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Required knowledge

I in basic probability theory:
I Basic knowledge of distributions, densities, conditional distributions,

expectations ...
I Some familiarity with standard distributions such as Binomial,

Poisson, Gamma (but no need to memorize).
I Consult your previous statistics/probability textbooks!

I in clasical statistics:
I ...not much, you have mostly seen this in the first lecture.

I in computation:
I We use R. Learn R now!
I ...in fact, no advanced programming is needed to get through this

course.
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Overview

I Definition and examples of conjugacy. How to compute in practice.

I Predictive distributions when using conjugate families.

I The exponential family of distributions.
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Review from last lecture: Bayesian framework

I Prediction variable Ypred , data Ydata, parameter (vector) θ.

I Specify a complete model by specifying prior π(θ), likelihood
π(Ydata | θ), and prediction distribution π(Ypred | θ).

I Derive the posterior π(θ | Ydata).

I Make predictions using

π(Ypred | Ydata) =

∫
π(Ypred | θ)π(θ | Ydata) dθ
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Another note on notation

I For standard distributions, we use similar but different notation for a
random variable itself, and its density (or probability mass function).

I Example: We write

Y ∼ Binomial(N, p) and π(y) = Binomial(y ;N, p)

I so we have

Binomial(y ;N, p) =

(
N
y

)
py (1− p)N−y .

I Example: We write

Y ∼ Normal(µ, σ2) and π(y) = Normal(y ;µ, σ2)

I so we have

Normal(y ;µ, σ2) =
1√

2πσ2
exp

(
1

2σ2
(y − µ)2

)
.

I Sometimes we write, e.g., π(y | µ, σ2) = Normal(y ;µ, σ2) as µ and
σ2 could also be random variables.
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Review from last time: The biased coin

I Ypred = 1 or 0 (heads or tails). Ydata: Number of heads in N
previous throws. θ: prob. of heads.

I We use Ydata = y ∼ Binomial(N, θ) and Ypred ∼ Binomial(1, θ).

I We first used a prior with two possible values for θ: 0.7 and 0.3,
with equal probabilities.

I We now compute the posterior when the prior is θ ∼ Uniform(0, 1).
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The Beta distribution

θ has a Beta distribution on [0, 1], with parameters α and β, if its density has
the form

π(θ | α, β) =
1

B(α, β)
θα−1(1− θ)β−1

where B(α, β) is the Beta function defined by

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)

where Γ(t) is the Gamma function defined by

Γ(t) =

∫ ∞
0

x t−1e−x dx

Recall that for positive integers, Γ(n) = (n − 1)! = 0 · 1 · · · · · (n − 1). See for

example Wikipedia for more properties of the Beta distribution, and the Beta

and Gamma functions. We write π(θ | α, β) = Beta(θ;α, β) for the Beta

density; we then also write θ ∼ Beta(α, β).
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The biased coin, continued

I We get from the definition of Beta density that∫ 1

0
θα−1(1− θ)β−1 dθ = B(α, β).

I Thus the posterior in our case becomes

π(θ | y) =
θy (1− θ)N−y

B(y + 1,N − y + 1)
.

I We see that
θ | y ∼ Beta(y + 1,N − y + 1)

I NOTE: Computations can be made simpler, by not keeping track of
factors not containing y !
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Yet another note on notation

I We define

expression 1 ∝θ expression 2

to mean that the second expression is equal to the first expression
except for a factor that does not contain the variable θ.

I We say that expression 2 is proportional to expression 1 as a
function of θ.

I For example (
N
y

)
θy (1− θ)N−y ∝θ θy (1− θ)N−y

I Another example:

1√
2πσ2

exp

(
− 1

2σ2
(y − µ)2

)
∝µ exp

(
− 1

2σ2
(y − µ)2

)
.
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Using a Beta distribution as prior

I Assume the prior is θ ∼ Beta(α, β). Compute the posterior!

I The posterior becomes

θ | y ∼ Beta(α + y , β + N − y)

I DEFINITION: Given a likelihood model π(y | θ). A conjugate family
of priors to this likelihood is a parametric family of distributions so
that if the prior for θ is in this family, the posterior θ | y is also in
the family.

I So the Beta family is conjugate to the Binomial likelihood: The
Beta-Binomial conjugacy.

I NOTE: Uniform(0, 1) = Beta(1, 1), so our previous example is part
of this example.
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Biased coin example, continued
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Figure: A prior density Beta(θ; 33.4, 33.4) for θ compared with the
corresponding posterior density Beta(θ; 33.4 + 11, 33.4 + 19).
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Biased coin example, continued
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Figure: The probability of heads at each point in a sequence of observations, or
the probability of “success”, conditioning on the previous observations. The
priors used are θ ∼ Uniform(0, 1) (left) and θ ∼ Beta(33.4, 33.4) (right).
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Example: The Poisson-Gamma conjugacy

I Assume the likelihood is π(y | θ) = Poisson(y ; θ), i.e., that

π(y | θ) = e−θ
θy

y !

I Then π(θ | α, β) = Gamma(θ;α, β) where α, β are positive
parameters, is a conjugate family. Recall that

Gamma(θ;α, β) =
βα

Γ(α)
θα−1 exp(−βθ).

I Compute the posterior!

I Specifically, we get

π(θ | y) = Gamma (θ;α + y , β + 1) .

I See Albert Section 3.3 for a computational example.
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Example: The Normal-Gamma conjugacy

I Assume the likelihood is π(y | τ) = Normal(y ;µ, 1/τ), so that y is
normally distributed with known mean µ and unknown precision τ .
The likelihood becomes

π(y | τ) =
1√

2π1/τ
exp

(
− 1

2/τ
(y − µ)2

)
∝τ τ 1/2 exp

(
−1

2
(y − µ)2τ

)
I Prove: π(τ | α, β) = Gamma(τ ;α, β) is a conjugate family, where

π(τ | α, β) ∝τ τα−1 exp(−βτ).

I Specifically, we get the posterior below:

π(τ | y) = Gamma

(
τ ;α +

1

2
, β +

1

2
(y − µ)2

)
.

I We can also describe this conjugacy using the variance σ2 and an
inverse Gamma (or inverse Chi-squared) distribution.
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Example: The Normal-Normal conjugacy

I Assume the likelihood is π(y | θ) = Normal(y ; θ, 1/τ0), where τ0 is a
known and fixed precision.

I Then π(θ | µ, τ) = Normal(θ;µ, 1/τ), where τ is positive and µ has
any real value, is a conjugate family.

I Specifically, we have the posterior

π(θ | y) = Normal

(
θ;
τ0y + τµ

τ0 + τ
,

1

τ0 + τ

)
I PROOF: Use completion of squares.
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PROOF

π(θ | y) ∝θ π(y | θ)π(θ)

∝θ exp
(
−τ0

2
(y − θ)2

)
exp

(
−τ

2
(θ − µ)2

)
= exp

(
−1

2

[
τ0y

2 − 2τ0yθ + τ0θ
2 + τθ2 − 2τθµ+ τµ2

])
∝θ exp

(
−1

2

[
(τ0 + τ)θ2 − 2(τ0y + τµ)θ

])
∝θ exp

(
−1

2
(τ0 + τ)

(
θ − τ0y + τµ

τ0 + τ

)2
)

∝θ Normal

(
θ;
τ0y + τµ

τ0 + τ
,

1

τ0 + τ

)
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Conditionally independent data

I Assume Ydata = (y1, y2), where y1 and y2 are conditionally
independent given θ, i.e.,

π(y1 | θ, y2) = π(y1 | θ).

I Then

π(θ | y1, y2) ∝θ π(y1, y2 | θ)π(θ) = π(y1 | θ)π(y2 | θ)π(θ)

I NOTE: We may first find the posterior given y2, then use this
posterior as the prior when finding the posterior given y1: The result
will be the posterior given y1 and y2.

I NOTE: We may update the prior on θ sequentially with data
y1, y2, . . . , yn, as long as all the yi are conditionally independent
given θ.
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Example from Lecture 1: Normal distribution with fixed
variance 1

I Assume Ydata = (y1, y2, . . . , yn) where, independently given θ,

y1, y2, . . . , yn ∼ Normal(θ, 1)

I If the prior is θ ∼ Normal(µ, 1/τ), we get

θ | y1 ∼ Normal

(
y1 + τµ

1 + τ
,

1

1 + τ

)
I Repeated updates give (writing y = (y1 + · · ·+ yn)/n)

θ | y1, . . . , yn ∼ Normal

(
ny + τµ

n + τ
,

1

n + τ

)
.

I Similar computations give, for any prior π(θ),

π(θ | y1, . . . , yn) ∝θ Normal (θ; y , 1/n)π(θ)

I We see that, using the improper prior π(θ) ∝θ 1, or setting τ = 0,
gives the posterior Normal(y , 1/n).
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Improper distributions

I An improper distribution is represented by a function of the variable.
However it integrates or sums to ∞, and is thus not an actual
density or probability mass function.

I Two such functions are regarded as representing the same
distribution if they are proportional.

I Extending theory so that such functions can be used as priors turns
out to be extremely useful.

I There are no extra problems as long as you make sure the posterior
density you use for predictions is proper (i.e., integrates or sums to
1).
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Predictive distributions

I Recall: We use for prediction

π(Ypred | Ydata) =

∫
π(Ypred | θ)π(θ | Ydata) dθ

I Ypred | Ydata is called the posterior predictive distribution.

I In Bayesian statistics, we may even compute the marginal
distribution for Ypred , for example as

π(Ypred) =

∫
π(Ypred | θ)π(θ) dθ

(as long as we use a proper prior).

I This is called the prior predictive distribution.

I It describes your beliefs about Ypred before you have looked at any
data.
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Predictive distributions when using conjugate priors

I If the prior is conjugate to Ypred | θ the prior predictive density is
always easy to compute:

π(Ypred) =
π(Ypred | θ)π(θ)

π(θ | Ypred)

for any θ. The densities on the right-hand side can all be computed!

I If the prior is conjugate also to the likelihood Ydata | θ, the prior and
the posterior π(θ | Ydata) are in the same family, so the posterior will
also be conjugate to Ypred | θ as above.

I Thus, to compute the posterior predictive density, use the same
formula as above, just use as prior for θ the posterior distribution
π(θ | Ydata).
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Example: Predictive distribution for the Beta-Binomial
conjugacy

I Assume π(y | θ) = Binomial(y ;N, θ) and π(θ) = Beta(θ;α, β).

I We get for the prior predictive

π(y) =
π(y | θ)π(θ)

π(θ | y)
=

Binomial(y ;N, θ) Beta(θ;α, β)

Beta(θ;α + y , β + N − y)

=

(
N
y

)
θy (1− θ)N−yθα−1(1− θ)β−1/B(α, β)

θα+y−1(1− θ)β+N−y−1/B(α + y , β + N − y)

=

(
N
y

)
B(α + y , β + N − y)

B(α, β)

I This is the Beta-Binomial distribution with parameters N, α, and β:

y ∼ Beta-Binomial(N, α, β)
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Predictive distribution for the Poisson-Gamma conjugacy

I We have seen: If y | θ ∼ Poisson(θ) and θ ∼ Gamma(α, β) then
θ | y ∼ Gamma(α + y , β + 1).

I When Ypred = y and y ∼ Poisson(θ), direct computation gives the
prior predictive distribution

π(y) =
π(y | θ)π(θ)

π(θ | y)
=

βαΓ(α + y)

(β + 1)α+yΓ(α)y !

I Note that the positive integer x has a Negative-Binomial distribution
with parameters r and p if its probability mass function is

π(x | r , p) =

(
x + r − 1

x

)
· (1− p)xpr =

Γ(x + r)

Γ(x + 1)Γ(r)
(1− p)xpr

I We get that the prior predictive is Negative-Binomial(α, β/(1 + β)).

I Note that we can get the posterior predictive by simply replacing the
α and β of the prior with the corresponding parameters after the
update with data.
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Poisson-Gamma example
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Figure: Two different ways of predicting the values of k4, given the
observations k1 = 20, k2 = 24, k3 = 23 when ki | θ ∼ Poisson(θ) and an
improper Gamma(0, 0) prior. The pluses represent the Bayesian predictions
using the posterior predictive; the circles represent the Frequentist predictions,
using the Poisson distribution with parameter (20 + 24 + 23)/3 = 22.33.
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Example: Predictive distribution for the Normal-Normal
conjugacy

I Assume π(y | θ) = Normal(y ; θ, 1/τ0) and π(θ) = Normal(µ, 1/τ).

I Instead of using the type of computations above, the following is
simpler:

I We know from general theory of the normal distribution that π(x) is
normal.

I E(y) = E(E(y | θ)) = E(θ) = µ.
I Var(y) = Var(E(y | θ)) + E(Var(y | θ)) = Var(θ) + E(1/τ0) =

1/τ + 1/τ0.

I So for the prior predictive we get

π(y) = Normal(y ;µ; 1/τ + 1/τ0)
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The exponential family of distributions

I Many parametric families of distributions can be written in a
particular form:

π(x | η) = h(x)g(η) exp (η · u(x))

where η and u(x) are vectors, η · u(x) is their dot product, and η is
called the “natural parameters” of the family.

I Some examples of exponential families of distributions,
corresponding to particular choices of g , h, and u:

I Normal distributions.
I Beta distributions.
I Poisson distributions.
I Gamma distributions.
I Bernoulli distributions and Binomial distributions for a fixed N.
I Multinomial distributions for a fixed N.
I ....and many more.

I Exponential families of distributions share many properties and can
be studied together.
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Conjugacies and exponential families

I If π(x | η) = h(x)g(η) exp (η · u(x)), then a conjugate family of
priors for η is given as

π(η | ν, β) ∝η g(η)ν exp (η · β) .

The posterior becomes

π(η | x) ∝η g(η)ν+1 exp (η · (β + u(x))) .

I Essentially all examples of conjugacy fit into the framework above,
so the above describes conjugacy in general.

I Note that the conjugate family of priors is also an exponential family.
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Some properties

Assume π(x | η) = h(x)g(η) exp (η · u(x)).
I The expectation (and further moments) of u(x) can be expressed

with a differentiation of g(η):

Ex|η[u(x)] = −∇η log g(η).

I Given data x1, x2, . . . , xN and a prior π(η | ν, β) ∝η g(η)ν exp (η · β)
the posterior becomes

π(η | x1, . . . , xN) ∝η g(η)ν+N exp

(
η ·

(
β +

N∑
i=1

u(xi )

))
.

I With for example a flat prior (µ = 0, β = 0), the posterior is

∝η g(η)N exp
(
η ·
∑N

i=1 u(xi )
)

and

I The posterior (i.e., likelihood) depends only on
∑

i u(xi ).
I The maximum posterior (i.e., maximum likelihood) is the η̂ satisfying

−∇η log g(η̂) =
1

N

N∑
i=1

u(xi ).
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