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Review

v

Defined the Bayesian paradigm: Ygata, Ypred, 0, etc.

v

Defined some basic concepts and properties: Prior, posterior,
predictive, sequential use of data, etc.

v

Defined conjugacy; seen some examples.

v

The exponential family of distributions.
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Overview for today

v

More tools for basic Bayesian inference; next time: Inference based
on simulation.

v

Discrete Bayes and discretization. Numerical integration.

Mixtures.

v

v

Some multivariate conjugacies.
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nce using discretization

» When 6 has a finite (and manageable) number of possible values:
Seen examples (in Albert) of Bayesian computations.
» Discretization: Approximating a continuous prior for 6 with a
discrete prior.
» Presentation break for computations by hand
» Summary:
> The prior distribution 7(0) is represented by a vector.
> The posterior distribution (6 | y) is obtained by termwise

multiplication of the vectors m(y | 6) and 7(0) and normalizing so
the result sums to 1.

> The prediction m(ynew | ¥) = [, 7(¥new | 0)7(0 | y) df simplifies to
taking the sum of the termwise product of the vectors 7(Vnew | 0)
and 7(0 | y).

» Very often a very good and accurate computational method, when
theta has 1 (or 2 or 3) dimensions.

» Why does it not work when 6 has many dimensions?
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Bayesian inference using numerical integration

» The prediction we want to make can be expressed as a quotient of
integrals:

71'(ypred ‘ Ydata) = T\ Ypred | 0 77(9 | Ydata) do

[ 700 1)
— (ydata | 0)m(0)
N /9 (foed #) fe (Vdata | 0)7(0) dO
f (yPred ‘ 6) (Ydata | 9)71'(9) do
fe 71-(ydat’a ‘ 9)77(9) do

» One idea: Compute these integrals using numerical integration.

do

» Presentation break for computations by hand

» Can work well as long as the dimension of § is low (max 2 or 37)
and the functions are well-behaved.
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Mixtures of conjugate priors

» A family of conjugate priors, with limited flexibility, can be greatly
extended by also considering linear combinations of these prior
densities.

» Example: The Poisson-Gamma conjugacy: Assume
m(y | 0) = e %60 /y! and 7(0) o<p 0% exp(—36)
so that 7(0 | y) ocg 0T ~Lexp(—(8 + 1)0).
» Then a linear combination prior (C; and G, integration constants)
7(0) = w1 C10° L exp(—F10) + wa G0°2 7 exp(—F26)
will result in a linear combination posterior
(0 | y) oo wa GO exp(—(Br+1)0)+mo GO~ exp(—(B2+1)0).

» This works for any conjugate family, and any linear combination of
priors from it.

» Note however that the weigts of the densities in the linear
combination are updated!
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Mixtures of priors: Formulas

> Assume (6 | A) is a family of conjugate priors to 7(y | 6). Given
AL,y -y An let gi(0 ] y) and fi(y) denote the posterior and the prior
predictive, respectively, when using the prior 7(6 | A;). Then

m(y | 0)m(0 | Ai) = &0 | y)fi(y)-

» Assume we use a linear combination prior
7(0) = Zn: w;m(0 | A;) where Zn: w; = 1.
i=1 i=1
» For the prior predictive we get
") = [ 10) S w0 | 1) o = 3" i)
i=1 i=1

» for the posterior we get
m(y | O)x(0) 7y [0) 3y wim(0 ] N)

w0 |y) = ) S wifi(y)
_SLwWe01y) O, where w! — —"fiY)
B 27:1 W;fi(X) - J:Z]. ng(‘g | y) here T 27:1 W'f'g%/lz



Mixtures of priors

» NOTE: The formula on previous overhead is valid for any mixture of
any set of priors. However: It is useful mostly when the posterior
and predictive distributions are easily computable.

» NOTE: The fj(y) in the updated weights

f;
W — w;fi(y)

T L wifi(y)

can be interpreted as the probability of observing the data y if we
assume the prior (6 | A;).
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Example of mixtures

>

We use a likelihood Binomial(3; 4, 6), with 3 successes observed in 4
trials.
We use a mixture prior

7(8) = 0.5 - Beta(#; 2.5,2.5) 4+ 0.5 - Beta(6; 11, 31)

Recall that if y | 8 ~ Binomial(n,#) and 6 ~ Beta(«, 3) then the
prior predictive becomes

0= (7) X

Thus the first updated weight becomes

B(2.543,2.5+1)
0.5- () B(2.5,2.5)

B(2.513,2.5+1) B(1113,3111)
0.5 (3) Basas T 05- (3) B(11.31)

!
wy =

= 0.7975

and for the second updated weight wj =1 — wy = 0.2025.
The posterior becomes

(0| y = 3) = 0.7975-Beta(6; 2.543, 2.5+1)+0.2025-Beta(6; 11+3, 31+1).

9/19



Multivariate conjugacy example:

The normal likelihood, no parameters known

» Assume y ~ Normal(u,1/7), with both p and 7 uncertain. The
likelihood becomes

.
w(y | po7) e 72 exp (=2 (x — w)?)

» Then the Normal-Gamma family is conjugate: The pair (i, 7) has a
Normal-Gamma distribution with parameters pg, A > 0, > 0,8 > 0
if the density has the form

BV g ( AT 2>
F(a)V2r exp | —fAT 2(u o)

» Note: If (i, 7) has the Normal-Gamma distribution above, we have
7 ~ Gamma(a, 8) and p | 7 ~ Normal(uo, 1/(AT)).

T, 7 | po, A, o, B) =
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Computing the posterior

> Assume x = (xi, X2, . . ., Xp) sampled from Normal(p,1/7).
» Assume prior

7 ~ Gamma(a, 8) and p | 7 ~ Normal(uo,1/(A7))

» Computing the posterior density using our proportionality method,
the result is a Normal-Gamma density which can be expressed as

n

n 1 0 n\ (X — uo)?
T|x Gamma<a+2,5+22(x, X) +m#

=

Ao + nx 1
A+n T(A+n)7

» Computations like these can get hairy; if you are lazy like me,
consult, e.g., Wikipedia.

» Using improper prior m(yu, ) o, » 1/7 gives posterior
7| x ~ Gamma(251, 137 [ (x —X)?) and p | 7, x ~ Normal(x, 1).

» NOTE: The expectation of the posterior for 7 then becomes 1
divided by the classical variance estimator, and the expectation for

becomes X.

w|7,x ~ Normal (
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Predictive distributions

> Given parameters v > 0, u, and 02, a real variable x has a
generalized t-distribution, x ~ t(v, 1, 02), when the density is

. 2y _ 1 1 /x—p N
t(x,z/,,u,a)—ms(y/z,l/z) ll—i—y( o )]

» When x | 7 ~ Normal(y, s&) and 7 ~ Gamma(a, ), the marginal
(i.e. prior predictive) becomes

m(x) =t (x; 2a, 1, Oi\)

» When x | u,7 ~ Normal(,1/7), 1 | 7 ~ Normal(po, =), and
7 ~ Gamma(a, 8), then the marginal becomes

w(x) =t <x; 2a, o, BO;X”) .

» To derive this, marginalize first over the normal-normal conjugacy.
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Example: Normal observations

A Normal(u, 1/7) distribution is investigated.
We use a prior m(u, 1) o<, r 1/7.

» First question: If observations are 3.1, 4.2, 2.9, 3.7, 3.9, find the
posterior and the posterior predictive.

» Second question: Given the additional information that we must
have p € [3,3.5], find the posterior and the posterior predictive.

» Third question: Then given the additional observations 2.5, 2.1, and
4.0, find the posterior and the posterior predictive.

» Presentation break for computations by hand
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Multinomial-Dirichlet conjugacy

> Assume x = (xi, ..., Xy) ~ Multinomial(m, 1,05, ...,0,), with
01+ - -+ 6, =1, so that x; counts the number of results of type i
in m independent trials, if results of type i/ have probability 8;. The
probability mass function is

m!

— X1 Xn
w(x|61,...,0,) = x1!...xk!91 ... 0
» 0= (01,...,0,) with 6; >0 and >_"_, 6; = 1 has a Dirichlet
distribution with parameters oy, ..., «, if the density can be written
as
r N 3
(OO, g) = 0T O s o

Mag)...T(an)
» Prove that the Dirichlet family is a conjugate family to the
Multinomial likelhiood!
» With a Dirichlet(ay, ..., a,) prior, one can show that the probability
of observing a type i result in the next trial becomes
o + X;
Zj:l(aj +x)

14/19



Applied example: Forensic DNA matches

» DNA matching between a trace and a person may be used as proof
in criminal cases: For this, one needs to compute the strength of
evidence when there is a match at some investigated /oci.

» At an STR locus in a chromosome, a person has a particular allele
(variant): Variants there differ by the number of repetitions of a
short sequence (such as CAAT).

» The probability that a random person has a particular allele at this
chromosome needs to be computed.

» To do so, population databases of alleles are collected. A small
database might look like
10 |11 |12 | 13| 14 | 15| 16 | 17 | 18
1 10|58 1439 |3 |02

» What is the probability that a random person has 17 repetitions as
his allele?

» It is common to use the Multinomial-Dirichlet model together with
pseudocounts, i.e., values for «;, for example a; = 0.5 or a; = 1.

» Probabilities get a reasonable value, instead of zero.

15/19



The multivariate normal distribution

>

We say X has a multivariate (n-variate) normal distribution, if it is a
real vector of length n with density

(%) = g o0 (—5 (X~ E X )

where the vector y is the expectation and the n x n symmetric
matrix X is the covariance matrix. |27Y| is the determinant of 27 X.

We write X ~ Normal(u, X).

Just as in the 1-dimensional case: If Y | X ~ Normal(AX + B, %)
and X ~ Normal(u, Xo), and if we look at Y | X as a likelihood and
m(X) as a prior, then this is a conjugate prior.

We usually express this by using that

> In the case above, the joint density for X and Y is multivariate
normal.

» For a multivariate normal vector, the conditional vector when fixing
one or more components in the vector is also multivariate normal.
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The joint multivariate normal distribution

» Assume Y | X ~ Normal(AX + B,%1) and X ~ Normal(u, ¥o).

Then
X 1% Zo ZoAt
<Y) ~ Normal dAu + B} ! [AZO AToA + 34

» One can prove this directly from the definitions, or use
> Prove first that the joint distribution must be multivariate normal.
> Then, compute the expectation and the covariance matrix of the
joint vector, using, e.g., the formulas for total expectation and
variation, or matrix algebra.
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The conditional and the marginal in a multivariate normal

distribution

Assume the joint distribution for two vectors 61 and 6, is multivariate
normal. Then

» If we integrate out one of them, e.g. 65, the marginal for 6; is
multivariate normal. The parameters can be read off the expectation
and the covariance matrix of the joint distribution.

» If we fix 6, then the conditional distribution 61 | 6, is also
multivariate normal. In fact, if

1
01 p1| |[Pu Pr
(92> ~ Normal ([Mz] ’ {le Pzz] >

01 | 02 ~ Normal(uy — P;' Pia(Y — ), Pipt)

we have
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Elements of a proof

» Prove the algebraic matrix identity

(BEIERIRBRR)
= (0~ + PR Pra(02 — 112))" Pra (01 — pin + Py Pra(62 — p12))

+(02 — p2) (Paz — P P11 Pri2) (02 — pu2).

> Use the definition of the joint density for 1 and 6, and rewrite it as
two factors, one depending only on 6;.
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