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Review: The Metropolis-Hastings algorithm

Given a probability density f that we want to simulate from. Construct a
proposal function q(y | x) which for every x gives a probability density
for a proposed new value y . The algorithm starts with a choice of an
initial value x (0) for x , and then simulates each x (t) based on x (t−1).
Specifically, given x (t),

I Simulate a new value y according to q(y | x (t)).

I Compute the acceptance probability

ρ(x (t), y) = min

(
f (y)q(x (t) | y)

f (x (t))q(y | x (t))
, 1

)
.

I Set

x (t+1) =

{
y with probability ρ(x (t), y)
x (t) with probability 1− ρ(x (t), y)

I We looked at random-walk proposals and independent proposals,
and how to choose them. Some technical issues.
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Overview of today

I A heart transplant example from Albert

I Using several different proposal functions

I Gibbs sampling

I More technical stuff and advice
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Heart transplant example from Albert (chapter 7)

I For 94 hospitals that do heart transplant surgery, learn about the
mortality rate λi at hospital i , i = 1, . . . , 94.

I Presentation break for illustration in R
I A possible question: At a new exposure e, what is the chance of

dying at hospital i?
I Another possible question: The probability that λi < λj for hospitals

i , j .
I Model: yi | λi ∼ Poisson(eiλi ), but how to model λ1, . . . , λ94?
I Three possibilities:

I Equal: λ = λ1 = · · · = λ94 drawn from a prior we specify.
I Independent: λ1, . . . , λ94 drawn indepedently from a prior we specify.
I λ1, . . . , λ94 drawn from a joint distribution: We learn about that

distribution from data!

I In terms of estimates, we will get below∑94
j=1 yj∑94
j=1 ej

or
y1
e1
, . . . ,

y94
e94

or w

∑94
j=1 yj∑94
j=1 ej

+(1−w)
yi
ei
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Assuming equal rates

I If we use the prior π(λ) ∝ 1/λ and data from hospital 1 we get

π(λ | y1) ∝λ π(y1 | λ)π(λ) ∝λ Poisson(y1; eiλ)/λ ∝λ ee1λλy1−1

∝λ Gamma(λ; y1, e1)

I The posterior after considering all data becomes

Gamma

 94∑
j=1

yi ,
94∑
j1

ei

 = Gamma(277, 294681) = Gamma(Sy ,Se).

I Note that the expected value becomes Sy/Se .
I Computing with the Poisson-Gamma conjugacy, we get that the

predictive distribution at new exposure e is

π(y) =
Poisson(y ;λe) Gamma(λ;Sy ,Se)

Gamma(λ;Sy + h,Se + e)

= Negative-Binomial

(
y ;Sy ,

Se
Se + e

)
.

I Presentation break for R computation
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Assuming rates are independent

I If we use the improper prior π(λi ) ∝λi 1/λi , then the posterior
becomes improper for the hospitals where no deaths have occurred
(yi = 0). Problem!

I For other hospitals we get λi | data ∼ Gamma(yi , ei ), with
expectation yi/ei .

I We can use a proper prior, but where should the information come
from to make this prior?

I Most reasonable to pool the information form different hospitals, but
acknowledge that the λi may be different.
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Using a hierarchical model

I We assume the λi are sampled from some distribution, AND we try
to learn the parameters of this distribution from the data!

I We use the model

yi | λi ∼ Poisson(λiei ) and λi ∼ Gamma

(
α,
α

µ

)
,

π(α) ∝ 1

α
and π(µ) ∝µ

1

µ

I Note: With this parametrization, the expectation of the Gamma
distribution is µ and its standard deviation is µ/

√
α, so this

parametrization can be easily interpreted.

I We now have a fully specified Bayesian model with 96 parameters
µ, α, λ1, λ2, . . . , λ94.

I The posterior distribution on α will tell us to what extent the λi are
similar.
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Computations for model 3

I The model above has 94 + 2 unobserved variables. For more easy
computation, note that the distribution of y1, . . . , y94, α, and µ is
equivalent in the following marginalized model:

yi ∼ Neg-Binomial

(
α,

α/µ

α/µ+ ei

)
, π(α) ∝α

1

α
and π(µ) ∝µ

1

µ

I As we now only have 2 unknown variables, we can do inference for µ
and α for example with discretization or MCMC.

I If we then want the posterior density for some particular λj , note
that

λj | α, µ, data ∼ Gamma

(
α + yj ,

α

µ
+ ej

)
.

I Computations (in R) can now answer questions such as
I What is the probability of no deaths in hospital 24 given a new

exposure of 1000?
I What is the probability that hospital 90 is really better than hospital

9, i.e., that λ90 < λ9?
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Computations in model 3

I For the posterior π(α, µ | data)

π(α, µ | data) ∝α,µ
1

αµ

94∏
i=1

Neg-Binomial

(
yi ;α,

α

α + µei

)

∝α,µ
1

αµ

94∏
i=1

Γ(yi + α)

Γ(α)

(
α

α + µei

)α(
µei

α + µei

)yi

.

I To make the posterior more symmetrical, improve numerical
properties, and avoid problems that α and µ can only have positive
values, we do the reparametrization θ1 = log(α) and θ2 = log(µ),
i.e., α = eθ1 and µ = eθ2 .
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More on computations for model 3

I With the reparametrization above, the posterior for π(θ1, θ2 | data)
is proportional to

94∏
i=1

Γ(yi + eθ1)

Γ(eθ1)

(
eθ1

eθ1 + eθ2ei

)eθ1 (
eθ2ei

eθ1 + eθ2ei

)yi

.

I Remember that for numerical reasons we prefer to compute the
logged posterior (or use the R function dnbinom):

L(θ1, θ2) =
94∑
1=1

log(Γ(yi + eθ1))− log(Γ(eθ1)) + θ1e
θ1 + yθ2 log(ei )

−yieθ1 log(eθ1 + eθ2ei )

I When discretizing this in 2D, it’s good to know for approximately
what values you expect it to be large: Note that∑

i yi/
∑

i ei ≈ 0.001 so µ ≈ 0.001 and θ2 ≈ −7. Furthermore, from
our interpretation of α, we see that it is probably greater than 1, so
θ1 > 0. See R computations.

I Presentation break for computations in R
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Switching between several proposal functions

I We presented the Metropolis Hastings algorithm as using only one
proposal density.

I Actually
I you may use a whole menu of propsal functions, and
I you may switch between them in a systematic or random way,

as long as the resulting Markov chain in the end becomes ergodic.
I For some “difficult” posterior densities, you might usually use a

small-step random walk, but occasionally use a large-step proposal,
tailored to jump between separate “islands” of high posterior density.

I A very popular possibility: Using proposal densities that fix all but
one (or all but some) of the variables.

I You need to cycle through different proposal functions so that all
variables have a chance to be updated.

I When computing the acceptance probability

ρ(x (t), y) = min

(
f (y)q(x (t) | y)

f (x (t))q(y | x (t))
, 1

)
.

usually many factors cancel, so there are computational advantages.
I In Albert, this is called “Metropolis within Gibbs”.
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Gibbs sampling

I If (x1, x2, . . . , xn) is the variable vector, imagine that you cycle
through proposal functions j = 1, . . . , n, where proposal j only
changes xj , leaving all other variables unchanged.

I Assume in fact proposal j simulates a new proposed value x∗j from

π(xj | x1, . . . , xj−1, xj+1, . . . , xn),

the conditional distribution of xj given all the other variables.
I The acceptance probability in the MH algorithm is computed with

π(x∗)q(x | x∗)

π(x)q(x∗ | x)

=
π(x1, . . . , x

∗
j , . . . , xn)π(xj | x1, . . . , xj−1, xj+1, . . . , xn)

π(x1, . . . , xj , . . . , , xn)π(x∗j | x1, . . . , xj−1, xj+1, . . . , xn)

=
π(x1, . . . , xj−1, xj+1, . . . , xn)

π(x1, . . . , xj−1, xj+1, . . . , xn)
= 1

So accept always!
I This algorithm is called Gibbs sampling.
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Gibbs sampling: Examples

I Example: Simulate from a bivariate normal distribution. The
conditional distributions are normal, formulas are given in a previous
lecture. Presentation break for example in R

I Example: Data y1, y2, . . . , yn are from a Normal(µ, τ−1) distribution,
with independent priors µ ∼ Normal(0, 1) and τ ∼ Gamma(3, 4).

I When τ is fixed we get

µ | τ, data ∼ Normal

(
nyτ

nτ + 1
,

1

nτ + 1

)
.

I When µ is fixed we get

τ | µ, data ∼ Gamma

(
3 +

n

2
, 4 +

1

2

n∑
i=1

(yi − µ)2
)
.

I When τ is fixed, the formula above is a result of the formula for the
posterior in the Normal-Normal conjugacy with fixed precision.

I When µ is fixed, the formula above is a result of the formula for the
posterior in the Normal-Gamma conjugacy with fixed expectation.

I Presentation break for R computation

13 / 25



Gibbs sampling: Summary

I For many models it is easy to implement and program.

I In particular, in hierarchical models Gibbs sampling is sometimes
quite easy to find the formulas for (i.e., the conditional densities to
simulate from).

I No need to bother with acceptance probabilities!

I However, the convergence may be too slow for practical use if
I the variables are highly correlated in the posterior, or
I separate regions of high posterior density cannot easily be reached by

changing one variable at a time.

I You may use blocked Gibbs sampling: Updating a subset of the
variables sampling from their conditional distribution given the
remaining variables.
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Hierarchiclal models

I Sometimes, observed data have dependencies that can best be
described using a hierarchy.

I The heart transplant data is an example.

I Example: Test results for students may depend on the class they are
in, the school they attend, and the country they live in.

I A statistical model for the data should then contain a random
variable for each “source of infuence”; they would depend on each
other in a hierarchy, which can be drawn as an upside-down tree, or
more generally as a network.

I When making computations, the tree structure can be very useful,
for example to find conditional distributions for Gibbs sampling.
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A hierarchical example

Data x1, . . . , x8 and y1, . . . , y6 are organized into groups, and we want to
predict a value z1 in a third group. We assume a model

x1, . . . , x8 ∼ Normal(µ1, τ
−1
1 )

y1, . . . , y6 ∼ Normal(µ2, τ
−1
1 )

z1 ∼ Normal(µ3, τ
−1
1 )

µ1, µ2, µ3 ∼ Normal(10, τ−1
0 )

τ0 ∼ Gamma(1, 4)

τ1 ∼ Gamma(7, 3)

I Presentation break for drawing

I We can make predictions for z1 given data x1, . . . , x8 and y1, . . . , y6
by simulating with Gibbs sampling from the model where the data is
fixed and the remaining variables µ1, µ2, µ3, τ0, τ1, z1 are simulated.

I Note: The exact form for the conditional distributions of each of
these variables can be found using conjugacy.
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Conditional distributions for the example

The conditional distributions become (prove yourself!)

µ1 | x1, . . . , x8, τ1, τ0 ∼ Normal

(
10τ0 + 8xτ1
τ0 + 8τ1

,
1

τ0 + 8τ1

)
µ2 | y1, . . . , y6, τ1, τ0 ∼ Normal

(
10τ0 + 6yτ1
τ0 + 6τ1

,
1

τ0 + 6τ1

)
µ3 | z1, τ1, τ0 ∼ Normal

(
10τ0 + z1τ1
τ0 + τ1

,
1

τ0 + τ1

)
τ0 | µ1, µ2, µ3 ∼ Gamma

(
1 +

3

2
, 4 +

1

2

3∑
i=1

(µi − 10)2

)

τ1 | µ1, µ2, µ3, x1 . . . x8, y1 . . . y6, z1 ∼ Gamma

(
7 +

15

2
, 3 +

1

2

8∑
i=1

(xi − µ1)2

+
1

2

6∑
i=1

(yi − µ2)2 +
1

2
(z1 − µ3)2

)
z1 | µ3, τ1 ∼ Normal(µ3, τ

−1
1 )

Presentation break for computations in R
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Hierarchical models

I In most hierarchical models, there are (at least some) conditional
distributions that do not have nice analytic forms.

I Using the posterior density over all the variables and removing
factors that do not involve the variable we want to simulate, we still
get a function proportional to its conditional density.

I We may update this variable using another type of Metropolis
Hastings proposal (like random walk).

I Note: It may often be better to work with the logged posterior
density: Then one may remove additive terms not involving the
variable one wants to simulate over.
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The slice sampler

I Idea: Do Gibbs sampling from ”the area under the density curve”.
Presentation break for drawing

I More formally, given density fx(x), simulate from the joint density

f (x , u) = I (0 < u < fx(x))

I Works even if the density fx is known only up to a constant.

I The challenge is to simulate x uniformly on {x : u < fx(x)}. This is
most easily done if for example fx is a decreasing function, so that it
is invertible.

I Example: Simulate from the density π(x) = 1
2 exp

(
−
√
x
)
. We

iterate between the following steps:
I Given an x value, simulate u ∼ Uniform

(
0, 1

2
exp

(
−
√
x
))

.
I Given a u value simulate x ∼ Uniform

(
0, (log(2u))2

)
: Note that

u = 1
2

exp
(
−
√
x
)

if and only if x = (log(2u))2 and that π(x) is
decreasing as a function of x .
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Generalization to more dimensions

I The theory can easily be extended to more dimensions: When we
want to simulate from the density

f (x) =
n∏

i=1

gi (x)

we can define the joint density

h(x , u1, . . . , un) =
n∏

i=1

I (0 < ui < gi (x))

I We see that the marginal density for x is f (x).
I We simulate from the joint density using Gibbs sampling. This is

very easy for the variables u1, . . . , un.
I The conditional distribution of x given u1, . . . , un is the uniform

distribution on the set

∩ni=1{x : ui < gi (x)}.

If it is easy to compute this set, slice sampling works well. One
example: If all the gi (x) functions are decreasing and invertible.
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Example: The Challenger disaster

I The goal is to compute the probability that a space shuttle “o-ring”
fails at a specific temperature. (An o-ring failing because of cold
weather was the cause of the Challenger space shuttle disaster).

I Data (x1, y1), . . . , (xn, yn) where xi denotes the temperature (in
Farenheit) and yi is 1 if there is a failure, 0 otherwise. Presentation
break for illustration in R.

I We use a logistic regression model:

yi ∼ Bernoulli(p(xi )) p(xi ) =
exp(a + bxi )

1 + exp(a + bxi )
.

I The posterior becomes (using flat priors on a and b)

π(a, b | data) ∝
n∏

i=1

(
exp(a + bxi )

1 + exp(a + bxi )

)yi ( 1

1 + exp(a + bxi )

)1−yi

=
n∏

i=1

exp(a + bxi )
yi

1 + exp(a + bxi )
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Example continued

I Simulate from posterior for parameters (a, b) using slice sampling:

I For i = 1, . . . , n, simulate ui ∼ Uniform
[
0, exp(a+bxi )

yi

1+exp(a+bxi )

]
.

I Simulate (a, b) uniformly on set satisfying, for all i , ui <
exp(a+bxi )

yi

1+exp(a+bxi )
.

I Corresponds to a + bxi > log(ui/(1− ui )) for i with yi = 1, and
a + bxi < log((1− ui )/ui ) for i with yi = 0.

I To simulate (a, b) uniformly on this set, we first simulate a with

a ∼ Uniform

[
max
yi=1

(
log

ui
1− ui

− bxi

)
,minyi=0

(
log

1− ui
ui

− bxi

)]
I Then for b, we need to be more careful, simulating b uniformly in

the interval of numbers
I Greater than

(
log ui

1−ui
− a
)
/xi for i with yi = 1 and xi > 0.

I Smaller than
(

log ui
1−ui
− a
)
/xi for i with yi = 1 and xi < 0.

I Smaller than
(

log 1−ui
ui
− a
)
/xi for i with yi = 0 and xi > 0.

I Greater than
(

log 1−ui
ui
− a
)
/xi for i with yi = 0 and xi < 0.
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Example continued

I This is actually Example 7.11 in RC, but the book contains some
errors:

I Confusion beween (a, b) and (α, β)
I Second and fourth formulas on page 220 are wrong.
I No need to use a prior for a and b to get this to work; use centering

instead.

I Note that a and b are highly correlated in the posterior if we
implement the code directly. Much improved convergence and
accuracy is obtained by centering the data: Subtracting the average
value from the temperature values, performing the analysis, and
then adding back the average value.

I Presentation break for computation in R.
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Summing up some tips and tricks

I Usually a good idea to compute with the logarithm of the posterior,
instead of the posterior itself.

I Reparametrize all variables so that they are defined on the real line
(if it is possible and convenient).

I Make sure your code avoids underflow and overflow numerical
problems. Make sure a function computing (logged) posterior
density will always return sensible answers for any values that might
be proposed.

I Reparametrize the model, if possible and convenient, so that
parameters are as uncorrelated as possible in the posterior.
Otherwise, you may try out a random walk with correlated proposals.

I Do a normal approximation if convenient: A mode is nice to know,
and the variances, and the covariance matrix, may be helpful for
deciding step lengths in your MCMC! (Rule of thumb, two times
standard deviation, does not always work).

I If available, use some classical anlaysis to find reasonable starting
values for your parameters.

I Vary the starting point of the Markov chain! (Propose from prior?)
I For more complex models, tailored proposals may be necessary!
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Checking convergence

I We know the results from MCMC will be correct in the limit when
the sample size →∞.

I Only in very special cases (e.g. using “coupling”) do we know how
big the sample size needs to be to get a certain accuracy.

I In practice “checking convergence” means checking for signs of
non-convergence or slow convergence (slow “mixing”):

I Monitor variable values and cumulative averages.
I Check autocorrelations for variables.
I Check acceptance rates (but higher is not always better, unless you

are using independent proposals!)
I Use multiple starting points for the MCMC chain!
I Use multiple parallell chains, and compare variace within chains with

variance between chains! (Special tests have been developed).

I An important ingredient is to understand your model and your
posterior, so that you can guess what might cause convergence
problems, and check for such problems.
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