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Question 1

(Simplex method)

a) The problem on standard form is:(0.5p)

minimize f(x) := −4x1 + x2,

subject to x1− x2 + s1 = 2,

−x1 + 2x2 + s2 = 1,

x1, x2, s1, s2 ≥ 0.

b) We can start directly in phase two since the slack variables provides an initial(1.5p)
feasible basis.

First iteration: we have xB = (s1, s2), xN = (x1, x2), B =

[
1 0
0 1

]
,

N =

[
1 −1
−1 2

]
, cB =

[
0
0

]
, cT

N =
[
−4 1

]
, B−1b =

[
2
1

]
.

Checking optimality:

c̄T
N = cT

N − cT
BB
−1N =

[
−4 1

]
−
[
0 0

] [ 1 −1
−1 2

]
=
[
−4 1

]
Not optimal, minimum reduce costs indicate x1 enter the basis.

Minimum ratio test: B−1N1 =

[
1
−1

]

argmin
i∈(B−1N1)i>0

(B−1b)i
(B−1N1)i

= argmin{2

1
,−}

hence, s1 leaves the basis.

Second iteration: we have xB = (x1, s2), xN = (x2, s1), B =

[
1 0
−1 1

]
, B−1 =[

1 0
1 1

]
, N =

[
−1 1
2 0

]
, cB =

[
−4
0

]
, cT

N =
[
1 0

]
, B−1b =

[
2
3

]
.

Checking optimality:

c̄T
N = cT

N − cT
BB
−1N =

[
1 0

]
+
[
4 0

] [−1 1
2 0

]
=
[
−3 4

]
Not optimal, minimum reduce costs indicate x2 enter the basis.

Minimum ratio test: B−1N1 =

[
−1
1

]

argmin
i∈(B−1N1)i>0

(B−1b)i
(B−1N1)i

= argmin{−, 3

1
}

hence, s2 leaves the basis.
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Third iteration: we have xB = (x1, x2), xN = (s1, s2), B =

[
1 −1
−1 2

]
, B−1 =[

2 1
1 1

]
, N =

[
1 0
0 1

]
, cB =

[
−4
1

]
, cT

N =
[
0 0

]
, B−1b =

[
5
3

]
.

Checking optimality:

c̄T
N = cT

N − cT
BB
−1N =

[
0 0

]
+
[
7 3

] [1 0
0 1

]
=
[
7 3

]
≥ 0

The solution in the original variables are x1 = 5, x2 = 3.

c) Continuing the third iteration, we have a new non-basic variable x3.(1p)

xN = (x3, s1, s2), N =

[
1 1 0
−3 0 1

]
, cT

N =
[
1 0 0

]
.

Checking optimality:

c̄T
N = cT

N − cT
BB
−1N =

[
1 0 0

]
+
[
7 3

] [ 1 1 0
−3 0 1

]
=
[
−1 7 3

]
Not optimal, minimum reduce costs indicate x3 enter the basis.

Minimum ratio test: B−1N1 =

[
−1
−2

]
≤ 0, hence the problem is unbounded.

The ray of unboundedness in the original variables is x1 = 5+ t, x2 = 3+2t, x3 =
t, t ≥ 0.

Question 2

(Farkas Lemma)

We have that there exists a vector z ≤ 0 such that Bz − Cz = v. Which means that
for x = −z it holds that

(C −B)x = v,

x ≥ 0.

Using Farkas lemma we then know that there can not exist any u ∈ Rm such that

(C −B)Tu ≥ 0,

vTu < 0.

So there can not exist any y ∈ Rm with CTy ≤ BTy and vTy > 0.
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Question 3(3p)

(KKT conditions)

a) Set f(x) = −ctx, g(x) = xtx− 1. The KKT conditions are(1p)

∇f(x) + µ∇g(x) = −c+ 2µx,

µg(x) = 0,

µ ≥ 0.

When x̄ = c/||c||, µ = ||c||/2, all the conditions are fulfilled. So x̄ is a KKT
point.

b) Since the objective function and the feasible set are both convex, the problem(2p)
is convex. Thus KKT conditions are sufficient. Since the feasible set is convex
and 0 is an interior point, Slater CQ holds. Thus KKT conditions are necessary.
To solve the KKT system, suppose x̃ is a KKT point. If g(x̃) < 0, then µ = 0,
but ∇f(x) = c 6= 0, contradiction. Thus g(x̃) = 0, µ > 0. x̃ = c/2µ, plug it
into g(x̃) = 0, we get x̃ = c/||c||. So, x̄ is an unique KKT point. Since KKT
conditions are both necessary and sufficient, x̄ is an unique global optimal.

Question 4(3p)

(Gradient projection)

Iteration 1: We have ∇f(x0) = (−2,−3)T . We need to project the point (0, 0)T −
(−2,−3)T = (2, 3)T on the feasible region X. We graphically see that this projection
is obtained by taking the point (2, 2). Hence, x1 = (2, 2)T .

Iteration 2: We have ∇f(x1) = (−2, 1)T . We need to project the point (2, 2)T −
(−2, 1)T = (4, 1)T on the feasible region X. We graphically see that this projection is
obtained by taking the point (3, 1). Hence, x2 = (3, 1)T .

The obtained point is neither a global nor a local minimum. This can be checked by,
e.g., the KKT conditions and realizing that the point is not a stationary point.
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Question 5(3p)

(modeling)

a) Definitions of additional sets(1.5p)

• I := {1, . . . , 9} be the index set of rows.

• J := {1, . . . , 9} be the index set of columns.

• L := {1, . . . , 9} be the index set of cells.

• K := {1, . . . , 9} be the index set of numbers.

The set of feasible solution S to the Sudoku is defined by:∑
i∈I

xijk = 1, j ∈ J, k ∈ K,∑
j∈J

xijk = 1, i ∈ I, k ∈ K,∑
(i,j)∈Cl

xijk = 1, l ∈ L, k ∈ K,

∑
k∈K

xijk = 1, i ∈ I, j ∈ J,

xijk = 1, (i, j, k) ∈ A,
xijk ∈ {0, 1}, i ∈ I, j ∈ J, k ∈ K.

b) Consider the objective function, to be minimized(1.5p)

f(x) :=
∑
i∈I

∑
j∈J

∑
k∈K

x̄ijkxijk.

Let x̃ ∈ S and assume that x̃ 6= x̄. Let k̄ij be the number assigned to tile (i, j)
in solution x̄. Note that there exists by assumption at least one tile (i, j) such
that x̃ijk̄ij = 0. We yield that

f(x̃) =
∑
i∈I

∑
j∈J

x̃ijk̄ij <
∑
i∈I

∑
j∈J

1 =
∑
i∈I

∑
j∈J

x̄ijk̄ij x̄ijk̄ij = f(x̄).

Thus, x̄ is not an optimal solution.

Question 6

(true or false)

a) True. By Weierstrass theorem, f(y) = minx∈S ||y−x|| has an optimal solution.(1p)
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Suppose the optimal solution for f(y1) is x1. For f(y2) the optimal solution is
x2.

λf(y1) + (1− λ)f(y2)

=λmin
x∈S
{||y1 − x||}+ (1− λ) min

x∈S
{||y2 − x||}

=λ||y1 − x1||+ (1− λ)||y2 − x2||
(by triangle-inequality )

≥||λ(y1 − x1) + (1− λ)(y2 − x2)||
=||λy1 + (1− λ)y2 − (λx1 + (1− λ)x2)||

since S is convex, x1 and x2 belong to S, λx1 + (1− λ)x2 also belong to S

≥min
x∈S
{||[λy1 + (1− λ)y2]− x||}

=f(λy1 + (1− λ)y2)

Thus, the function f is convex.

b) False. Suppose the feasible set is x2
1 + x2 ≤ 0, x2

1 − x2 ≤ 0, and the objective(1p)
function (to be minimized) is f = x1. Since the only feasible point is (0, 0)T ,
and the objective function is convex, the problem is convex. Thus, the KKT
conditions are sufficient. But at point (0, 0)T , the gradient cone is (a, 0)T where
a ∈ R, and the tangent cone is (0, 0)T , so they are not the same. Thus, the KKT
conditions are not necessary.

c) False. If no feasible solution exists, the optimal value is > 0. If feasible solutions(1p)
exist, the optimal value is = 0.

Question 7(3p)

(Lagrangian relaxation and decomposition)

a) The Lagrangian dual function is(1p)

h(u) = inf

{(
1−

∑
i∈I

ui

)
z +

∑
i∈I

ui
∑
j∈J

pijxij

∣∣∣∣ ∑
i∈I

xij = 1, j ∈ J, xij ∈ B, z ∈ R

}

Since there are no constraints on z we yield that h(u) = −∞ unless the coefficient
1−

∑
i∈I ui is zero, i.e.,

∑
i∈I ui = 1.

b) Note that there is no constraint that connects variables from different tasks and(1.5p)
the objective is linear. By also assuming

∑
i∈I ūi = 1 we yield

h(ū) =
∑
j∈J

min

{∑
i∈I

ūipijxij

∣∣∣∣ ∑
i∈I

xij = 1, xij ∈ B, i ∈ I

}

The constraints can be read as choose one machine for each task, hence choosing
a machine with (tied) smallest objective coefficient is optimal. Hence, let i∗j ∈
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argmini∈I ūipij, j ∈ J . The minimizer of the Lagrangian function at ū is thus
x̄i∗j j = 1 for j ∈ J and otherwise zero. We yield

h(ū) =
∑
j∈J

min
i∈I

ūipij

c) All relaxed constraints are satisfied by choosing z̄ = argmaxi∈I
∑

j∈J pijx̄ij, hence(0.5p)
(x̄, z̄) forms a primal feasible solution.


