.5p) c) All relaxed constraints are satisfied by choosing z = argmax;c; > ; pij%ij, hence
(x, z) forms a primal feasible solution.




