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Review and overview

I We have looked at the Bayesian paradigm, conjugacy, some
fundamental properties.

I Our examples have been super-simple applications.

I In many realistic cases the relationship between ypred and ydata needs
a complicated model with many parameters to describe it: In other
words, a high-dimensional θ.

I Then, how to compute? A possibility is
I to generate an (approximate) random sample from π(θ | ydata).
I Then use that sample to approximate
π(ypred | ydata) =

∫
π(ypred | θ)π(θ | ydata) dθ.

I Today, we look at how to do the second step above.

I We also start looking at how to generate random samples.
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Monte Carlo Integration

Assume θ1, θ2, . . . , θN is a random sample from π(θ | y).

I Pr(θ > z) ≈ # θi ’s above z
N .

I We can rewrite this in a fancy way as

Eθ|y (I (θ > z)) =

∫
I (θ > z)π(θ | y) dθ ≈ 1

N

N∑
i=1

I (θi > z).

I More generally (assuming the expectation exists)

Eθ|y (f (θ)) =

∫
f (θ)π(θ | y) dθ ≈ 1

N

N∑
i=1

f (θi ).

I Formally, according to the Strong Law of large numbers,

Pr

(
lim

N→∞

1

N

N∑
i=1

f (θi ) = E(f (θ))

)
= 1

where the expectation is taken over a distribution from which
θ1, . . . , θN is a random sample.
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Using Monte Carlo integration for predictions

I Example: To approximate a probability
Pr (ypred > z | ydata) =

∫
Pr (ypred > z | θ)π(θ | ydata) dθ

I Generate θ1, . . . , θN from the posterior for θ given ydata.
I Use as approximation 1

N

∑N
i=1 Pr (ypred > z | θi ) .

I Example: If θ = (α, β, γ) is the parameter vector, what is the
posterior probability that α > β2?

I Solution: We generate a set of vectors θ1, . . . , θN from the posterior
for θ given ydata. Then:

I Approximate Pr
(
α > β2 | ydata

)
with

1

N

N∑
i=1

I (αi > β2
i )

where θi = (αi , βi , γi ) .

I Presentation break for computations by hand
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Simulation of predicted values

I Approximating the value of Pr (y > z | ydata) in two ways:

I Alternative 1 (as above):
I Simulate θ1, . . . , θN from the posterior of θ given ydata.
I Compute

1

N

N∑
i=1

Pr (y > z | θi )

I Alternative 2:
I Use π(y | θ) to simulate posterior values for y together with

posterior values for θ: We get (θ1, y1), (θ2, y2), . . . , (θN , yN).
I Compute

1

N

N∑
i=1

I (yi > z)

I Presentation break for computations by hand
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Example: Approximating quantiles by simulation

I A 95% credibility interval for a random variable X is an interval so
that the probabiliy that X is in the interval is 95%.

I In Bayesian statistics, a posterior credibility interval for a variable y
may be used to describe the posterior uncertainty in y .

I A way to approximate a 90% posterior credibility interval for y :
I Simulate a posterior sample y1, y2, . . . , yN as above.
I Order by size to find the 5th and 95th empirical quantiles of

y1, . . . , yN . (In R, use quantile(y, c(0.05, 0.95)).)

I Presentation break for computations by hand
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Accuracy of Monte Carlo integration

I Assume θ1, θ2, . . . , θN is a random sample from π(θ | y). The
Central Limit Theorem (CLT) states that, approximately for large N,

1

N

N∑
i=1

f (θi ) ∼ Normal

(
Eθ|y (f (θ)),

Varθ|y (f (θ))

N

)
as long as the first two moments of f (θ) exist.

I Transferring to a Bayesian setting (and using a flat prior) we get
that, after sampling θ1, . . . , θN , an approximate 95% credibility
interval for Eθ|y (f (θ)) is

1

N

N∑
i=1

f (θi )± 1.96
1√
N

√
Varθ|y (f (θ)).

I If we write f (θ) =
∑N

i=1 f (θi )/N we may approximate

Varθ|y (f (θ)) ≈ s2 =
1

N − 1

N∑
i=1

(
f (θi )− f (θ)

)2
.
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Example: Estimating a proportion

I Let’s say we want to approximate the proportion of an (posterior)
random variable that is below z . For a sample of size N, we find
that r are below z .

I Plugging into the formula above gives the estimate

r

N

together with the 95% credibility interval[
r

N
− 1.96

s√
N
,
r

N
+ 1.96

s√
N

]
where

s2 =
r(N − r)

N(N − 1)

I Presentation break for computations by hand

8 / 20



Bayesian inference using simulation

I We want to do Bayesian inference by
I simulating a sample θ1, . . . , θN from the posterior of θ given ydata.
I making predictions based on this posterior sample.

I The second part has basically been covered above. The first part will
take up half of the rest of the course.

I We use Bayes formula to find the posterior density:

π(θ | ydata) =
π(ydata | θ)π(θ)

π(ydata)
∝θ π(ydata | θ)π(θ)

I In many cases we have formulas for the likelihood π(ydata | θ) and
the prior π(θ) but not for π(ydata).

I Solution: We develop methods that produce an (approximate)
sample based only on a formula for the density multiplied by an
unknown constant.

I First, we start with the basics of computer simulation of random
variables.
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Simulation from a uniform distribution

I Simulation from Uniform[0, 1] is the basis of all computer based
simulation.

I What does it mean that x1, . . . , xn ∼ Uniform[0, 1] is ”random”? A
possible interpretation: We have no way to predict the coming
numbers; the best guess for their distribution is Uniform[0, 1].

I The computer uses a deterministic function applied to a seed
(”pseudo-random”). The seed can be set (in R with
set.seed(...)) or is taken from the computer clock.

I It should be in practice impossible to apply any kind of visualiation
or compute any kind of statistic which has properties other than
those predicted when the sequence x1, . . . , xn is iid Uniform[0, 1].
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Simulating from discrete distributions

I If X is a random variable on a finite set of real numbers, the
cumulative distribution can be computed in a vector. X can be
simulated by comparing a uniform random variable U to the
numbers in this vector. Example: Binomial distribution.

I Presentation break for computations by hand

I If X is a random variable on a countable set of real numbers, one
can use a list of the probabilities of the most probable outcomes,
and expand this list as needed, if extreme values are simulated in a
uniform distribution. Example: The Poisson distribution.
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The inverse transform

I Let X be a random variable with invertible cumulative distribution
function F (x). If U ∼ Uniform[0, 1], then F−1(U) is a random
sample from X.

I Proof:

Pr(F−1(U) ≤ α) = Pr(F (F−1(U)) ≤ F (α)) = Pr(U ≤ F (α)) = F (α)

I Example: The exponential distribution Exp(λ) has density
π(X ) = λ exp(−xλ) and cumulative distribution

F (x) = 1− exp(−λx)

F (x) = u gives F−1(u) = − log(1− u)/λ. As 1− u is uniform, we
can simulate with

−log(u)/λ

I Presentation break for computations by hand

12 / 20



The inverse transform, cont.

I Example: Logistic distribution. Best defined by defining its
cumulative distribution (for standard logistic distribution):

F (x) = 1/(1 + exp(−x))

Easy to invert. The distribution can be adjusted with changing the
mean and the scale.

I Example: Cauchy distribution. Density:

π(x) = 1/(π(1 + x2)).

The cumulative distribution is

F (x) = 1/2 + 1/π arctan(x)

Easy to invert.
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Transforming samples

I Example: One can prove that, if x1, . . . , xn is a random sample from
Exp(1) then

1

β

n∑
i=1

xi ∼ Gamma(n, β)

I Example: One can prove that, if x1, . . . , xa+b is a random sample
from Exp(1) then ∑a

i=1 xi∑a+b
i=1 xi

∼ Beta(a, b).

I Example: One can prove that, if u1, u2 is a random sample from
Uniform[0, 1], then(√

−2 log(u1) cos(2πu2),
√
−2 log(u1) sin(2πu2)

)
is a random sample from the bivariate distribution

Normal

((
0
0

)
,

(
1 0
0 1

))
.
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Transformation of random variables

I Recall from basic probability theory: If f (x) is a density function,
and x = h(y) is a monotone transformation, then the density
function for y is

f (h(y))|h′(y)|
I If we apply the INVERSE of h on a variable with known density, we

get the density of the resulting variable using the formula above.

I Example application: The non-informative prior for the precision τ
of a Normal distribution is the improper distribution with ”density”
π(τ) ∝ 1/τ . We have that τ = h(σ2) = 1/σ2. With h(x) = 1/x we
get that h′(x) = −1/x2. Thus the corresponding non-informative
prior for the variance σ2 of a normal distribution is given as

π(σ2) ∝ 1

1/σ2

∣∣∣∣− 1

(σ2)2

∣∣∣∣ =
1

σ2
.
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Transformation of multivariate random variables

I If x is a vector, if f (x) is a multivariate density function, and if
x = h(y) is a bijective differentiable transformation, then the
multivariate density function for y is

f (h(y))|J(y)|

where |J(y)| is the determinant of the Jacobian matrix for the vector
function h(y).

I One application of this is in the proof of the formula used above to
sample from the bivariate normal distribution.
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Rejection sampling

I Sometimes we cannot easily simulate from a density f (x), (the
”target density”) but we can simulate from an ”instrumental”
density g(x) that approximates f (x).

I If we can find a constant M such that f (x)/g(x) ≤ M for all x in
the support of g and f (x) = 0 outside this support, we can use
rejection sampling to sample from f :

I Sample x from the distribution with density g(x).
I Draw u uniformly on [0, 1].
I If u ·M · g(x) ≤ f (x) accept x as a sample, otherwise reject x and

start again.

I Presentation break for computations by hand
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Rejection sampling, cont.

I We may in fact do this with f (x) = Cπ(x) where π(x) is the actual
density and C is unknown: It is still a valid method!

I When f (x) integrates to 1, the acceptance rate is 1/M, so we want
to use a small M.

I When f (x) does not integrate to 1, the integral can be
approximated as the acceptance rate multiplied by M.

I NOTE: Applicable for x of any dimension!

I Example: Random variables with picewise log-concave densities can
be simulated with this method.

I Presentation break for computations by hand
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Simulating from the multivariate normal

I Recall that x ∼ Normalk(µ,Σ) if

π(x) =
1

|2πΣ|1/2
exp

(
−1

2
(x − µ)tΣ−1(x − µ)

)
I NOTE: If x1, . . . , xk are i.i.d Normal(0, 1) then

x = (x1, . . . , xn)t ∼ Normalk(0, I ).

I If x ∼ Normalk(0, I ) then Ax ∼ Normal(0,AAt).

I THUS: To simulate from Normal(µ,Σ):
I Simulate k independent standard normal random variables into a

vector x .
I Compute the (lower triangular) Choleski decomposition S of Σ: We

then have that Σ = SS t .
I Compute Sx + µ: It is multivariate normal, and has the right

expectation and covariance matrix.
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Simulating from a marginal distribution

I Generally: If you have a sample (x1, y1), (x2, y2), . . . , (xn, yn) from a
joint distribution of x and y , then x1, x2, . . . , xn is a sample from the
marginal distribution of x .

I Simple application: If τ ∼ Gamma(k/2, 1/2) and
x | τ ∼ Normal(0, 1/τ), then the marginal distribution of x is a
Student t-distribution with k degrees of freedom. To simulate:

I Draw τ from Gamma(k/2, 1/2).
I Then draw x from Normal(0, 1/τ).

I Much more generally: To simulate for example from the predictive
distribution in a Bayesian model, simulate from the joint distribution
with density π(y , θ). Then take the coordinates of the sample
pertaining to y .
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