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Overview

I The Bayesian paradigm: Define Ydata, Ypred , and a stochastic model.
Make predictions for Ypred by first finding (or generating a sample
from) the posterior for a model parameter vector θ.

I We have looked at example models where θ consists of a handful of
parameters.

I Today we turn to models with with a “time-structure”: At each time
point, the structure of the stochastic model is the same, but
variables change over time.
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Time-structured models

I Many examples of sequential data: The results for a sports team,
data from a self-driving car, data from speach analysis, . . .

I The structuring variable need not be time: Another example is DNA
sequences.

I We assume “data of the same format” are observed at time points
t. A possible goal: Predict data at future times.

I Continuous time models: Possible, but not treated here.

I We assume data y0, y1, . . . , yT observed at times 0, 1, . . . ,T .

I Models can get complicated because of complicated dependencies
between the yi .

I A powerful way to formulate a model: Assume there is a sequence of
hidden variables x0, x1, . . . , xT so that xi stores all information
relevant to predict yi , yi+1, . . . , yT .
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State space models

I We assume there is a Markov chain of hidden variables x0, x1, . . . , xT
that can be used to predict the observed variables y0, . . . , yT :

I Note that the distribution of yi is modelled only in terms of xi .
I Note that x0, . . . , xT is a Markov chain, so that, for example

π(xi+1 | x0, x1, . . . , xi ) = π(xi+1 | xi ).
I Many statements of conditional independencies can be read off the

graph of dependencies above, for example: Given the value of xi , the
variables yi , . . . , yT are indepenent of variables y1, . . . , yi−1.

I We will only consider homogeneous Markov chains: The variables xi
are of the same type, and the conditional distributions π(xi | xi−1)
are all the same.

I We will also assume that the emission distributions π(yi | xi ) are the
same for all i (and the variables yi are of the same type).
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State space models

I Thus, to specify such a state space model we need to specify

π(x0) π(xi | xi−1) π(yi | xi )
I There is a possibility to model also direct dependencies between yi

and yi+1, but as yi and yi+1 are generally observed, adjusting the
theory is easy, and not considered here.

I The random variables xi and yi may be of any type, and may be
vectors!

I When xi are discrete variables with a finite number of possible
values, we call the above a Hidden Markov Model (HMM).

I If the variables are all (multivariate) normal, and if the dependencies
π(xi | xi−1) and π(yi | xi ) are linear, we call the above a linear
dynamical system.
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Toy example

In this lecture we will work with a simple toy example of an HMM:

I The hidden variables x1, . . . , xN have possible values 1, . . . ,M, and
transition probabilities in the chain are (initially):

xi given xi−1 is

with prob. 1/3: xi−1 + 1 if possible, otherwise xi−1.
with prob. 1/3: xi−1.
with prob. 1/3: xi−1 − 1 if possible, otherwise xi−1.

I The observed variables yi are Poisson distributed with expectations
given by the xi :

I Presentation break for R simulations

6 / 15



Inference for state space models

I Within the Bayesian paradigm, one might want to find the full
posterior

π(x0, . . . , xT | y0, . . . , yT ).

Usually represented by sample sequences x0, . . . , xT .
I An easier goal is to find the marginal posterior for each xi :

π(xi | y0, . . . , yT )

This will be our main focus.
I In fact, our algorithm will be a special case of a more general

algorithm (called, e.g., “message passing” or “sum-product
algorithm”). We hope to return to this.

I Assume we have an HMM, so that the xi have a finite set of
possible values. A goal might be to find the sequence x0, . . . , xT of
values such that

π(x0, . . . , xT | y0, . . . , yT )

is maximized. We look at the Viterbi algorithm for this below.
I The distributions π(xi | xi−1) and π(yi | xi ) might have unknown

parameters. We may return to making inference also for such
parameters.
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The Forward-Backward algorithm

Message passing applied to a Hidden Markov Model.

Objective: Compute the marginal posterior distribution of every xi given data
y0, . . . , yT : Use π(xi | y0 . . . , yT ) ∝xi π(yi+1, . . . , yT | xi )π(xi | y0, . . . , yi ) and
1. Forward: For i = 0, . . . ,T compute π(xi | y0, . . . , yi ) using

π(xi | y0, . . . , yi ) ∝xi π(yi | xi )π(xi | y0, . . . , yi−1)

= π(yi | xi )
∫
π(xi | xi−1)π(xi−1 | y0, . . . , yi−1) dxi−1

2. Backward: For i = T − 1, . . . , 0 compute π(yi+1, . . . , yT | xi ) using

π(yi+1, . . . , yT | xi ) =
∫
π(yi+2, . . . , yT | xi+1)π(yi+1 | xi+1)π(xi+1 | xi ) dxi+1
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The Forward-Backward algorithm for our HMM example

I The hidden chain x0 → · · · → xN is a random walk on the integers
{1, . . . ,M}.

I The (prior) transition probabilities from xi to xi+1 is to increase with
1 (if possible) with probability 1/3, to decrease with 1 (if possible)
with probability 1/3, and otherwise stay put.

I We use the model yi | xi ∼ Poisson(xi ) and assume the yi are
observed.

I We use the Forward-Backward algorithm to find the marginal
posterior probability for each xi .

I Presentation break for R computations
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The Viterbi algorithm

We consider an HMM where the xi have a finite state space {1, . . . ,M}:

Objective: Compute the vector x0, . . . , xT which maximizes the posterior
π(x0, . . . , xT | y0, . . . , yT ), i.e., maximizes π(x0, . . . , xT , y0, . . . , yT ).

I First formulation of an algorithm: Sequentially, for i = 0, . . . ,T ,
compute and store

I For each j = 1, . . . ,M, the sequence x̂0, . . . , x̂i maximizing
π(x̂0, . . . , x̂i , y0, . . . , yi ) while x̂i = j .

I For each j = 1, . . . ,M, the value of the maximum above.
I Note that

π(x0, . . . , xi , y0, . . . , yi ) = π(x0, . . . , xi−1, y0, . . . , yi−1)·π(xi | xi−1)π(yi | xi )
Thus the results for stage i with x̂i = j can be found by finding the
x̂i−1 in {1, . . . ,M} maximizing

π(x̂0, . . . , x̂i−1, y0, . . . , yi−1) · π(xi = j | x̂i−1)
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The Viterbi algorithm

I Thus results for the i ’th step in the sequence can be computed by
considering all combinations of values for xi and xi−1 together with
results from the i − 1’th step.

I Improved and final formulation of the algorithm: For each i and j ,
you only need to store x̂i−1, not the whole sequence
x̂0, . . . , x̂i−1, x̂i = j . THEN: At any point, (x̂1, . . . , x̂i ) can be
reconstructed tracing backwards through stored information.

I Presentation break for computations in R
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Kalman filters

I The Forward-Backward algorithm applied to the case where all
variables are (multivariate) normal and all dependencies are linear is
called the Kalman filter.

I Because of the Normal-Normal conjugacy, all the distributions we
compute in the Forward-Backward algorithm become Normal
distributions.

I Specifically, assume in the multivariate case

π(xi | xi−1) = Normal
(
xi ;Axi−1 + b,P−1

)
π(yi | xi ) = Normal

(
yi ;Cxi + d ,Q−1

)
π(x0) = Normal

(
x0;µ0,R

−1
)

Then
I the Forward algorithm produces a recursive formula for the

parameters of the normal distribution π(xi | y0, . . . , yi ),
I the Backward algorithm produces a recursive formula for the

parameters of a normal distribution proportional to
π(yi+1, . . . , yT | xi ),

I The normal-normal conjugacy produces from this parameters for the
normal distribution π(xi | y0, . . . , yT ).
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Formulas for a simple 1D Kalman filter

To simplify formulas we look at the 1D example

π(xi | xi−1) = Normal
(
xi ; xi−1, τ

−1
1

)
π(yi | xi ) = Normal

(
yi ; xi , τ

−1
2

)
π(x0) = Normal

(
x0;µ0, τ

−1
0

)
I For i = 0, . . . ,T , we define values ai , αi such that

π(xi | y0, . . . , yi ) = Normal(xi ; ai , α
−1
i )

and use the Forward algorithm to obtain a recursive formula.
I For i = T − 1, . . . , 0, we define values bi , βi such that

π(yi+1, . . . , yT | xi ) ∝xi Normal(xi ; bi , β
−1
i )

and use the Backward algorith to obtain a recursive formula.
I The normal-normal conjugacy gives directly that

π(xi | y0, . . . , yT ) = Normal

(
xi ;

αiai + βibi
αi + βi

, (αi + βi )
−1

)
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Forward recursive formula

I For i = 0 we get

π(x0 | y0) ∝x0 Normal(y0; x0, τ
−1
2 ) Normal(x0;µ0, τ

−1
0 )

∝x0 Normal

(
x0;

µ0τ0 + y0τ2
τ0 + τ2

, (τ0 + τ2)−1

)
so a0 =

µ0τ0+y0τ2
τ0+τ2

and α0 = τ0 + τ2.

I For i = 1, . . . ,T ,

π(xi | y0, . . . , yi )

∝xi π(yi | xi )
∫
π(xi | xi−1)π(xi−1 | y0, . . . , yi−1) dxi−1

= Normal(yi ; xi , τ
−1
2 )

∫
Normal(xi ; xi−1, τ

−1
1 ) Normal(xi−1; ai−1, α

−1
i−1) dxi−1

= Normal(yi ; xi , τ
−1
2 ) Normal(xi ; ai−1, τ

−1
1 + α−1

i−1)

∝xi Normal

(
xi ;

(τ−1
1 + α−1

i−1)
−1ai−1 + τ2yi

(τ−1
1 + α−1

i−1)
−1 + τ2

, ((τ−1
1 + α−1

i−1)
−1 + τ2)

−1

)

so ai =
(τ−1

1 +α−1
i−1)

−1ai−1+τ2yi

(τ−1
1 +α−1

i−1)
−1+τ2

and αi = (τ−1
1 + α−1

i−1)
−1 + τ2.
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Backward recursive formula

I Set bT = 0, βT = 0.

I For i = T − 1, . . . , 0, we get

π(yi+1, . . . , yT | xi )

=

∫
π(yi+2, . . . , yT | xi+1)π(yi+1 | xi+1)π(xi+1 | xi ) dxi+1

∝xi

∫
Normal(xi+1; bi+1, β

−1
i+1) · Normal(yi+1; xi+1, τ

−1
2 ) ·

Normal(xi+1; xi , τ
−1
1 ) dxi+1

∝xi

∫
Normal

(
xi+1;

βi+1bi+1 + τ2yi+1

βi+1 + τ2
, (βi+1 + τ2)

−1

)
·

Normal(xi ; xi+1, τ
−1
1 ) dxi+1

= Normal

(
xi ;

βi+1bi+1 + τ2yi+1

βi+1 + τ2
, (βi+1 + τ2)

−1 + τ−1
1

)
so bi =

βi+1bi+1+τ2yi+1

βi+1+τ2
and βi = ((βi+1 + τ2)

−1 + τ−1
1 )−1.

I Presentation break for computations in R
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