TMA947/MMG621 NONLINEAR OPTIMISATION

Date: 21-01-02
Examiner: Ann-Brith Strömberg

Note: the solutions presented here are brief in relation to the requirements on your answers, in particular regarding your motivations.

Question 1

(Simplex method)
$(0.5 p)$ a) The problem on standard form is:

$$
\begin{aligned}
& \operatorname{minimize} \quad f(\boldsymbol{x}):=-4 x_{1}+x_{2}, \\
& x_{1}-x_{2}+s_{1}=2 \\
& \text { subject to } \\
& -x_{1}+2 x_{2}+s_{2}=1, \\
& x_{1}, \quad x_{2}, \quad s_{1}, \quad s_{2} \geq 0
\end{aligned}
$$

(1.5p) b) We can start directly in phase two since the slack variables provides an initial feasible basis.
First iteration: we have $x_{B}=\left(s_{1}, s_{2}\right), x_{N}=\left(x_{1}, x_{2}\right), B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$,

$$
N=\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right], c_{B}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], c_{N}^{\mathrm{T}}=\left[\begin{array}{ll}
-4 & 1
\end{array}\right], B^{-1} b=\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
$$

Checking optimality:

$$
\bar{c}_{N}^{\mathrm{T}}=c_{N}^{\mathrm{T}}-c_{B}^{\mathrm{T}} B^{-1} N=\left[\begin{array}{ll}
-4 & 1
\end{array}\right]-\left[\begin{array}{ll}
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{ll}
-4 & 1
\end{array}\right]
$$

Not optimal, minimum reduce costs indicate x_{1} enter the basis.
Minimum ratio test: $B^{-1} N_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$

$$
\underset{i \in\left(B^{-1} N_{1}\right)_{i}>0}{\operatorname{argmin}} \frac{\left(B^{-1} b\right)_{i}}{\left(B^{-1} N_{1}\right)_{i}}=\operatorname{argmin}\left\{\frac{2}{1},-\right\}
$$

hence, s_{1} leaves the basis.
Second iteration: we have $x_{B}=\left(x_{1}, s_{2}\right), x_{N}=\left(x_{2}, s_{1}\right), B=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right], B^{-1}=$

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], N=\left[\begin{array}{cc}
-1 & 1 \\
2 & 0
\end{array}\right], c_{B}=\left[\begin{array}{c}
-4 \\
0
\end{array}\right], c_{N}^{\mathrm{T}}=\left[\begin{array}{ll}
1 & 0
\end{array}\right], B^{-1} b=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Checking optimality:

$$
\bar{c}_{N}^{\mathrm{T}}=c_{N}^{\mathrm{T}}-c_{B}^{\mathrm{T}} B^{-1} N=\left[\begin{array}{ll}
1 & 0
\end{array}\right]+\left[\begin{array}{ll}
4 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
2 & 0
\end{array}\right]=\left[\begin{array}{ll}
-3 & 4
\end{array}\right]
$$

Not optimal, minimum reduce costs indicate x_{2} enter the basis.
Minimum ratio test: $B^{-1} N_{1}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

$$
\underset{i \in\left(B^{-1} N_{1}\right)_{i}>0}{\operatorname{argmin}} \frac{\left(B^{-1} b\right)_{i}}{\left(B^{-1} N_{1}\right)_{i}}=\operatorname{argmin}\left\{-, \frac{3}{1}\right\}
$$

hence, s_{2} leaves the basis.

Third iteration: we have $x_{B}=\left(x_{1}, x_{2}\right), x_{N}=\left(s_{1}, s_{2}\right), B=\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right], B^{-1}=$ $\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right], N=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], c_{B}=\left[\begin{array}{c}-4 \\ 1\end{array}\right], c_{N}^{\mathrm{T}}=\left[\begin{array}{ll}0 & 0\end{array}\right], B^{-1} b=\left[\begin{array}{l}5 \\ 3\end{array}\right]$.
Checking optimality:

$$
\bar{c}_{N}^{\mathrm{T}}=c_{N}^{\mathrm{T}}-c_{B}^{\mathrm{T}} B^{-1} N=\left[\begin{array}{ll}
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
7 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
7 & 3
\end{array}\right] \geq 0
$$

The solution in the original variables are $x_{1}=5, x_{2}=3$.
$\mathbf{(1 p)}$ c) Continuing the third iteration, we have a new non-basic variable x_{3}.
$x_{N}=\left(x_{3}, s_{1}, s_{2}\right), N=\left[\begin{array}{ccc}1 & 1 & 0 \\ -3 & 0 & 1\end{array}\right], c_{N}^{\mathrm{T}}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$.
Checking optimality:

$$
\bar{c}_{N}^{\mathrm{T}}=c_{N}^{\mathrm{T}}-c_{B}^{\mathrm{T}} B^{-1} N=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]+\left[\begin{array}{ll}
7 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
-1 & 7 & 3
\end{array}\right]
$$

Not optimal, minimum reduce costs indicate x_{3} enter the basis.
Minimum ratio test: $B^{-1} N_{1}=\left[\begin{array}{l}-1 \\ -2\end{array}\right] \leq 0$, hence the problem is unbounded.
The ray of unboundedness in the original variables is $x_{1}=5+t, x_{2}=3+2 t, x_{3}=$ $t, t \geq 0$.

Question 2

(Farkas Lemma)

We have that there exists a vector $\boldsymbol{z} \leq \mathbf{0}$ such that $B \boldsymbol{z}-C \boldsymbol{z}=\boldsymbol{v}$. Which means that for $\boldsymbol{x}=-\boldsymbol{z}$ it holds that

$$
\begin{array}{r}
(C-B) \boldsymbol{x}=\boldsymbol{v} \\
\boldsymbol{x} \geq \mathbf{0} .
\end{array}
$$

Using Farkas lemma we then know that there can not exist any $\boldsymbol{u} \in \mathbb{R}^{m}$ such that

$$
\begin{aligned}
(C-B)^{\mathrm{T}} \boldsymbol{u} & \geq \mathbf{0} \\
\boldsymbol{v}^{\mathrm{T}} \boldsymbol{u} & <0
\end{aligned}
$$

So there can not exist any $\boldsymbol{y} \in \mathbb{R}^{m}$ with $C^{\mathrm{T}} \boldsymbol{y} \leq B^{\mathrm{T}} \boldsymbol{y}$ and $\boldsymbol{v}^{\mathrm{T}} \boldsymbol{y}>0$.

(3p) Question 3

(KKT conditions)
(1p) a) Set $f(\boldsymbol{x})=-c^{t} \boldsymbol{x}, g(\boldsymbol{x})=\boldsymbol{x}^{t} \boldsymbol{x}-1$. The KKT conditions are

$$
\begin{aligned}
\nabla f(\boldsymbol{x})+\mu \nabla g(\boldsymbol{x}) & =-c+2 \mu \boldsymbol{x} \\
\mu g(\boldsymbol{x}) & =0 \\
\mu & \geq 0
\end{aligned}
$$

When $\overline{\boldsymbol{x}}=c /\|c\|, \mu=\|c\| / 2$, all the conditions are fulfilled. So $\overline{\boldsymbol{x}}$ is a KKT point.
$(2 \mathbf{p})$ b) Since the objective function and the feasible set are both convex, the problem is convex. Thus KKT conditions are sufficient. Since the feasible set is convex and $\mathbf{0}$ is an interior point, Slater CQ holds. Thus KKT conditions are necessary. To solve the KKT system, suppose $\tilde{\boldsymbol{x}}$ is a KKT point. If $g(\tilde{\boldsymbol{x}})<0$, then $\mu=0$, but $\nabla f(\mathbf{x})=c \neq \mathbf{0}$, contradiction. Thus $g(\tilde{\boldsymbol{x}})=0, \mu>0$. $\tilde{\boldsymbol{x}}=c / 2 \mu$, plug it into $g(\tilde{\boldsymbol{x}})=0$, we get $\tilde{\boldsymbol{x}}=c /\|c\|$. So, $\overline{\boldsymbol{x}}$ is an unique KKT point. Since KKT conditions are both necessary and sufficient, $\overline{\boldsymbol{x}}$ is an unique global optimal.

(3p) Question 4

(Gradient projection)
Iteration 1: We have $\nabla f\left(\boldsymbol{x}^{0}\right)=(-2,-3)^{T}$. We need to project the point $(0,0)^{T}-$ $(-2,-3)^{T}=(2,3)^{T}$ on the feasible region X. We graphically see that this projection is obtained by taking the point $(2,2)$. Hence, $\boldsymbol{x}^{1}=(2,2)^{T}$.

Iteration 2: We have $\nabla f\left(\boldsymbol{x}^{1}\right)=(-2,1)^{T}$. We need to project the point $(2,2)^{T}-$ $(-2,1)^{T}=(4,1)^{T}$ on the feasible region X. We graphically see that this projection is obtained by taking the point $(3,1)$. Hence, $\boldsymbol{x}^{2}=(3,1)^{T}$.

The obtained point is neither a global nor a local minimum. This can be checked by, e.g., the KKT conditions and realizing that the point is not a stationary point.

(3p) Question 5

(modeling)
$(1.5 p)$ a) Definitions of additional sets

- $I:=\{1, \ldots, 9\}$ be the index set of rows.
- $J:=\{1, \ldots, 9\}$ be the index set of columns.
- $L:=\{1, \ldots, 9\}$ be the index set of cells.
- $K:=\{1, \ldots, 9\}$ be the index set of numbers.

The set of feasible solution S to the Sudoku is defined by:

$$
\begin{array}{rlrl}
\sum_{i \in I} x_{i j k} & =1, & j & j \in J, k \in K \\
\sum_{j \in J} x_{i j k} & =1, & & i \in I, k \in K \\
\sum_{(i, j) \in C_{l}} x_{i j k} & =1, & l \in L, k \in K \\
\sum_{k \in K} x_{i j k} & =1, & i \in I, j \in J \\
x_{i j k} & =1, & & (i, j, k) \in A \\
x_{i j k} & \in\{0,1\}, & i \in I, j \in J, k \in K
\end{array}
$$

(1.5p) b) Consider the objective function, to be minimized

$$
f(x):=\sum_{i \in I} \sum_{j \in J} \sum_{k \in K} \bar{x}_{i j k} x_{i j k} .
$$

Let $\tilde{\boldsymbol{x}} \in S$ and assume that $\tilde{\boldsymbol{x}} \neq \overline{\boldsymbol{x}}$. Let $\bar{k}_{i j}$ be the number assigned to tile (i, j) in solution $\overline{\boldsymbol{x}}$. Note that there exists by assumption at least one tile (i, j) such that $\tilde{x}_{i j \bar{k}_{i j}}=0$. We yield that

$$
f(\tilde{\boldsymbol{x}})=\sum_{i \in I} \sum_{j \in J} \tilde{x}_{i j \bar{k}_{i j}}<\sum_{i \in I} \sum_{j \in J} 1=\sum_{i \in I} \sum_{j \in J} \bar{x}_{i j \bar{k}_{i j}} \bar{x}_{i j \bar{k}_{i j}}=f(\overline{\boldsymbol{x}}) .
$$

Thus, $\overline{\boldsymbol{x}}$ is not an optimal solution.

Question 6

(true or false)
(1p) a) True. By Weierstrass theorem, $f(\boldsymbol{y})=\min _{\boldsymbol{x} \in S}\|\boldsymbol{y}-\boldsymbol{x}\|$ has an optimal solution.

Suppose the optimal solution for $f\left(\boldsymbol{y}^{1}\right)$ is \boldsymbol{x}^{1}. For $f\left(\boldsymbol{y}^{2}\right)$ the optimal solution is \boldsymbol{x}^{2}.

$$
\begin{aligned}
& \lambda f\left(\boldsymbol{y}^{1}\right)+(1-\lambda) f\left(\boldsymbol{y}^{2}\right) \\
= & \lambda \min _{\boldsymbol{x} \in S}\left\{\left\|\boldsymbol{y}^{1}-\boldsymbol{x}\right\|\right\}+(1-\lambda) \min _{\boldsymbol{x} \in S}\left\{\left\|\boldsymbol{y}^{2}-\boldsymbol{x}\right\|\right\} \\
= & \lambda\left\|\boldsymbol{y}^{1}-\boldsymbol{x}^{1}\right\|+(1-\lambda)\left\|\boldsymbol{y}^{2}-\boldsymbol{x}^{2}\right\| \\
& (\text { by triangle-inequality }) \\
\geq & \left\|\lambda\left(\boldsymbol{y}^{1}-\boldsymbol{x}^{1}\right)+(1-\lambda)\left(\boldsymbol{y}^{2}-\boldsymbol{x}^{2}\right)\right\| \\
= & \left\|\lambda \boldsymbol{y}^{1}+(1-\lambda) \boldsymbol{y}^{2}-\left(\lambda \boldsymbol{x}^{1}+(1-\lambda) \boldsymbol{x}^{2}\right)\right\|
\end{aligned}
$$

$$
\text { since } S \text { is convex, } \boldsymbol{x}^{1} \text { and } \boldsymbol{x}^{2} \text { belong to } S, \lambda \boldsymbol{x}^{1}+(1-\lambda) \boldsymbol{x}^{2} \text { also belong to } S
$$

$$
\geq \min _{\boldsymbol{x} \in S}\left\{\left\|\left[\lambda \boldsymbol{y}_{1}+(1-\lambda) \boldsymbol{y}_{2}\right]-\boldsymbol{x}\right\|\right\}
$$

$$
=f\left(\lambda \boldsymbol{y}_{1}+(1-\lambda) \boldsymbol{y}_{2}\right)
$$

Thus, the function f is convex.
$(1 \mathbf{p}) \quad$ b) False. Suppose the feasible set is $x_{1}^{2}+x_{2} \leq 0, x_{1}^{2}-x_{2} \leq 0$, and the objective function (to be minimized) is $f=x_{1}$. Since the only feasible point is $(0,0)^{T}$, and the objective function is convex, the problem is convex. Thus, the KKT conditions are sufficient. But at point $(0,0)^{T}$, the gradient cone is $(a, 0)^{T}$ where $a \in R$, and the tangent cone is $(0,0)^{T}$, so they are not the same. Thus, the KKT conditions are not necessary.
$\mathbf{(1 p)}$ c) False. If no feasible solution exists, the optimal value is >0. If feasible solutions exist, the optimal value is $=0$.

(3p) Question 7

(Lagrangian relaxation and decomposition)
$(\mathbf{1 p})$ a) The Lagrangian dual function is
$h(\boldsymbol{u})=\inf \left\{\left(1-\sum_{i \in \mathcal{I}} u_{i}\right) z+\sum_{i \in \mathcal{I}} u_{i} \sum_{j \in \mathcal{J}} p_{i j} x_{i j} \mid \sum_{i \in I} x_{i j}=1, j \in J, x_{i j} \in \mathbb{B}, z \in \mathbb{R}\right\}$
Since there are no constraints on z we yield that $h(\boldsymbol{u})=-\infty$ unless the coefficient $1-\sum_{i \in \mathcal{I}} u_{i}$ is zero, i.e., $\sum_{i \in \mathcal{I}} u_{i}=1$.
$(1.5 p)$ b) Note that there is no constraint that connects variables from different tasks and the objective is linear. By also assuming $\sum_{i \in \mathcal{I}} \bar{u}_{i}=1$ we yield

$$
h(\overline{\boldsymbol{u}})=\sum_{j \in J} \min \left\{\sum_{i \in \mathcal{I}} \bar{u}_{i} p_{i j} x_{i j} \mid \sum_{i \in I} x_{i j}=1, x_{i j} \in \mathbb{B}, i \in I\right\}
$$

The constraints can be read as choose one machine for each task, hence choosing a machine with (tied) smallest objective coefficient is optimal. Hence, let $i_{j}^{*} \in$
$\operatorname{argmin}_{i \in I} \bar{u}_{i} p_{i j}, j \in J$. The minimizer of the Lagrangian function at \bar{u} is thus $\bar{x}_{i_{j}^{*} j}=1$ for $j \in J$ and otherwise zero. We yield

$$
h(\overline{\boldsymbol{u}})=\sum_{j \in \mathcal{J}} \min _{i \in I} \bar{u}_{i} p_{i j}
$$

$(\mathbf{0 . 5 p})$ c) All relaxed constraints are satisfied by choosing $\bar{z}=\operatorname{argmax}_{i \in I} \sum_{j \in J} p_{i j} \bar{x}_{i j}$, hence $(\overline{\boldsymbol{x}}, \bar{z})$ forms a primal feasible solution.

