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Review and overview

» We have looked at the Bayesian paradigm, conjugacy, some
fundamental properties.

» Our examples have been super-simple applications.

> In many realistic cases the relationship between ypeq and ydata needs

a complicated model with many parameters to describe it: In other
words, a high-dimensional 6.

» Then, how to compute? A possibility is

> to generate an (approximate) random sample from 7(6 | Ydata).
» Then use that sample to approximate

W(Ypred | _ydata) = fﬂ—(ypféd ‘ 9)71—(0 | ydata) do.
» Today, we look at how to do the second step above.

» We also start looking at how to generate random samples.
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Monte Carlo Integration

Assume 61, 6,,...,0y is a random sample from (6 | y).
> PI’(H > Z) # 0; s;’bove z

» We can rewrite this in a fancy way as

Egy, (10 > 2)) = //(9 > 2)m(0 ] y) do ~ %Z 16 > 7).

» More generally (assuming the expectation exists)

Eop (F 9))—/f (01 y) d9~—Zf(9

» Formally, according to the Strong Law of large numbers,

<Nlin002f )) =1

where the expectation is taken over a distribution from which
01,...,0y is a random sample.
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Using Monte Carlo integration for predictions

» Example: To approximate a probability
Pr()’pred > Z | Ydata) = f Pr (yPred >z | 0)7(0 | Ydata) dO
> Generate 61, ...,0n from the posterior for 0 given ygata.
» Use as approximation & SN | Pr (Vped > 2z | 6;) .

» Example: If § = (o, 8,7) is the parameter vector, what is the
posterior probability that o > 327

» Solution: We generate a set of vectors 01, ...,0y from the posterior
for O given ygs:a. Then:

> Approximate Pr (o > 2 | ygara) with

N
Z a,>ﬁ2

2 \

where 0; = (o, Bi,7i) -
» Presentation break for computations by hand
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Simulation of predicted values

Approximating the value of Pr(y > z | y4ata) in two ways:

v

v

Alternative 1 (as above):

> Simulate 01, ...,0y from the posterior of 6 given ydata.
» Compute

N
Z (y>z]6)

v

Alternative 2:

> Use 7m(y | 6) to simulate posterior values for y together with
posterior values for 6: We get (01, y1), (62, y2), ..., (On, yn)-
» Compute

1
N Zl(yi > z)
i=1

» Presentation break for computations by hand
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Example: Approximating quantiles by simulation

v

A 95% credibility interval for a random variable X is an interval so
that the probabiliy that X is in the interval is 95%.

> In Bayesian statistics, a posterior credibility interval for a variable y
may be used to describe the posterior uncertainty in y.
» A way to approximate a 90% posterior credibility interval for y:

» Simulate a posterior sample y1, y», ..., yn as above.
> Order by size to find the 5th and 95th empirical quantiles of
Y1,---,yn. (In R, use quantile(y, c(0.05, 0.95)).)

» Presentation break for computations by hand
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Accuracy of Monte Carlo integration

» Assume 01,05,...,0y is a random sample from 7(6 | y). The
Central Limit Theorem (CLT) states that, approximately for large N,

arg,, (f(0
= Z £(6;) ~ Normal <E9|y(f(9)) VMN(())>

i=1

as long as the first two moments of f(0) exist.

» Transferring to a Bayesian setting (and using a flat prior) we get
that, after sampling 61, ...,0y, an approximate 95% credibility
interval for Eg|, (f(0)) is

NZf j:196m Varg), (f(6)).

> If we write f(0) = 25\1:1 f(0;)/N we may approximate
Varg, (F(0)) ~ 52 = 1 Z (f(6:) - 7) ) .
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Example: Estimating a proportion

> Let's say we want to approximate the proportion of an (posterior)
random variable that is below z. For a sample of size N, we find
that r are below z.

» Plugging into the formula above gives the estimate

r

N

together with the 95% credibility interval

r S r S
— 1.96——, — +1.96——
N VNN VN

where
2 — r(N—r)
a N(N —1)

» Presentation break for computations by hand
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Bayesian inference using simulation

» We want to do Bayesian inference by
> simulating a sample 61, ...,60n from the posterior of 0 given yqata.
» making predictions based on this posterior sample.
» The second part has basically been covered above. The first part will
take up half of the rest of the course.

» We use Bayes formula to find the posterior density:

_ 7"-(ydai.‘a | 9)77(9)

7(0 | Ydara) = (yeo) X T(Vdata | 0)7(0)

» In many cases we have formulas for the likelihood 7(ygaza | ) and
the prior 7(8) but not for 7(Vdata)-

> Solution: We develop methods that produce an (approximate)
sample based only on a formula for the density multiplied by an
unknown constant.

» First, we start with the basics of computer simulation of random
variables.
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Simulation from a uniform distribution

» Simulation from Uniform[0, 1] is the basis of all computer based
simulation.

» What does it mean that xq,. .., x, ~ Uniform[0, 1] is "random”? A
possible interpretation: We have no way to predict the coming
numbers; the best guess for their distribution is Uniform[0, 1].

» The computer uses a deterministic function applied to a seed

(" pseudo-random” ). The seed can be set (in R with
set.seed(...)) or is taken from the computer clock.

> It should be in practice impossible to apply any kind of visualiation
or compute any kind of statistic which has properties other than
those predicted when the sequence xi, ..., x, is iid Uniform[0, 1].
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Simulating from discrete distributions

» If X is a random variable on a finite set of real numbers, the
cumulative distribution can be computed in a vector. X can be
simulated by comparing a uniform random variable U to the
numbers in this vector. Example: Binomial distribution.

» Presentation break for computations by hand

» If X is a random variable on a countable set of real numbers, one
can use a list of the probabilities of the most probable outcomes,
and expand this list as needed, if extreme values are simulated in a
uniform distribution. Example: The Poisson distribution.
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The inverse transform

» Let X be a random variable with invertible cumulative distribution
function F(x). If U ~ Uniform[0, 1], then F~1(U) is a random
sample from X.

» Proof:

Pr(F(U) < a) = Pr(F(F~(U)) < F(a)) = Pr(U < F(a) = F(a)

» Example: The exponential distribution Exp(\) has density
m(X) = Aexp(—xA) and cumulative distribution

F(x) =1—exp(—XAx)

F(x) = u gives F~Y(u) = —log(1 — u)/\. As 1 — u is uniform, we
can simulate with
—log(u)/A

» Presentation break for computations by hand
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The inverse transform, cont.

» Example: Logistic distribution. Best defined by defining its
cumulative distribution (for standard logistic distribution):

F(x) = 1/(1+ exp(—x))

Easy to invert. The distribution can be adjusted with changing the
mean and the scale.

» Example: Cauchy distribution. Density:
7(x) = 1/(7(1 4 x?)).
The cumulative distribution is
F(x) =1/2 4 1/m arctan(x)

Easy to invert.
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Transforming samples

» Example: One can prove that, if x1,...,x, is a random sample from
Exp(1) then

%Zx,- ~ Gamma(n, §)
i=1

» Example: One can prove that, if xq,..., X515 is a random sample
from Exp(1) then
DX
5 ~ Beta(a, b).
Dt Xi

» Example: One can prove that, if uy, u; is a random sample from
Uniform[0, 1], then

(\/ —2log(uy) cos(2mua), v/ —2log(uy) sin(27ruz)>

is a random sample from the bivariate distribution

(6 )
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Transformation of random variables

> Recall from basic probability theory: If f(x) is a density function,
and x = h(y) is a monotone transformation, then the density
function for y is

f(h(y))Ih'(y)|

> If we apply the INVERSE of h on a variable with known density, we
get the density of the resulting variable using the formula above.

» Example application: The non-informative prior for the precision 7
of a Normal distribution is the improper distribution with " density”
7(7) oc 1/7. We have that 7 = h(0?) = 1/02. With h(x) = 1/x we
get that h'(x) = —1/x2. Thus the corresponding non-informative
prior for the variance o2 of a normal distribution is given as

~ 1
1/0?

1

(02)?

1

0?2’

7(0?)
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Transformation of multivariate random variables

» If x is a vector, if f(x) is a multivariate density function, and if
x = h(y) is a bijective differentiable transformation, then the
multivariate density function for y is

F(h(y))J(y)]

where |J(y)| is the determinant of the Jacobian matrix for the vector
function h(y).

» One application of this is in the proof of the formula used above to
sample from the bivariate normal distribution.
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Rejection sampling

» Sometimes we cannot easily simulate from a density f(x), (the
"target density”) but we can simulate from an "instrumental”
density g(x) that approximates f(x).

> If we can find a constant M such that f(x)/g(x) < M for all x in
the support of g and f(x) = 0 outside this support, we can use
rejection sampling to sample from f:

> Sample x from the distribution with density g(x).

» Draw u uniformly on [0, 1].

> If u- M- g(x) < f(x) accept x as a sample, otherwise reject x and
start again.

» Presentation break for computations by hand
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Rejection sampling, cont.

» We may in fact do this with f(x) = Cn(x) where 7(x) is the actual
density and C is unknown: It is still a valid method!

» When f(x) integrates to 1, the acceptance rate is 1/M, so we want
to use a small M.

» When f(x) does not integrate to 1, the integral can be
approximated as the acceptance rate multiplied by M.

» NOTE: Applicable for x of any dimension!

» Example: Random variables with picewise log-concave densities can
be simulated with this method.

» Presentation break for computations by hand
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Simulating from the multivariate normal

Recall that x ~ Normal,(p, X) if

v

106) = g o0 (500 0 EHx - )

v

NOTE: If x1,...,xk are i.i.d Normal(0,1) then
x = (X1,...,%)" ~ Normalk(0, /).
If x ~ Normal,(0, /) then Ax ~ Normal(0, AA").
THUS: To simulate from Normal(yu, X):
» Simulate k independent standard normal random variables into a
vector x.
» Compute the (lower triangular) Choleski decomposition S of ¥: We
then have that ¥ = SS°*.
» Compute Sx + p: It is multivariate normal, and has the right
expectation and covariance matrix.

v

v
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Simulating from a marginal distribution

> Generally: If you have a sample (x1,y1), (x2, ¥2), ..., (Xn, ¥n) from a
joint distribution of x and y, then xi, x2,..., x, is a sample from the
marginal distribution of x.

» Simple application: If 7 ~ Gamma(k/2,1/2) and
x | 7 ~ Normal(0,1/7), then the marginal distribution of x is a
Student t-distribution with k degrees of freedom. To simulate:

» Draw 7 from Gamma(k/2,1/2).
» Then draw x from Normal(0,1/7).

» Much more generally: To simulate for example from the predictive
distribution in a Bayesian model, simulate from the joint distribution
with density 7(y, 6). Then take the coordinates of the sample
pertaining to y.
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