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Today’s contents

I What to expect in the course

I The Bayesian approach to statistics: Introduction and overview

I The classical statistical approach: A comparison
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What do I expect from you?

I Formal expectations:
I Three individual obligatory assignments
I A final written exam, determining the grade

I In addition, my actual expectations:
I Read up on literature BEFORE lectures.
I Be active in connection with lectures. Ask questions! (IRL / via

zoom / afterwards)
I Make sure you do exercises that help YOU learn. Take advantage of

the exercise sessions.
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What can you expect from the course?

I A Canvas course page, also used for handing in assignments.

I Two lectures each week: In the fifth week the lecturer is Umberto
Picchini.

I One exercise session each week: Helping YOU work.

I Outside lectures and exercise sessions I will answer mail (and Canvas
messages) when I have time.
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THE IDEA BEHIND THIS COURSE:
A statistics course where we by default use the Bayesian approach, and
focus on methods to facilitate this approach.
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How to do Bayesian statistics

I Decide on
I what you want to learn about, formulated as as a variable Ypred with

one or more dimensions: What do you need to know to support your
decisions?

I What data will you use, formulated as a variable Ydata with usually
many dimensions.

I Decide on a probability model, assigning a probability (or probability
density) to all possible combinations of values for Ypred and Ydata.

I Base your decisions on the conditional probability distribution on
Ypred obtained by fixing Ydata to the observed value.
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Example: Deciding where to drill an oil well
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Simplest example: Flippling a biased coin

I Ypred will be H or T . Question: What is probability of H in next
throw?

I Unbiased coin: trivial
I Biased coin: Need data! Ydata: results of previous throws, e.g.,

Ydata = HTTHTTT .
I (First) model: Probability of heads is either 0.7 or 0.3, with a

probability 0.5 for each possibility.
I Probability of observing a sequence of r heads in N throws:

0.5 · 0.7r · (1− 0.7)N−r + 0.5 · 0.3r · (1− 0.3)N−r

I If, say Ydata = HTTHTTT and Ypred = H we can compute

Pr (Ypred | Ydata) =
Pr (Ydata,Ypred)

Pr (Ydata)
=

Pr (HTTHTTTH)

Pr (HTTHTTT )

=
0.5 · 0.73 · 0.35 + 0.5 · 0.33 · 0.75

0.5 · 0.72 · 0.35 + 0.5 · 0.32 · 0.75
= 0.3291892

I Exact same result if Ydata is instead number of heads in N tries,
ignoring sequence.
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Biased coin example
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Figure: The probability of heads at each point in a sequence of observations,
conditioning on the previous observations of heads and tails. Model: The
probability θ of heads is either 0.7 or 0.5, with
Pr (θ = 0.7) = Pr (θ = 0.3) = 0.5.
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A note on notation

I In Bayesian statistics, probability density functions and
probability mass functions are more useful than cumulative
distributions.

I When X is a discrete random variable, we write π(X ) or π(x) for its
probability mass function (assuming distribution clear from context).

I When X is a continuous random variable with a probability density
function, we also write π(X ) or π(x) for its probability density
function (assuming the distribution is clear from the context).

I This extends to conditional distributions: π(x | y) is a conditional
probability mass function if x is discrete, and a conditional density if
x is continuous.

I Thus we can write general formulas, like Bayes formula, like this:

π(x | y) =
π(y | x)π(x)

π(y)

I We use integrals to mean either integration or summation,
depending on whether the variable is discrete or continuous, e.g.,∫
π(x , y) dy = π(x).
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Formulation of models using a parameter θ

I Use a parameter (vector) θ so that
I You specify a joint distribution on (Ydata,Ypred , θ) so that its

marginal (summing or integrating out θ) is the intended distribution
on (Ydata,Ypred).

I Ydata and Ypred are conditionally independent given θ. In other words,

π(Ypred | θ,Ydata) = π(Ypred | θ)

I The joint distribution is generally specified by specifying
I π(θ) called the prior
I π(Ydata | θ) called the likelihood
I π(Ypred | θ)

I We then have π(Ydata,Ypred , θ) = π(θ)π(Ydata | θ)π(Ypred | θ).

I π(θ | Ydata) is called the posterior

I π(Ypred | Ydata) =
∫
π(Ypred , θ | Ydata) dθ =∫

π(Ypred | θ,Ydata)π(θ | Ydata) dθ =
∫
π(Ypred | θ)π(θ | Ydata) dθ
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Returning to our biased coins

I In our biased coin example, the model can be reformulated with θ
representing the probability of heads.

I In our first model, θ is a discrete variable with the possible values
0.7 and 0.3, and prior π(θ = 0.7) = π(θ = 0.3) = 0.5.

I If Ydata and Ypred specify counts of heads, we have
Ydata | θ ∼ Binomial(N, θ) and Ypred | θ ∼ Binomial(1, θ).

I Compute the posterior for θ, and the predictive distribution for Ypred

given Ydata!

I An alternative model uses that θ is any real value in (0, 1), with a
uniform prior. Then π(θ) = 1.

I We show next time that the posterior for θ now has a Beta
distribution, while the distribution of Ypred given Ydata gets a
Beta-Binomial distribution.
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Biased coin example

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Index

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Index

Figure: The probability of heads at each point in a sequence of observations, or
the probability of “success”, conditioning on the previous observations. The
priors used are π(θ = 0.7) = π(θ = 0.3) = 0.5 (left) and θ ∼ Uniform(0, 1)
(right).
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How you (may) do classical statistics

I Decide on
I what you want to learn about, formulated as as a variable Ypred with

one or more dimensions: What do you need to know to support your
decisions?

I What data will you use, formulated as a variable Ydata with usually
many dimensions.

I Decide on a parameter θ, and specify
I A likelihood π(Ydata | θ)
I π(Ypred | θ)

so that you have conditional independence:
π(Ypred | θ,Ydata) = π(Ypred | θ).

I You do not specify a prior π(θ)

I Instead, you specify a method for estimation to derive θ̂ from the
data Ydata and the likelihood π(Ydata | θ).

I Base your decisions on the probability distribution π(Ypred | θ̂).
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First difference: Using a fixed θ̂ instead of a posterior
distribution π(θ | Ydata)

I In our biased coin example: If you know the coin has either 0.7 or
0.3 probability for heads, following the procedure above means

I Using Ydata to decide on either 0.7 or 0.3 as a value for θ̂.
I Using that estimate for predicting Ypred

I In a linear regression setting:
I You estimate a line from the data, for example using least squares.
I You use this line for predictions.

I In general: Instead of using∫
π(Ypred | θ)π(θ | Ydata) dθ

(the Bayesian approach) you use

π(Ypred | θ̂)

NOTE: If π(θ | Ydata) is closely concentrated around θ̂ these two
approaches give (almost) the same thing!
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Problems with “throwing away uncertainty”

I If you “forget” about your uncertainty around your knowledge of θ,
you may become overconfident in your predictions for Ypred .

I As a response, classical methods may derive θ̂ together with an
uncertainty for this estimate.

I If the uncertainty is represented in a density f (θ), the prediction may
be based on ∫

π(Ypred | θ)f (θ) dθ

I Example: This is used for predictions in basic linear regression.
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Updated: How you might do classical statistics

I Decide on
I what you want to learn about, formulated as as a variable Ypred with

one or more dimensions: What do you need to know to support your
decisions?

I What data will you use, formulated as a variable Ydata with usually
many dimensions.

I Decide on a parameter θ, and specify
I A likelihood π(Ydata | θ)
I π(Ypred | θ)

so that you have conditional independence:
π(Ypred | θ,Ydata) = π(Ypred | θ).

I You do not specify a prior π(θ)

I Instead, you specify a method for estimation to derive θ̂ from the
data Ydata and the likelihood π(Ydata | θ), and you derive an
uncertainty density for your estimate f (θ).

I Base your decisions on the probability distribution∫
π(Ypred | θ)f (θ) dθ.
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Still problems, e.g, when relying on data from several
sources

I In more advanced, realistic applications, we learn about the
parameters θ using data from several sources. (Example: Oil
reservoir!)

I How do we combine the estimates, and their uncertainties? Classical
statistics does not provide a clear answer.

I In Bayesian statistics, you can string the analyses together, with the
posterior from one becoming the prior for the next. (More on this
next time).
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Second difference: Specifying an estimation method
instead of a prior

I Classical statistics seems to have a huge advantage in not needing a
prior!

I “Priors are subjective, and thus not scientific, whereas estimation
methods can be derived objectively”

I ...is this true?

I Problem: An estimation method depends both on an estimator and
a model formulation, and whether an estimator is objectively good
may vary with equivalent model formulations.
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Unbiased estimators

I Given a likelihood π(Ydata | θ), an unbiased estimator is a function g
from possible values for the data to possible values for θ, such that,
for all θ,

EYdata|θ g(Ydata) = θ

I Unbiasedness is regarded as an “objective” way to say that an
estimator is “good”.
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Example

I Assume we have a sequence of independent trials each resulting in
success (1) or failure (0), with a probability of succes equal to p.
Assume we have observed the following data:

0, 1, 0, 0, 1, 0, 0, 1

We then make the estimate 3/8 = 0.375 for p. How ”good” is this
estimate? Is it unbiased?

I It depends on which model formulation and which estimator we have
used!

I Alternative 1: The estimator is: Make 8 trials, let X be the number
of successes, and compute p̂ = X/8.

I Alternative 2: The estimator is: Make trials until you have produced
3 successful trials, let X be the number of trials you needed to do,
and compute p̂ = 3/X .
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Continuation of example

I Exercise: Prove that the estimator in alternative 1 is unbiased (easy),
and that the estimator in alternative 2 is biased (more difficult).

I Our point here: If we use the biasedness of the estimator to judge
whether the estimate 0.375 is good, the result depends on which
estimator we are using, which depends on what went on in the head
(the plans) of the person doing the experiments.
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Continuation of example

I In the same situation as above, and the same observations, we want
to make a hypothesis test with H0 : p ≥ 0.6, and alternative
hypothesis H1 : p < 0.6. What is the p-value?

I To answer the question, we need to know which test statistic should
be used.

I Alternative 1: The test statistic is: Make 8 trials and let X be the
number of successes. Then, assuming p = 0.6, we get
X ∼ Binomial(8, 0.6). The possible values for X and their
probabilities are

0 1 2 3 4 5 6 7 8
0.001 0.008 0.041 0.124 0.232 0.279 0.209 0.090 0.017

We get that the p-value becomes 0.174; the sum of the probabilities
for X = 0, 1, 2, 3.
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Continuation of example

I Alternative 2: The test statistic is: Make trials until 3 successes
have appeared and let X the number of trials necessary. Then,
assuming p = 0.6, we get X ∼ Neg-Binomial(3, 0.6). The possible
values for X and their probabilities are

3 4 5 6 7 8 9 10 11
0.216 0.259 0.207 0.138 0.083 0.046 0.025 0.013 0.006

12 13 14 15 16,17,. . .
0.003 0.001 0.001 0.000 total 0.000

We get the p-value 0.095; the sum of the probabilities for
8, 9, 10, . . . .

I Note that if we use a significance level of 0.1, we will reject the null
hypothesis using the second test statistic, but not using the first test
statistic.
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Correspondence between Bayesian and classical methods

I So maybe there are “reasonable” and “unreasonable” estimators, as
well as “reasonable” and “unreasonable” priors?

I If a classical approach derives an estimate θ̂ as well as a distribution
f (θ) for the uncertainty of the estimate, can we find a prior π(θ) so
that the posterior π(θ | Ydata) will be the same as f (θ), for all
choices of the data?

I In some cases we can.
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Example: The normal model with fixed variance

I Assume Ydata = (y1, y2, . . . , yn) where the yi are real values, and
that, independently given θ,

y1, y2, . . . , yn, ypred ∼ Normal(θ, 1)

Write y = (y1 + · · ·+ yn)/n.
I We show (next time): If the prior is π(θ), the posterior for θ is

proportional to1 Normal(θ, y , 1/n)π(θ).
I If we use a “flat prior” for θ (discussed next time), the posterior

density becomes Normal(θ; y , 1/n).
I In classical statistics we use the unbiased estimator
θ̂ = g(Ydata) = (y1 + y2 + · · ·+ yn)/n. Its distribution is

g(Ydata) ∼ Normal(θ, 1/n).

I Although NOT FORMALLY CORRECT, we might use the density
f (θ) = Normal(y , 1/n) to indicate the uncertainty in the estimate.
Then same result as the Bayesian analysis!

1Normal(θ; y , 1/n) means the value at θ of the density of the Normal distribution
with expectation y and variance 1/n
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Example, with numerical values

Example:

I In the example above, the observed values are 4.2, 5.6 and 4.6.

I The estimate for θ becomes 4.8, the mean of the numbers.

I A 95% confidence interval for θ can then be computed as[
4.8− 1.96 · 1√

3
, 4.8 + 1.96 · 1√

3

]
= [3.67, 5.93]

I The correct interpetation of the interval: If three numbers are
resampled from the distribution many times, the re-computed
confidence intervals will contain θ with probability 95%.

I Another common interpretation: The interval [3.67, 5.93] contains θ
with 95% probability. INCORRECT in classical statistics as θ is then
not a random variable.

I However, in Bayesian statistics, we have θ | Ydata ∼ Normal(y , 1/n)
and the statement above becomes CORRECT.
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Philosophical differences: What does probability mean
when applied in the real world?

I The mathematical theory of probability is not under discussion.

I What does it mean when we say:
I The probability of yahtzee (5 equal dice) in one throw is 0.00077.
I The probability of rain tomorrow is 0.3
I The probability that this oil well will produce oil is 0.93.

I Classical focus: Repeatable events

I Bayesian approach: Making probability models for knowledge about
some part of the real world, not the part of the real world itself.
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Summary (a personal view)

WARNING: Contains Bayesian propaganda!
I The Bayesian paradigm can in principle be applied in all contexts

where probabilistic predictions are wanted.
I Advantage: Work clearly divided into model specification

(“subjective”) and making predictions (mathematical computations).
I The classical approach is NOT more “objective” than the Bayesian

approach.
I All statistical modelling require decisions based on contextual

information, outside of the data. In specifying the prior, the
Bayesian method makes very clear what this information is and how
it is used. The classical method less so.

I I believe: All statistical methodology that behaves sensibly can be
viewed as (an approximation to) a Bayesian approach, and a
particular choice of prior.

I Ideas in classical statistics can generally be translated to ideas in
Bayesian statistics (example: bias-variance tradeoff).

I Remember: One should model knowledge about the real world, not
the real world itself.
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The academic discussion; history

I Bayesian statistics is named after rev. Thomas Bayes who
formulated a version of Bayes’ theorem in 1763.

I Early probabilists, such as Laplace, worked in ways compatible with
the Bayesian paradigm.

I In the 20’th century, the frequentist paradigm dominated, developed
for example by Fisher.

I Towards the end of the 20’th century, there was a furious academic
discussion, between “Frequentists” and “Bayesians”.

I Fast computers facilitated the rise of Bayesian statistics in practice.

I Today, a lot of basic courses still focus on Frequentist methods,
whereas applied research can often be Bayesian or “agnostic” (i.e.,
“anything goes”).
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