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Review

I Defined the Bayesian paradigm: Ydata, Ypred , θ, etc.

I Defined some basic concepts and properties: Prior, posterior,
predictive, sequential use of data, etc.

I Defined conjugacy; seen some examples.

I The exponential family of distributions.
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Overview for today

I More tools for basic Bayesian inference; next time: Inference based
on simulation.

I Discrete Bayes and discretization. Numerical integration.

I Mixtures.

I Some multivariate conjugacies.
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Bayesian inference using discretization

I When θ has a finite (and manageable) number of possible values:
Seen examples (in Albert) of Bayesian computations.

I Discretization: Approximating a continuous prior for θ with a
discrete prior.

I Presentation break for computations by hand
I Summary:

I The prior distribution π(θ) is represented by a vector.
I The posterior distribution π(θ | y) is obtained by termwise

multiplication of the vectors π(y | θ) and π(θ) and normalizing so
the result sums to 1.

I The prediction π(ynew | y) =
∫
θ
π(ynew | θ)π(θ | y) dθ simplifies to

taking the sum of the termwise product of the vectors π(ynew | θ)
and π(θ | y).

I Very often a very good and accurate computational method, when
theta has 1 (or 2 or 3) dimensions.

I Why does it not work when θ has many dimensions?
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Bayesian inference using numerical integration

I The prediction we want to make can be expressed as a quotient of
integrals:

π(ypred | ydata) =

∫
θ

π(ypred | θ)π(θ | ydata) dθ

=

∫
θ

π(ypred | θ)
π(ydata | θ)π(θ)∫

θ
π(ydata | θ)π(θ) dθ

dθ

=

∫
θ
π(ypred | θ)π(ydata | θ)π(θ) dθ∫

θ
π(ydata | θ)π(θ) dθ

I One idea: Compute these integrals using numerical integration.

I Presentation break for computations by hand

I Can work well as long as the dimension of θ is low (max 2 or 3?)
and the functions are well-behaved.
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Mixtures of conjugate priors

I A family of conjugate priors, with limited flexibility, can be greatly
extended by also considering linear combinations of these prior
densities.

I Example: The Poisson-Gamma conjugacy: Assume

π(y | θ) = e−θθy/y ! and π(θ) ∝θ θα−1 exp(−βθ)

so that π(θ | y) ∝θ θα+y−1 exp(−(β + 1)θ).

I Then a linear combination prior (C1 and C2 integration constants)

π(θ) = w1C1θ
α1−1 exp(−β1θ) + w2C2θ

α2−1 exp(−β2θ)

will result in a linear combination posterior

π(θ | y) ∝θ w1C1θ
α1+y−1 exp(−(β1+1)θ)+w2C2θ

α2+y−1 exp(−(β2+1)θ).

I This works for any conjugate family, and any linear combination of
priors from it.

I Note however that the weigts of the densities in the linear
combination are updated!
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Mixtures of priors: Formulas

I Assume π(θ | λ) is a family of conjugate priors to π(y | θ). Given
λ1, . . . , λn, let gi (θ | y) and fi (y) denote the posterior and the prior
predictive, respectively, when using the prior π(θ | λi ). Then

π(y | θ)π(θ | λi ) = gi (θ | y)fi (y).

I Assume we use a linear combination prior

π(θ) =
n∑

i=1

wiπ(θ | λi ) where
n∑

i=1

wi = 1.

I For the prior predictive we get

π(y) =

∫
π(y | θ)

n∑
i=1

wiπ(θ | λi ) dθ =
n∑

i=1

wi fi (y).

I for the posterior we get

π(θ | y) =
π(y | θ)π(θ)

π(y)
=
π(y | θ)

∑n
j=1 wjπ(θ | λj)∑n

i=1 wi fi (y)

=

∑n
j=1 wj fj(y)gj(θ | y)∑n

i=1 wi fi (x)
=

n∑
j=1

w ′j gj(θ | y) where w ′j =
wj fj(y)∑n
i=1 wi fi (y)

.
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Mixtures of priors

I NOTE: The formula on previous overhead is valid for any mixture of
any set of priors. However: It is useful mostly when the posterior
and predictive distributions are easily computable.

I NOTE: The fj(y) in the updated weights

w ′j =
wj fj(y)∑n
i=1 wi fi (y)

can be interpreted as the probability of observing the data y if we
assume the prior π(θ | λi ).
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Example of mixtures

I We use a likelihood Binomial(3; 4, θ), with 3 successes observed in 4
trials.

I We use a mixture prior

π(θ) = 0.5 · Beta(θ; 2.5, 2.5) + 0.5 · Beta(θ; 11, 31)

I Recall that if y | θ ∼ Binomial(n, θ) and θ ∼ Beta(α, β) then the
prior predictive becomes

π(y) =

(
n

y

)
B(α + y , β + n − y)

B(α, β)

I Thus the first updated weight becomes

w ′1 =
0.5 ·

(
4
3

)B(2.5+3,2.5+1)
B(2.5,2.5)

0.5 ·
(
4
3

)B(2.5+3,2.5+1)
B(2.5,2.5) + 0.5 ·

(
4
3

)B(11+3,31+1)
B(11,31)

= 0.7975

and for the second updated weight w ′2 = 1− w ′1 = 0.2025.
I The posterior becomes

π(θ | y = 3) = 0.7975·Beta(θ; 2.5+3, 2.5+1)+0.2025·Beta(θ; 11+3, 31+1).
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Multivariate conjugacy example:
The normal likelihood, no parameters known

I Assume y ∼ Normal(µ, 1/τ), with both µ and τ uncertain. The
likelihood becomes

π(y | µ, τ) ∝µ,τ τ 1/2 exp
(
−τ

2
(x − µ)2

)
I Then the Normal-Gamma family is conjugate: The pair (µ, τ) has a

Normal-Gamma distribution with parameters µ0, λ > 0, α > 0, β > 0
if the density has the form

π(µ, τ | µ0, λ, α, β) =
βα
√
λ

Γ(α)
√

2π
τα−1/2 exp

(
−βτ − λτ

2
(µ− µ0)2

)
I Note: If (µ, τ) has the Normal-Gamma distribution above, we have
τ ∼ Gamma(α, β) and µ | τ ∼ Normal(µ0, 1/(λτ)).
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Computing the posterior

I Assume x = (x1, x2, . . . , xn) sampled from Normal(µ, 1/τ).
I Assume prior

τ ∼ Gamma(α, β) and µ | τ ∼ Normal(µ0, 1/(λτ))

I Computing the posterior density using our proportionality method,
the result is a Normal-Gamma density which can be expressed as

τ | x ∼ Gamma

(
α +

n

2
, β +

1

2

n∑
i=1

(xi − x)2 +
nλ

λ+ n

(x − µ0)2

2

)

µ | τ, x ∼ Normal

(
λµ0 + nx

λ+ n
,

1

(λ+ n)τ

)
I Computations like these can get hairy; if you are lazy like me,

consult, e.g., Wikipedia.
I Using improper prior π(µ, τ) ∝µ,τ 1/τ gives posterior
τ | x ∼ Gamma( n−1

2 , 12
∑n

i=1(xi − x)2) and µ | τ, x ∼ Normal(x , 1
nτ ).

I NOTE: The expectation of the posterior for τ then becomes 1
divided by the classical variance estimator, and the expectation for µ
becomes x .
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Predictive distributions

I Given parameters ν > 0, µ, and σ2, a real variable x has a
generalized t-distribution, x ∼ t(ν, µ, σ2), when the density is

t(x ; ν, µ, σ2) =
1√

νσ2B(ν/2, 1/2)

[
1 +

1

ν

(
x − µ
σ

)2
]− ν+1

2

I When x | τ ∼ Normal(µ, 1
λτ ) and τ ∼ Gamma(α, β), the marginal

(i.e. prior predictive) becomes

π(x) = t

(
x ; 2α, µ,

β

αλ

)
I When x | µ, τ ∼ Normal(µ, 1/τ), µ | τ ∼ Normal(µ0,

1
λτ ), and

τ ∼ Gamma(α, β), then the marginal becomes

π(x) = t

(
x ; 2α, µ0,

β(λ+ 1)

αλ

)
.

I To derive this, marginalize first over the normal-normal conjugacy.
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Example: Normal observations

A Normal(µ, 1/τ) distribution is investigated.
We use a prior π(µ, τ) ∝µ,τ 1/τ .

I First question: If observations are 3.1, 4.2, 2.9, 3.7, 3.9, find the
posterior and the posterior predictive.

I Second question: Given the additional information that we must
have µ ∈ [3, 3.5], find the posterior and the posterior predictive.

I Third question: Then given the additional observations 2.5, 2.1, and
4.0, find the posterior and the posterior predictive.

I Presentation break for computations by hand
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Multinomial-Dirichlet conjugacy

I Assume x = (x1, . . . , xn) ∼ Multinomial(m, θ1, θ2, . . . , θn), with
θ1 + · · ·+ θn = 1, so that xi counts the number of results of type i
in m independent trials, if results of type i have probability θi . The
probability mass function is

π(x | θ1, . . . , θn) =
m!

x1! . . . xk !
θx11 . . . θxnn

I θ = (θ1, . . . , θn) with θi > 0 and
∑n

i=1 θi = 1 has a Dirichlet
distribution with parameters α1, . . . , αn if the density can be written
as

π(θ1, . . . , θn | α1, . . . , αn) =
Γ(α1 + · · ·+ αn)

Γ(α1) . . . Γ(αn)
θα1−1
1 . . . θαn−1

n

I Prove that the Dirichlet family is a conjugate family to the
Multinomial likelhiood!

I With a Dirichlet(α1, . . . , αn) prior, one can show that the probability
of observing a type i result in the next trial becomes

αi + xi∑n
j=1(αj + xj)

.
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Applied example: Forensic DNA matches

I DNA matching between a trace and a person may be used as proof
in criminal cases: For this, one needs to compute the strength of
evidence when there is a match at some investigated loci.

I At an STR locus in a chromosome, a person has a particular allele
(variant): Variants there differ by the number of repetitions of a
short sequence (such as CAAT).

I The probability that a random person has a particular allele at this
chromosome needs to be computed.

I To do so, population databases of alleles are collected. A small
database might look like

10 11 12 13 14 15 16 17 18
1 0 5 89 143 9 3 0 2

I What is the probability that a random person has 17 repetitions as
his allele?

I It is common to use the Multinomial-Dirichlet model together with
pseudocounts, i.e., values for αi , for example αi = 0.5 or αi = 1.

I Probabilities get a reasonable value, instead of zero.
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The multivariate normal distribution

I We say X has a multivariate (n-variate) normal distribution, if it is a
real vector of length n with density

π(X ) =
1

|2πΣ|1/2
exp

(
−1

2
(X − µ)Σ−1(X − µ)t

)
where the vector µ is the expectation and the n × n symmetric
matrix Σ is the covariance matrix. |2πΣ| is the determinant of 2πΣ.

I We write X ∼ Normal(µ,Σ).

I Just as in the 1-dimensional case: If Y | X ∼ Normal(AX + B,Σ1)
and X ∼ Normal(µ,Σ0), and if we look at Y | X as a likelihood and
π(X ) as a prior, then this is a conjugate prior.

I We usually express this by using that
I In the case above, the joint density for X and Y is multivariate

normal.
I For a multivariate normal vector, the conditional vector when fixing

one or more components in the vector is also multivariate normal.
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The joint multivariate normal distribution

I Assume Y | X ∼ Normal(AX + B,Σ1) and X ∼ Normal(µ,Σ0).
Then (

X
Y

)
∼ Normal

([
µ

Aµ+ B

]
,

[
Σ0 Σ0A

t

AΣ0 AΣ0A
t + Σ1

])
I One can prove this directly from the definitions, or use

I Prove first that the joint distribution must be multivariate normal.
I Then, compute the expectation and the covariance matrix of the

joint vector, using, e.g., the formulas for total expectation and
variation, or matrix algebra.
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The conditional and the marginal in a multivariate normal
distribution

Assume the joint distribution for two vectors θ1 and θ2 is multivariate
normal. Then

I If we integrate out one of them, e.g. θ2, the marginal for θ1 is
multivariate normal. The parameters can be read off the expectation
and the covariance matrix of the joint distribution.

I If we fix θ2, then the conditional distribution θ1 | θ2 is also
multivariate normal. In fact, if(

θ1
θ2

)
∼ Normal

([
µ1

µ2

]
,

[
P11 P12

P21 P22

]−1)

we have

θ1 | θ2 ∼ Normal(µ1 − P−111 P12(Y − µ2),P−111 )
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Elements of a proof

I Prove the algebraic matrix identity([
θ1
θ2

]
−
[
µ1

µ2

])t [
P11 P12

P21 P22

]([
θ1
θ2

]
−
[
µ1

µ2

])
=

(
θ1 − µ1 + P−111 P12(θ2 − µ2)

)t
P11

(
θ1 − µ1 + P−111 P12(θ2 − µ2)

)
+(θ2 − µ2)t(P22 − P21P

−1
11 P12)(θ2 − µ2).

I Use the definition of the joint density for θ1 and θ2, and rewrite it as
two factors, one depending only on θ2.
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