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Required knowledge

> in basic probability theory:
» Basic knowledge of distributions, densities, conditional distributions,
expectations ...
> Some familiarity with standard distributions such as Binomial,
Poisson, Gamma (but no need to memorize).
> Consult your previous statistics/probability textbooks!

> in clasical statistics:

> ...not much, you have mostly seen this in the first lecture.
» in computation:

> We use R. Learn R now!

> ...in fact, no advanced programming is needed to get through this
course.
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Overview

» Definition and examples of conjugacy. How to compute in practice.
» Predictive distributions when using conjugate families.

» The exponential family of distributions.
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Review from last lecture: Bayesian framework

v

Prediction variable Yjeq, data Yy, parameter (vector) 6.

v

Specify a complete model by specifying prior (6), likelihood
7(Ydata | 0), and prediction distribution 7(Yyreq | 0)-

Derive the posterior m(0 | Yyata)-

v

v

Make predictions using

77'( Ypred | Ydata) = /77( Ypred ‘ 9)77(0 | Ydata) df
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Another note on notation

» For standard distributions, we use similar but different notation for a
random variable itself, and its density (or probability mass function).

» Example: We write
Y ~ Binomial(N, p) and 7(y) = Binomial(y; N, p)
» so we have

Binomial(y; N, p) = (g) p(L—p).

> Example: We write

Y ~ Normal(y, o?) and 7(y) = Normal(y; 1, 0?)
> so we have
Normal(y: 11, 02) = ——— exp ( ——(y — p)?
rmal(y; p, o) = xp | = (y — .
yip o2 p 252 y—Hu

» Sometimes we write, e.g., w(y | i, 02) = Normal(y; i, 02) as p and
02 could also be random variables.
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Review from last time: The biased coin

Ypred = 1 or O (heads or tails). Yyara: Number of heads in N
previous throws. 6: prob. of heads.

We use Ygats = y ~ Binomial(N, ) and Ypeq ~ Binomial(1, ).
We first used a prior with two possible values for 8: 0.7 and 0.3,
with equal probabilities.

» We now compute the posterior when the prior is 6§ ~ Uniform(0, 1).

v

v

v
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The Beta distribution

0 has a Beta distribution on [0, 1], with parameters « and 3, if its density has

the form )
71—(0 | CY,,B) = B(Oé 5)0(1_1(1 - 0)5—1
where B(«, 3) is the Beta function defined by
_ H(a)F(B)
B(a, 8) = Tlatp)

where ['(t) is the Gamma function defined by

F(t):/ x'le ™ dx
0

Recall that for positive integers, (n) = (n—1)!=0-1----- (n—1). See for
example Wikipedia for more properties of the Beta distribution, and the Beta
and Gamma functions. We write 7(6 | «, 8) = Beta(0; o, 8) for the Beta
density; we then also write 6 ~ Beta(«, 3).
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The biased coin, continued

» We get from the definition of Beta density that
Jo 6211~ )P db = B(av, ).
» Thus the posterior in our case becomes
67 (1 — )N-y
B(y +1,N—y+1)

(0 [y) =

» We see that
0|y~Beta(y +1,N—y+1)

» NOTE: Computations can be made simpler, by not keeping track of
factors not containing y!

8/28



Yet another note on notation

> We define
expression 1 Xg expression 2

to mean that the second expression is equal to the first expression
except for a factor that does not contain the variable 6.

» We say that expression 2 is proportional to expression 1 as a
function of 6.

» For example
N Y N—y y N—y
y 60¥(1-0) xp 67 (1 —0)

» Another example:

1 1 ) 1 )
N —ﬁ(y—u) o, eXp —@(y—u) .
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Using a Beta distribution as prior

Assume the prior is § ~ Beta(«, 8). Compute the posterior!

v

v

The posterior becomes

0|y~ Beta(a+y,B+N~—y)

v

DEFINITION: Given a likelihood model 7w(y | ). A conjugate family
of priors to this likelihood is a parametric family of distributions so
that if the prior for 6 is in this family, the posterior 6 | y is also in
the family.

v

So the Beta family is conjugate to the Binomial likelihood: The
Beta-Binomial conjugacy.

v

NOTE: Uniform(0, 1) = Beta(1, 1), so our previous example is part
of this example.
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Biased coin example, continued

Figure: A prior density Beta(8;33.4,33.4) for § compared with the
corresponding posterior density Beta(6;33.4 + 11,33.4 + 19).
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Biased coin example, continued
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Figure: The probability of heads at each point in a sequence of observations, or
the probability of “success”, conditioning on the previous observations. The
priors used are 6 ~ Uniform(0,1) (left) and 6 ~ Beta(33.4,33.4) (right).
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Example: The Poisson-Gamma conjugacy

> Assume the likelihood is 7(y | #) = Poisson(y; 0), i.e., that

ot
7T(yle)ZeGﬁ

v

Then 7(6 | a, ) = Gamma(0; o, 8) where «, 3 are positive
parameters, is a conjugate family. Recall that

/BQ
M(a)

Gamma(6; a, B) = 6>~ exp(—36).

v

Compute the posterior!

v

Specifically, we get

m(0|y)=Gamma (6;a+y,5+1).

v

See Albert Section 3.3 for a computational example.
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Example: The Normal-Gamma conjugacy

» Assume the likelihood is 7(y | 7) = Normal(y; u, 1/7), so that y is
normally distributed with known mean g and unknown precision 7.
The likelihood becomes

» Prove: 7(7 | o, 8) = Gamma(r; o, 8) is a conjugate family, where
(7 | a, B) o<, 7% exp(—f7).

» Specifically, we get the posterior below:

(| y) = Gamma (i 5.6+ 3y~ ).

» We can also describe this conjugacy using the variance ¢ and an
inverse Gamma (or inverse Chi-squared) distribution.
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Example: The Normal-Normal conjugacy

» Assume the likelihood is 7(y | ) = Normal(y; 6,1/75), where 15 is a
known and fixed precision.

» Then 7(6 | u, 7) = Normal(6; 1, 1/7), where 7 is positive and 1 has
any real value, is a conjugate family.

» Specifically, we have the posterior

1
m(0 | y) = Normal | 6; M7
To+T TO0+T

» PROOF: Use completion of squares.
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PROOF

(0] y)

Xo

Xo

m(y | 0)m(0)
exp (—%(y - 9)2) exp (—%(0 - u)z)

1

exp (—2 [Toy2 — 270y0 + 100% + 170 — 210 + 7',u2]>
1

exp <—2 [(To +7)6% — 2(7oy + Tp)@])
1 oy + 7\

exp ( 2(TO+T) (9 TmtT )

Normal <9; oy 7 1)
TO+7T To+T
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Conditionally independent data

Assume Yyaa = (v1, ¥2), where y1 and y, are conditionally
independent given 0, i.e.,

v

w(y1 ] 0,y2) =7(y1 | 0).
» Then

(0 | y1,y2) o T(y1,y2 | 0)w(0) = 7(y1 | O)m(y2 | O)m(0)

» NOTE: We may first find the posterior given y», then use this
posterior as the prior when finding the posterior given y;: The result
will be the posterior given y; and y».

» NOTE: We may update the prior on 6 sequentially with data
Y1, Y2, ..., Yn, as long as all the y; are conditionally independent
given 6.
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Example from Lecture 1: Normal distribution with fixed

variance 1

> Assume Ygaa = (V1,¥2,-- -, Yn) Where, independently given 6,

Y1, Y255 Ya ~ Normal(6,1)

v

If the prior is 6 ~ Normal(u,1/7), we get

}’1+Tﬂ )
Yn)

[ ~ Normal
| y1 rm ( T

v

Repeated updates give (writing y = (y1 + - /n)

ny+7p 1
0 e ¥n~N I —_—
|y17 » Y orma ( n+r1 n+7'>

v

Similar computations give, for any prior 7(6),
(0| y1,-..,yn) g Normal (0;y,1/n)w(0)

We see that, using the improper prior w(6) ocg 1, or setting 7 =0,
gives the posterior Normal(y, 1/n).

v
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Improper distributions

» An improper distribution is represented by a function of the variable.
However it integrates or sums to oo, and is thus not an actual
density or probability mass function.

» Two such functions are regarded as representing the same
distribution if they are proportional.

» Extending theory so that such functions can be used as priors turns
out to be extremely useful.

» There are no extra problems as long as you make sure the posterior
density you use for predictions is proper (i.e., integrates or sums to

1).
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Predictive distributions

» Recall: We use for prediction

77( Ypred | Ydata) = /F(Ypred ‘ 9)71'(9 | Ydata) do

> Yored | Ydata is called the posterior predictive distribution.
> In Bayesian statistics, we may even compute the marginal
distribution for Yjq, for example as
7(Youd) = [ (Ve | 0)(6)
(as long as we use a proper prior).
» This is called the prior predictive distribution.
> It describes your beliefs about Y4 before you have looked at any

data.
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Predictive distributions when using conjugate priors

> If the prior is conjugate to Yp.q | 6 the prior predictive density is
always easy to compute:

_ 7"'(Ypred | 0)m(0)
o) = =20 Vi)

for any 6. The densities on the right-hand side can all be computed!

» If the prior is conjugate also to the likelihood Yya:, | 6, the prior and
the posterior (6 | Yaata) are in the same family, so the posterior will
also be conjugate to Ypreq | € as above.

» Thus, to compute the posterior predictive density, use the same
formula as above, just use as prior for 6 the posterior distribution

77(9 | Ydata) .
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Example: Predictive distribution for the Beta-Binomial

conjugacy

» Assume 7(y | 8) = Binomial(y; N, 8) and 7(0) = Beta(; «, 8).
> We get for the prior predictive

) = n(y | 0)m(0)  Binomial(y; N, 0) Beta(0; o, 3)

y)o= m@|y) Beta(f;a+y,B+N-—y)
(3 )era-orroa-op/8as)
0o 11— 0) N1/ B(a+y. B+ N—y)

(3) 2z

» This is the Beta-Binomial distribution with parameters N, «, and :

y ~ Beta-Binomial(N, a, )
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Predictive distribution for the Poisson-Gamma conjugacy

We have seen: If y | 6 ~ Poisson(6) and 8 ~ Gamma(c, 3) then
0|y~ Gamma(a+y,5+1).

When Ypeq = y and y ~ Poisson(6), direct computation gives the
prior predictive distribution

)~ TU1OTO) 5Tt y)

(0 | y) (6 + 1)+ T (a)y!

Note that the positive integer x has a Negative-Binomial distribution
with parameters r and p if its probability mass function is

wel )= (M) o = i 0o

We get that the prior predictive is Negative-Binomial(«, /(1 + 5)).

Note that we can get the posterior predictive by simply replacing the
« and B of the prior with the corresponding parameters after the
update with data.
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Poisson-Gamma example

Figure: Two different ways of predicting the values of ks, given the
observations ki = 20, ko = 24, k3 = 23 when k; | § ~ Poisson(f) and an
improper Gamma(0, 0) prior. The pluses represent the Bayesian predictions
using the posterior predictive; the circles represent the Frequentist predictions,
using the Poisson distribution with parameter (20 + 24 + 23)/3 = 22.33.
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Example: Predictive distribution for the Normal-Normal

conjugacy

» Assume 7(y | #) = Normal(y; 8,1/7) and 7(0) = Normal(p, 1/7).

> Instead of using the type of computations above, the following is
simpler:

> We know from general theory of the normal distribution that m(x) is
normal.

» E(y) = E(E(y | 0)) = E(6) =
> Var(y) = Var(E(y | 0)) + E(Va (y |0)) = Var(0) + E(1/70) =
1/7+1/70.
» So for the prior predictive we get

7(y) = Normal(y; u; 1/7 + 1/70)
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The exponential family of distributions

» Many parametric families of distributions can be written in a
particular form:

m(x | n) = h(x)g(n) exp (1 - u(x))

where 77 and u(x) are vectors, 7 - u(x) is their dot product, and 7 is
called the “natural parameters” of the family.

» Some examples of exponential families of distributions,
corresponding to particular choices of g, h, and u:

>

vVYyY VY VvV VvYYyYy

Normal distributions.

Beta distributions.

Poisson distributions.

Gamma distributions.

Bernoulli distributions and Binomial distributions for a fixed N.
Multinomial distributions for a fixed N.

....and many more.

» Exponential families of distributions share many properties and can
be studied together.
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Conjugacies and exponential families

> If (x| n) = h(x)g(n) exp (n - u(x)), then a conjugate family of
priors for 7 is given as

w(n | v, 8) o<y g(n)” exp (n- ) -
The posterior becomes
(1| x) o<y g(n)” " exp (- (B + u(x))).

» Essentially all examples of conjugacy fit into the framework above,
so the above describes conjugacy in general.

» Note that the conjugate family of priors is also an exponential family.
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Some properties

Assume 7(x | n) = h(x)g(n) exp (1 - u(x).
> The expectation (and further moments) of u(x) can be expressed
with a differentiation of g(n):

Exjplu(x)] = =V, log g(n).

» Given data xq, X2, ..., xy and a prior 7(n | v, B) o<, g(n)” exp (n - B)
the posterior becomes

(| xt, ., xn) oo, g(n)" N exp (77 . <B + Z u(x;))) .

» With for example a flat prior (=0, 5 = 0), the posterior is
o<, g(mN exp (n D u(x,-)) and

> The posterior (i.e., likelihood) depends only on Y. u(x;).
> The maximum posterior (i.e., maximum likelihood) is the 7j satisfying

N
1
~Vy logg(h) = 5 D ulx).
i=1
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