MSA101/MVE187 2021 Lecture 3
 Discretization, low dim Bayesian inference Mixtures

Some multivariate conjugacies

Petter Mostad
Chalmers University

September 6, 2021

Review

- Defined the Bayesian paradigm: $Y_{\text {data }}, Y_{\text {pred }}, \theta$, etc.
- Defined some basic concepts and properties: Prior, posterior, predictive, sequential use of data, etc.
- Defined conjugacy; seen some examples.
- The exponential family of distributions.

Overview for today

- More tools for basic Bayesian inference; next time: Inference based on simulation.
- Discrete Bayes and discretization. Numerical integration.
- Mixtures.
- Some multivariate conjugacies.

Bayesian inference using discretization

- When θ has a finite (and manageable) number of possible values: Seen examples (in Albert) of Bayesian computations.
- Discretization: Approximating a continuous prior for θ with a discrete prior.
- Presentation break for computations by hand
- Summary:
- The prior distribution $\pi(\theta)$ is represented by a vector.
- The posterior distribution $\pi(\theta \mid y)$ is obtained by termwise multiplication of the vectors $\pi(y \mid \theta)$ and $\pi(\theta)$ and normalizing so the result sums to 1 .
- The prediction $\pi\left(y_{\text {new }} \mid y\right)=\int_{\theta} \pi\left(y_{\text {new }} \mid \theta\right) \pi(\theta \mid y) d \theta$ simplifies to taking the sum of the termwise product of the vectors $\pi\left(y_{\text {new }} \mid \theta\right)$ and $\pi(\theta \mid y)$.
- Very often a very good and accurate computational method, when theta has 1 (or 2 or 3) dimensions.
- Why does it not work when θ has many dimensions?

Bayesian inference using numerical integration

- The prediction we want to make can be expressed as a quotient of integrals:

$$
\begin{aligned}
\pi\left(y_{\text {pred }} \mid y_{\text {data }}\right) & =\int_{\theta} \pi\left(y_{\text {pred }} \mid \theta\right) \pi\left(\theta \mid y_{\text {data }}\right) d \theta \\
& =\int_{\theta} \pi\left(y_{\text {pred }} \mid \theta\right) \frac{\pi\left(y_{\text {data }} \mid \theta\right) \pi(\theta)}{\int_{\theta} \pi\left(y_{\text {data }} \mid \theta\right) \pi(\theta) d \theta} d \theta \\
& =\frac{\int_{\theta} \pi\left(y_{\text {pred }} \mid \theta\right) \pi\left(y_{\text {data }} \mid \theta\right) \pi(\theta) d \theta}{\int_{\theta} \pi\left(y_{\text {data }} \mid \theta\right) \pi(\theta) d \theta}
\end{aligned}
$$

- One idea: Compute these integrals using numerical integration.
- Presentation break for computations by hand
- Can work well as long as the dimension of θ is low (max 2 or 3 ?) and the functions are well-behaved.

Mixtures of conjugate priors

- A family of conjugate priors, with limited flexibility, can be greatly extended by also considering linear combinations of these prior densities.
- Example: The Poisson-Gamma conjugacy: Assume

$$
\pi(y \mid \theta)=e^{-\theta} \theta^{y} / y!\quad \text { and } \quad \pi(\theta) \propto_{\theta} \theta^{\alpha-1} \exp (-\beta \theta)
$$

so that $\pi(\theta \mid y) \propto_{\theta} \theta^{\alpha+y-1} \exp (-(\beta+1) \theta)$.

- Then a linear combination prior (C_{1} and C_{2} integration constants)

$$
\pi(\theta)=w_{1} C_{1} \theta^{\alpha_{1}-1} \exp \left(-\beta_{1} \theta\right)+w_{2} C_{2} \theta^{\alpha_{2}-1} \exp \left(-\beta_{2} \theta\right)
$$

will result in a linear combination posterior $\pi(\theta \mid y) \propto_{\theta} w_{1} C_{1} \theta^{\alpha_{1}+y-1} \exp \left(-\left(\beta_{1}+1\right) \theta\right)+w_{2} C_{2} \theta^{\alpha_{2}+y-1} \exp \left(-\left(\beta_{2}+1\right) \theta\right)$.

- This works for any conjugate family, and any linear combination of priors from it.
- Note however that the weigts of the densities in the linear combination are updated!

Mixtures of priors: Formulas

- Assume $\pi(\theta \mid \lambda)$ is a family of conjugate priors to $\pi(y \mid \theta)$. Given $\lambda_{1}, \ldots, \lambda_{n}$, let $g_{i}(\theta \mid y)$ and $f_{i}(y)$ denote the posterior and the prior predictive, respectively, when using the prior $\pi\left(\theta \mid \lambda_{i}\right)$. Then

$$
\pi(y \mid \theta) \pi\left(\theta \mid \lambda_{i}\right)=g_{i}(\theta \mid y) f_{i}(y)
$$

- Assume we use a linear combination prior

$$
\pi(\theta)=\sum_{i=1}^{n} w_{i} \pi\left(\theta \mid \lambda_{i}\right) \text { where } \sum_{i=1}^{n} w_{i}=1
$$

- For the prior predictive we get

$$
\pi(y)=\int \pi(y \mid \theta) \sum_{i=1}^{n} w_{i} \pi\left(\theta \mid \lambda_{i}\right) d \theta=\sum_{i=1}^{n} w_{i} f_{i}(y)
$$

- for the posterior we get

$$
\begin{aligned}
& \pi(\theta \mid y)=\frac{\pi(y \mid \theta) \pi(\theta)}{\pi(y)}=\frac{\pi(y \mid \theta) \sum_{j=1}^{n} w_{j} \pi\left(\theta \mid \lambda_{j}\right)}{\sum_{i=1}^{n} w_{i} f_{i}(y)} \\
& =\frac{\sum_{j=1}^{n} w_{j} f_{j}(y) g_{j}(\theta \mid y)}{\sum_{i=1}^{n} w_{i} f_{i}(x)}=\sum_{j=1}^{n} w_{j}^{\prime} g_{j}(\theta \mid y) \text { where } w_{j}^{\prime}=\frac{w_{j} f_{j}(y)}{\sum_{i=1}^{n} w_{i} f_{i}\left(y_{1}\right)} .
\end{aligned}
$$

Mixtures of priors

- NOTE: The formula on previous overhead is valid for any mixture of any set of priors. However: It is useful mostly when the posterior and predictive distributions are easily computable.
- NOTE: The $f_{j}(y)$ in the updated weights

$$
w_{j}^{\prime}=\frac{w_{j} f_{j}(y)}{\sum_{i=1}^{n} w_{i} f_{i}(y)}
$$

can be interpreted as the probability of observing the data y if we assume the prior $\pi\left(\theta \mid \lambda_{i}\right)$.

Example of mixtures

- We use a likelihood Binomial($3 ; 4, \theta$), with 3 successes observed in 4 trials.
- We use a mixture prior

$$
\pi(\theta)=0.5 \cdot \operatorname{Beta}(\theta ; 2.5,2.5)+0.5 \cdot \operatorname{Beta}(\theta ; 11,31)
$$

- Recall that if $y \mid \theta \sim \operatorname{Binomial}(n, \theta)$ and $\theta \sim \operatorname{Beta}(\alpha, \beta)$ then the prior predictive becomes

$$
\pi(y)=\binom{n}{y} \frac{\mathrm{~B}(\alpha+y, \beta+n-y)}{\mathrm{B}(\alpha, \beta)}
$$

- Thus the first updated weight becomes

$$
w_{1}^{\prime}=\frac{0.5 \cdot\binom{4}{3} \frac{\mathrm{~B}(2.5+3,2.5+1)}{\mathrm{B}(2.5,2.5)}}{0.5 \cdot\binom{4}{3} \frac{\mathrm{~B}(2.5+3,2,5+1)}{\mathrm{B}(2.5,2.5)}+0.5 \cdot\binom{4}{3} \frac{\mathrm{~B}(11+3,31+1)}{\mathrm{B}(11,31)}}=0.7975
$$

and for the second updated weight $w_{2}^{\prime}=1-w_{1}^{\prime}=0.2025$.

- The posterior becomes $\pi(\theta \mid y=3)=0.7975 \cdot \operatorname{Beta}(\theta ; 2.5+3,2.5+1)+0.2025 \cdot \operatorname{Beta}(\theta ; 11+3,31+1)$.

Multivariate conjugacy example: The normal likelihood, no parameters known

- Assume $y \sim \operatorname{Normal}(\mu, 1 / \tau)$, with both μ and τ uncertain. The likelihood becomes

$$
\pi(y \mid \mu, \tau) \propto_{\mu, \tau} \tau^{1 / 2} \exp \left(-\frac{\tau}{2}(x-\mu)^{2}\right)
$$

- Then the Normal-Gamma family is conjugate: The pair (μ, τ) has a Normal-Gamma distribution with parameters $\mu_{0}, \lambda>0, \alpha>0, \beta>0$ if the density has the form

$$
\pi\left(\mu, \tau \mid \mu_{0}, \lambda, \alpha, \beta\right)=\frac{\beta^{\alpha} \sqrt{\lambda}}{\Gamma(\alpha) \sqrt{2 \pi}} \tau^{\alpha-1 / 2} \exp \left(-\beta \tau-\frac{\lambda \tau}{2}\left(\mu-\mu_{0}\right)^{2}\right)
$$

- Note: If (μ, τ) has the Normal-Gamma distribution above, we have $\tau \sim \operatorname{Gamma}(\alpha, \beta)$ and $\mu \mid \tau \sim \operatorname{Normal}\left(\mu_{0}, 1 /(\lambda \tau)\right)$.

Computing the posterior

- Assume $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ sampled from $\operatorname{Normal}(\mu, 1 / \tau)$.
- Assume prior

$$
\tau \sim \operatorname{Gamma}(\alpha, \beta) \text { and } \mu \mid \tau \sim \operatorname{Normal}\left(\mu_{0}, 1 /(\lambda \tau)\right)
$$

- Computing the posterior density using our proportionality method, the result is a Normal-Gamma density which can be expressed as

$$
\begin{aligned}
\tau \mid x & \sim \operatorname{Gamma}\left(\alpha+\frac{n}{2}, \beta+\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+\frac{n \lambda}{\lambda+n} \frac{\left(\bar{x}-\mu_{0}\right)^{2}}{2}\right) \\
\mu \mid \tau, x & \sim \operatorname{Normal}\left(\frac{\lambda \mu_{0}+n \bar{x}}{\lambda+n}, \frac{1}{(\lambda+n) \tau}\right)
\end{aligned}
$$

- Computations like these can get hairy; if you are lazy like me, consult, e.g., Wikipedia.
- Using improper prior $\pi(\mu, \tau) \propto_{\mu, \tau} 1 / \tau$ gives posterior $\tau \left\lvert\, x \sim \operatorname{Gamma}\left(\frac{n-1}{2}, \frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)\right.$ and $\mu \mid \tau, x \sim \operatorname{Normal}\left(\bar{x}, \frac{1}{n \tau}\right)$.
- NOTE: The expectation of the posterior for τ then becomes 1 divided by the classical variance estimator, and the expectation for μ becomes \bar{x}.

Predictive distributions

- Given parameters $\nu>0, \mu$, and σ^{2}, a real variable x has a generalized \mathbf{t}-distribution, $x \sim \mathrm{t}\left(\nu, \mu, \sigma^{2}\right)$, when the density is

$$
t\left(x ; \nu, \mu, \sigma^{2}\right)=\frac{1}{\sqrt{\nu \sigma^{2}} B(\nu / 2,1 / 2)}\left[1+\frac{1}{\nu}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]^{-\frac{\nu+1}{2}}
$$

- When $x \left\lvert\, \tau \sim \operatorname{Normal}\left(\mu, \frac{1}{\lambda \tau}\right)\right.$ and $\tau \sim \operatorname{Gamma}(\alpha, \beta)$, the marginal (i.e. prior predictive) becomes

$$
\pi(x)=\mathrm{t}\left(x ; 2 \alpha, \mu, \frac{\beta}{\alpha \lambda}\right)
$$

- When $x|\mu, \tau \sim \operatorname{Normal}(\mu, 1 / \tau), \mu| \tau \sim \operatorname{Normal}\left(\mu_{0}, \frac{1}{\lambda \tau}\right)$, and $\tau \sim \operatorname{Gamma}(\alpha, \beta)$, then the marginal becomes

$$
\pi(x)=\mathrm{t}\left(x ; 2 \alpha, \mu_{0}, \frac{\beta(\lambda+1)}{\alpha \lambda}\right) .
$$

- To derive this, marginalize first over the normal-normal conjugacy.

Example: Normal observations

A Normal $(\mu, 1 / \tau)$ distribution is investigated.
We use a prior $\pi(\mu, \tau) \propto_{\mu, \tau} 1 / \tau$.

- First question: If observations are 3.1, 4.2, 2.9, 3.7, 3.9, find the posterior and the posterior predictive.
- Second question: Given the additional information that we must have $\mu \in[3,3.5]$, find the posterior and the posterior predictive.
- Third question: Then given the additional observations 2.5, 2.1, and 4.0, find the posterior and the posterior predictive.
- Presentation break for computations by hand

Multinomial-Dirichlet conjugacy

- Assume $x=\left(x_{1}, \ldots, x_{n}\right) \sim \operatorname{Multinomial}\left(m, \theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$, with $\theta_{1}+\cdots+\theta_{n}=1$, so that x_{i} counts the number of results of type i in m independent trials, if results of type i have probability θ_{i}. The probability mass function is

$$
\pi\left(x \mid \theta_{1}, \ldots, \theta_{n}\right)=\frac{m!}{x_{1}!\ldots x_{k}!} \theta_{1}^{x_{1}} \ldots \theta_{n}^{x_{n}}
$$

- $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$ with $\theta_{i}>0$ and $\sum_{i=1}^{n} \theta_{i}=1$ has a Dirichlet distribution with parameters $\alpha_{1}, \ldots, \alpha_{n}$ if the density can be written as

$$
\pi\left(\theta_{1}, \ldots, \theta_{n} \mid \alpha_{1}, \ldots, \alpha_{n}\right)=\frac{\Gamma\left(\alpha_{1}+\cdots+\alpha_{n}\right)}{\Gamma\left(\alpha_{1}\right) \ldots \Gamma\left(\alpha_{n}\right)} \theta_{1}^{\alpha_{1}-1} \ldots \theta_{n}^{\alpha_{n}-1}
$$

- Prove that the Dirichlet family is a conjugate family to the Multinomial likelhiood!
- With a Dirichlet $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ prior, one can show that the probability of observing a type i result in the next trial becomes

$$
\frac{\alpha_{i}+x_{i}}{\sum_{j=1}^{n}\left(\alpha_{j}+x_{j}\right)}
$$

Applied example: Forensic DNA matches

- DNA matching between a trace and a person may be used as proof in criminal cases: For this, one needs to compute the strength of evidence when there is a match at some investigated loci.
- At an STR locus in a chromosome, a person has a particular allele (variant): Variants there differ by the number of repetitions of a short sequence (such as CAAT).
- The probability that a random person has a particular allele at this chromosome needs to be computed.
- To do so, population databases of alleles are collected. A small database might look like

10	11	12	13	14	15	16	17	18
1	0	5	89	143	9	3	0	2

- What is the probability that a random person has 17 repetitions as his allele?
- It is common to use the Multinomial-Dirichlet model together with pseudocounts, i.e., values for α_{i}, for example $\alpha_{i}=0.5$ or $\alpha_{i}=1$.
- Probabilities get a reasonable value, instead of zero.

The multivariate normal distribution

- We say X has a multivariate (n-variate) normal distribution, if it is a real vector of length n with density

$$
\pi(X)=\frac{1}{|2 \pi \Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(X-\mu) \Sigma^{-1}(X-\mu)^{t}\right)
$$

where the vector μ is the expectation and the $n \times n$ symmetric matrix Σ is the covariance matrix. $|2 \pi \Sigma|$ is the determinant of $2 \pi \Sigma$.

- We write $X \sim \operatorname{Normal}(\mu, \Sigma)$.
- Just as in the 1 -dimensional case: If $Y \mid X \sim \operatorname{Normal}\left(A X+B, \Sigma_{1}\right)$ and $X \sim \operatorname{Normal}\left(\mu, \Sigma_{0}\right)$, and if we look at $Y \mid X$ as a likelihood and $\pi(X)$ as a prior, then this is a conjugate prior.
- We usually express this by using that
- In the case above, the joint density for X and Y is multivariate normal.
- For a multivariate normal vector, the conditional vector when fixing one or more components in the vector is also multivariate normal.

The joint multivariate normal distribution

- Assume $Y \mid X \sim \operatorname{Normal}\left(A X+B, \Sigma_{1}\right)$ and $X \sim \operatorname{Normal}\left(\mu, \Sigma_{0}\right)$. Then

$$
\binom{X}{Y} \sim \operatorname{Normal}\left(\left[\begin{array}{c}
\mu \\
A \mu+B
\end{array}\right],\left[\begin{array}{cc}
\Sigma_{0} & \Sigma_{0} A^{t} \\
A \Sigma_{0} & A \Sigma_{0} A^{t}+\Sigma_{1}
\end{array}\right]\right)
$$

- One can prove this directly from the definitions, or use
- Prove first that the joint distribution must be multivariate normal.
- Then, compute the expectation and the covariance matrix of the joint vector, using, e.g., the formulas for total expectation and variation, or matrix algebra.

The conditional and the marginal in a multivariate normal distribution

Assume the joint distribution for two vectors θ_{1} and θ_{2} is multivariate normal. Then

- If we integrate out one of them, e.g. θ_{2}, the marginal for θ_{1} is multivariate normal. The parameters can be read off the expectation and the covariance matrix of the joint distribution.
- If we fix θ_{2}, then the conditional distribution $\theta_{1} \mid \theta_{2}$ is also multivariate normal. In fact, if

$$
\binom{\theta_{1}}{\theta_{2}} \sim \text { Normal }\left(\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right],\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]^{-1}\right)
$$

we have

$$
\theta_{1} \mid \theta_{2} \sim \operatorname{Normal}\left(\mu_{1}-P_{11}^{-1} P_{12}\left(Y-\mu_{2}\right), P_{11}^{-1}\right)
$$

Elements of a proof

- Prove the algebraic matrix identity

$$
\begin{aligned}
& \left(\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right]-\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]\right)^{t}\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]\left(\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right]-\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]\right) \\
= & \left(\theta_{1}-\mu_{1}+P_{11}^{-1} P_{12}\left(\theta_{2}-\mu_{2}\right)\right)^{t} P_{11}\left(\theta_{1}-\mu_{1}+P_{11}^{-1} P_{12}\left(\theta_{2}-\mu_{2}\right)\right) \\
& +\left(\theta_{2}-\mu_{2}\right)^{t}\left(P_{22}-P_{21} P_{11}^{-1} P_{12}\right)\left(\theta_{2}-\mu_{2}\right) .
\end{aligned}
$$

- Use the definition of the joint density for θ_{1} and θ_{2}, and rewrite it as two factors, one depending only on θ_{2}.

