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Overview

> The Bayesian paradigm: Define Yyata, Ypred. and a stochastic model.
Make predictions for Ypeq by first finding (or generating a sample
from) the posterior for a model parameter vector 6.

» We have looked at example models where 8 consists of a handful of
parameters.

» Today we turn to models with with a "“time-structure”: At each time
point, the structure of the stochastic model is the same, but
variables change over time.
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Time-structured models

» Many examples of sequential data: The results for a sports team,
data from a self-driving car, data from speach analysis, ...

» The structuring variable need not be time: Another example is DNA
sequences.

» We assume “data of the same format” are observed at time points
t. A possible goal: Predict data at future times.

» Continuous time models: Possible, but not treated here.
» We assume data yg, y1,- .., yT Observed at times 0,1,..., T.

» Models can get complicated because of complicated dependencies
between the y;.

» A powerful way to formulate a model: Assume there is a sequence of
hidden variables xg, x1, ..., xT so that x; stores all information
relevant to predict y;, yit1,...,YT.

3/15



State space models

> We assume there is a Markov chain of hidden variables xg, x1, ..., xT
that can be used to predict the observed variables yo, ..., yr:

» Note that the distribution of y; is modelled only in terms of x;.
» Note that xg, ..., x7 is a Markov chain, so that, for example

(X1 | X0, X1y -+ oy Xi) = T(Xig1 | Xi)-

» Many statements of conditional independencies can be read off the
graph of dependencies above, for example: Given the value of x;, the
variables y;, ...,y are indepenent of variables y1,...,y;_1.

» We will only consider homogeneous Markov chains: The variables x;
are of the same type, and the conditional distributions 7(x; | xi—1)
are all the same.

» We will also assume that the emission distributions w(y; | x;) are the
same for all i (and the variables y; are of the same type).
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State space models

» Thus, to specify such a state space model we need to specify
m(x0) m(xi | xi-1) m(yi | xi)

» There is a possibility to model also direct dependencies between y;
and y;y1, but as y; and y;.1 are generally observed, adjusting the
theory is easy, and not considered here.

» The random variables x; and y; may be of any type, and may be
vectors!

» When x; are discrete variables with a finite number of possible
values, we call the above a Hidden Markov Model (HMM).

> If the variables are all (multivariate) normal, and if the dependencies
m(x; | xi—1) and w(y; | x;) are linear, we call the above a linear
dynamical system.
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Toy example

In this lecture we will work with a simple toy example of an HMM:

» The hidden variables xi, ..., xy have possible values 1,..., M, and
transition probabilities in the chain are (initially):

with prob. 1/3: x;_; + 1 if possible, otherwise x;_;.
x; given x;_1 is ¢ with prob. 1/3: Xi_1.
with prob. 1/3:  x;_; — 1 if possible, otherwise x;_1.

» The observed variables y; are Poisson distributed with expectations
given by the x;:
» Presentation break for R simulations
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nce for state space models

| 4

Within the Bayesian paradigm, one might want to find the full
posterior
7T(X0, ey XT | Yo, .- - ,yT).
Usually represented by sample sequences xg, .. ., XT.
An easier goal is to find the marginal posterior for each x;:

7T(Xi | }’0»--~a)’T)

This will be our main focus.
In fact, our algorithm will be a special case of a more general
algorithm (called, e.g., “message passing” or “sum-product
algorithm™). We hope to return to this.
Assume we have an HMM, so that the x; have a finite set of
possible values. A goal might be to find the sequence xg, ..., x7 of
values such that

’/T(X07"‘7XT | y03"'ayT)
is maximized. We look at the Viterbi algorithm for this below.
The distributions 7(x; | x;—1) and 7(y; | x;) might have unknown
parameters. We may return to making inference also for such

parameters.
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The Forward-Backward algorithm
Message passing applied to a Hidden Markov Model.
“-
O Om OO
,yi) and

Objective: Compute the marginal posterior distribution of every x; given data
Yo, yr: Use w(xi | yo ..., y71) o (Vi1 - y7 | xi)mw(xi | yo, - .-
1. Forward: For i =0,..., T compute 7(x; | yo,...,Yi) using

T(xi | Yo,---,¥i) x  w(yi | x)m(xi | yo,--.,¥i-1)
7(yi | Xi)/ﬂ(xi | Xi—1)m(Xi—1 | Yo,--.,¥i—1) dXi—1

YT | xi) using

2. Backward: For i = T —1,...,0 compute 7(yi41, -
w(yis1, .., y7 | xi) = /7r(yi+2, e Y1 I X)) (Yisa | Xien)m(Xiv | x5) dxia
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The Forward-Backward algorithm for our HMM example

» The hidden chain xg — - -+ — xy is a random walk on the integers
{1,...,M}.

» The (prior) transition probabilities from x; to x;;1 is to increase with
1 (if possible) with probability 1/3, to decrease with 1 (if possible)
with probability 1/3, and otherwise stay put.

» We use the model y; | x; ~ Poisson(x;) and assume the y; are
observed.

» We use the Forward-Backward algorithm to find the marginal
posterior probability for each x;.

» Presentation break for R computations
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The Viterbi algorithm

We consider an HMM where the x; have a finite state space {1,..., M}:

® O O -
CO— (D= -+

Objective: Compute the vector xg, . .., xT which maximizes the posterior
(X5 s XT | Yoo+, YT), i-€., maximizes w(Xg, ..., X7, Y0, -+, YT)-
» First formulation of an algorithm: Sequentially, for i =0,..., T,
compute and store
> For each j =1,..., M, the sequence Xy, ..., X; maximizing
7T()?o, N ,)?,‘,yo, NN ,y,-) while X; :j.
> For each j =1,..., M, the value of the maximum above.
> Note that

W(XO7 sy Xiy YOy e ayi) = 7T(X07 sy Xic1, Y05 - - 7yi—1)'7T(Xi | Xi—l)ﬂ—(yi | Xi)

Thus the results for stage i with X; = j can be found by finding the
%i—1 in {1,..., M} maximizing

(Ko - Kic1, Y0, - -5 Yie1) - (X = J | Ki—1)
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The Viterbi algorithm

» Thus results for the i'th step in the sequence can be computed by
considering all combinations of values for x; and x;_; together with
results from the i — 1'th step.

» Improved and final formulation of the algorithm: For each i and j,
you only need to store X;_1, not the whole sequence
R0y -+, Ri—1,% = j. THEN: At any point, (X1, ...,%;) can be
reconstructed tracing backwards through stored informatlon.

» Presentation break for computations in R
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Kalman filters

» The Forward-Backward algorithm applied to the case where all
variables are (multivariate) normal and all dependencies are linear is
called the Kalman filter.

> Because of the Normal-Normal conjugacy, all the distributions we
compute in the Forward-Backward algorithm become Normal
distributions.

» Specifically, assume in the multivariate case

(x| xi-1) = Normal (x;; Axi_1 + b, P™")
m(y; | x) = Normal (y;; Cx;+d, Q1)
m(x) = Normal (xo; o, R71)
Then

> the Forward algorithm produces a recursive formula for the
parameters of the normal distribution 7(x; | yo,. .., yi),

> the Backward algorithm produces a recursive formula for the
parameters of a normal distribution proportional to
ﬂ'(_y,'+1, cees YT | Xi)'

» The normal-normal conjugacy produces from this parameters for the
normal distribution w(x; | yo,...,yT)-
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Formulas for a simple 1D Kalman filter

To simplify formulas we look at the 1D example

m(xi | xi—1) = Normal (x;;xi—1,71 ")
w(yi | ;) = Normal (y;;Xinz_l)
m(x) = Normal (xo; o, 79 ")
» For i =0,..., T, we define values a;, «; such that
(x| Yo,---,yi) = Normal(x;; ai,Oé,'_l)

and use the Forward algorithm to obtain a recursive formula.
» Fori=T —1,...,0, we define values b;, 3; such that

-1
T(Yit1, -, y1 | Xi) o< Normal(x;; bi, 5;7)
and use the Backward algorith to obtain a recursive formula.
» The normal-normal conjugacy gives directly that
aja; + Bib;

i N1
a; +ﬁ, ,(Oé, +Bl) )

7(x; | Y0, ---,y7) = Normal (x,-;
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Forward recursive formula

> For i =0 we get

m(x0 | Yo) O Normal(yo;xo,TQ_I) Normal(xo;,uo,TO_l)

HoTo + YoT2 —1
X( N | [ — 2
Xxg orma <xo P (10 + 72) )

_ HoTOo+Y0T2 _
S0 ap = ~n and ap = 10 + 7.

» Fori=1,..., T,
(i | Yo, ¥i)
Kx; 7T(y,' ‘ X,')/’JT(X,' | X,'71)7T(X,'71 | Yo, ... ,y,-,l) dX,;l
= Normal(y,-;x,-,r{l)/Normal(x;;x,-_l,Tl_l) Normal(x;—_1; ai—1, ;) dxi_1
= Normal(y;; xi, 7'2_1) Normal(x;; aj_1, 7'1_1 + a,-__ll)

-1 —1\-—1
Tt ai—1 + T2yi
Normal (X;; (s ) LT A e T 7'2)1>

Kx;

(o)

1 S
_ (g +O‘,‘,1) 1ai—l‘f'7‘2}/i

—1 —1y-1
so aj = — = and o; = (17 ~ + «; + 7.
i (7_1 1+o¢i_11)*1+7'2 1 ( 1 1—1)
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Backward recursive formula

» Set bt =0, ﬁTZO.
» Fori=T—1,...,0, we get

7r(yi+1,---,yT | Xi)

= /W(yl'+2,-~,}/T | Xiv1)m(yier | Xie1)m(xien | xi) dxia

Kx; /Normal(x,-ﬂ; b;+1,ﬁ,:_11) - Normal(yiy1; x,-+1,7'2_1) .

—1
Normal(xjy1; xi, 71 ~) dxit1
Biv1biv1 + T2yin1 1
Xy /Normal Xiy1; — 22 (Biy1 + T2) :
Bit1+ 1
1
Normal(xi; Xi+1, 77 ) dXit1
Bix1biv1 + T2y

= Normal [ x;;
Bit1+ T2

(B +72) 4 Tfl)

so b = 7‘3'“/3;312”“ and Bi = ((Bis1 +m) '+ )7L

» Presentation break for computations in R
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