MSA101/MVE187 2021 Lecture 8

Hidden Markov Models and state space models. Kalman filters.

Petter Mostad

Chalmers University
September 21, 2021

Overview

- The Bayesian paradigm: Define $Y_{\text {data }}, Y_{\text {pred }}$, and a stochastic model. Make predictions for $Y_{\text {pred }}$ by first finding (or generating a sample from) the posterior for a model parameter vector θ.
- We have looked at example models where θ consists of a handful of parameters.
- Today we turn to models with with a "time-structure": At each time point, the structure of the stochastic model is the same, but variables change over time.

Time-structured models

- Many examples of sequential data: The results for a sports team, data from a self-driving car, data from speach analysis, ...
- The structuring variable need not be time: Another example is DNA sequences.
- We assume "data of the same format" are observed at time points t. A possible goal: Predict data at future times.
- Continuous time models: Possible, but not treated here.
- We assume data $y_{0}, y_{1}, \ldots, y_{T}$ observed at times $0,1, \ldots, T$.
- Models can get complicated because of complicated dependencies between the y_{i}.
- A powerful way to formulate a model: Assume there is a sequence of hidden variables $x_{0}, x_{1}, \ldots, x_{T}$ so that x_{i} stores all information relevant to predict $y_{i}, y_{i+1}, \ldots, y_{T}$.

State space models

- We assume there is a Markov chain of hidden variables $x_{0}, x_{1}, \ldots, x_{T}$ that can be used to predict the observed variables y_{0}, \ldots, y_{T} :

- Note that the distribution of y_{i} is modelled only in terms of x_{i}.
- Note that x_{0}, \ldots, x_{T} is a Markov chain, so that, for example

$$
\pi\left(x_{i+1} \mid x_{0}, x_{1}, \ldots, x_{i}\right)=\pi\left(x_{i+1} \mid x_{i}\right) .
$$

- Many statements of conditional independencies can be read off the graph of dependencies above, for example: Given the value of x_{i}, the variables y_{i}, \ldots, y_{T} are indepenent of variables y_{1}, \ldots, y_{i-1}.
- We will only consider homogeneous Markov chains: The variables x_{i} are of the same type, and the conditional distributions $\pi\left(x_{i} \mid x_{i-1}\right)$ are all the same.
- We will also assume that the emission distributions $\pi\left(y_{i} \mid x_{i}\right)$ are the same for all i (and the variables y_{i} are of the same type).

State space models

- Thus, to specify such a state space model we need to specify

$$
\pi\left(x_{0}\right) \quad \pi\left(x_{i} \mid x_{i-1}\right) \quad \pi\left(y_{i} \mid x_{i}\right)
$$

- There is a possibility to model also direct dependencies between y_{i} and y_{i+1}, but as y_{i} and y_{i+1} are generally observed, adjusting the theory is easy, and not considered here.
- The random variables x_{i} and y_{i} may be of any type, and may be vectors!
- When x_{i} are discrete variables with a finite number of possible values, we call the above a Hidden Markov Model (HMM).
- If the variables are all (multivariate) normal, and if the dependencies $\pi\left(x_{i} \mid x_{i-1}\right)$ and $\pi\left(y_{i} \mid x_{i}\right)$ are linear, we call the above a linear dynamical system.

Toy example

In this lecture we will work with a simple toy example of an HMM:

- The hidden variables x_{1}, \ldots, x_{N} have possible values $1, \ldots, M$, and transition probabilities in the chain are (initially):
x_{i} given x_{i-1} is $\left\{\begin{array}{cc}\text { with prob. } 1 / 3: & x_{i-1}+1 \text { if possible, otherwise } x_{i-1} . \\ \text { with prob. } 1 / 3: & x_{i-1} . \\ \text { with prob. } 1 / 3: & x_{i-1}-1 \text { if possible, otherwise } x_{i-1} .\end{array}\right.$
- The observed variables y_{i} are Poisson distributed with expectations given by the x_{i} :
- Presentation break for \mathbf{R} simulations

Inference for state space models

- Within the Bayesian paradigm, one might want to find the full posterior

$$
\pi\left(x_{0}, \ldots, x_{T} \mid y_{0}, \ldots, y_{T}\right)
$$

Usually represented by sample sequences x_{0}, \ldots, x_{T}.

- An easier goal is to find the marginal posterior for each x_{i} :

$$
\pi\left(x_{i} \mid y_{0}, \ldots, y_{T}\right)
$$

This will be our main focus.

- In fact, our algorithm will be a special case of a more general algorithm (called, e.g., "message passing" or "sum-product algorithm"). We hope to return to this.
- Assume we have an HMM, so that the x_{i} have a finite set of possible values. A goal might be to find the sequence x_{0}, \ldots, x_{T} of values such that

$$
\pi\left(x_{0}, \ldots, x_{T} \mid y_{0}, \ldots, y_{T}\right)
$$

is maximized. We look at the Viterbi algorithm for this below.

- The distributions $\pi\left(x_{i} \mid x_{i-1}\right)$ and $\pi\left(y_{i} \mid x_{i}\right)$ might have unknown parameters. We may return to making inference also for such parameters.

The Forward-Backward algorithm

Message passing applied to a Hidden Markov Model.

Objective: Compute the marginal posterior distribution of every x_{i} given data y_{0}, \ldots, y_{T} : Use $\pi\left(x_{i} \mid y_{0} \ldots, y_{T}\right) \propto_{x_{i}} \pi\left(y_{i+1}, \ldots, y_{T} \mid x_{i}\right) \pi\left(x_{i} \mid y_{0}, \ldots, y_{i}\right)$ and

1. Forward: For $i=0, \ldots, T$ compute $\pi\left(x_{i} \mid y_{0}, \ldots, y_{i}\right)$ using

$$
\begin{aligned}
\pi\left(x_{i} \mid y_{0}, \ldots, y_{i}\right) & \propto x_{x_{i}} \\
& \pi\left(y_{i} \mid x_{i}\right) \pi\left(x_{i} \mid y_{0}, \ldots, y_{i-1}\right) \\
& =\pi\left(y_{i} \mid x_{i}\right) \int \pi\left(x_{i} \mid x_{i-1}\right) \pi\left(x_{i-1} \mid y_{0}, \ldots, y_{i-1}\right) d x_{i-1}
\end{aligned}
$$

2. Backward: For $i=T-1, \ldots, 0$ compute $\pi\left(y_{i+1}, \ldots, y_{T} \mid x_{i}\right)$ using

$$
\pi\left(y_{i+1}, \ldots, y_{T} \mid x_{i}\right)=\int \pi\left(y_{i+2}, \ldots, y_{T} \mid x_{i+1}\right) \pi\left(y_{i+1} \mid x_{i+1}\right) \pi\left(x_{i+1} \mid x_{i}\right) d x_{i+1}
$$

The Forward-Backward algorithm for our HMM example

- The hidden chain $x_{0} \rightarrow \cdots \rightarrow x_{N}$ is a random walk on the integers $\{1, \ldots, M\}$.
- The (prior) transition probabilities from x_{i} to x_{i+1} is to increase with 1 (if possible) with probability $1 / 3$, to decrease with 1 (if possible) with probability $1 / 3$, and otherwise stay put.
- We use the model $y_{i} \mid x_{i} \sim \operatorname{Poisson}\left(x_{i}\right)$ and assume the y_{i} are observed.
- We use the Forward-Backward algorithm to find the marginal posterior probability for each x_{i}.
- Presentation break for R computations

The Viterbi algorithm

We consider an HMM where the x_{i} have a finite state space $\{1, \ldots, M\}$:

Objective: Compute the vector x_{0}, \ldots, x_{T} which maximizes the posterior $\pi\left(x_{0}, \ldots, x_{T} \mid y_{0}, \ldots, y_{T}\right)$, i.e., maximizes $\pi\left(x_{0}, \ldots, x_{T}, y_{0}, \ldots, y_{T}\right)$.

- First formulation of an algorithm: Sequentially, for $i=0, \ldots, T$, compute and store
- For each $j=1, \ldots, M$, the sequence $\hat{x}_{0}, \ldots, \hat{x}_{i}$ maximizing $\pi\left(\hat{x}_{0}, \ldots, \hat{x}_{i}, y_{0}, \ldots, y_{i}\right)$ while $\hat{x}_{i}=j$.
- For each $j=1, \ldots, M$, the value of the maximum above.
- Note that

$$
\pi\left(x_{0}, \ldots, x_{i}, y_{0}, \ldots, y_{i}\right)=\pi\left(x_{0}, \ldots, x_{i-1}, y_{0}, \ldots, y_{i-1}\right) \cdot \pi\left(x_{i} \mid x_{i-1}\right) \pi\left(y_{i} \mid x_{i}\right)
$$

Thus the results for stage i with $\hat{x}_{i}=j$ can be found by finding the \hat{x}_{i-1} in $\{1, \ldots, M\}$ maximizing

$$
\pi\left(\hat{x}_{0}, \ldots, \hat{x}_{i-1}, y_{0}, \ldots, y_{i-1}\right) \cdot \pi\left(x_{i}=j \mid \hat{x}_{i-1}\right)
$$

The Viterbi algorithm

- Thus results for the i 'th step in the sequence can be computed by considering all combinations of values for x_{i} and x_{i-1} together with results from the $i-1$ 'th step.
- Improved and final formulation of the algorithm: For each i and j, you only need to store \hat{x}_{i-1}, not the whole sequence $\hat{x}_{0}, \ldots, \hat{x}_{i-1}, \hat{x}_{i}=j$. THEN: At any point, $\left(\hat{x}_{1}, \ldots, \hat{x}_{i}\right)$ can be reconstructed tracing backwards through stored information.
- Presentation break for computations in \mathbf{R}

Kalman filters

- The Forward-Backward algorithm applied to the case where all variables are (multivariate) normal and all dependencies are linear is called the Kalman filter.
- Because of the Normal-Normal conjugacy, all the distributions we compute in the Forward-Backward algorithm become Normal distributions.
- Specifically, assume in the multivariate case

$$
\begin{aligned}
\pi\left(x_{i} \mid x_{i-1}\right) & =\operatorname{Normal}\left(x_{i} ; A x_{i-1}+b, P^{-1}\right) \\
\pi\left(y_{i} \mid x_{i}\right) & =\operatorname{Normal}\left(y_{i} ; C x_{i}+d, Q^{-1}\right) \\
\pi\left(x_{0}\right) & =\operatorname{Normal}\left(x_{0} ; \mu_{0}, R^{-1}\right)
\end{aligned}
$$

Then

- the Forward algorithm produces a recursive formula for the parameters of the normal distribution $\pi\left(x_{i} \mid y_{0}, \ldots, y_{i}\right)$,
- the Backward algorithm produces a recursive formula for the parameters of a normal distribution proportional to $\pi\left(y_{i+1}, \ldots, y_{T} \mid x_{i}\right)$,
- The normal-normal conjugacy produces from this parameters for the normal distribution $\pi\left(x_{i} \mid y_{0}, \ldots, y_{T}\right)$.

Formulas for a simple 1D Kalman filter

To simplify formulas we look at the 1D example

$$
\begin{aligned}
\pi\left(x_{i} \mid x_{i-1}\right) & =\operatorname{Normal}\left(x_{i} ; x_{i-1}, \tau_{1}^{-1}\right) \\
\pi\left(y_{i} \mid x_{i}\right) & =\operatorname{Normal}\left(y_{i} ; x_{i}, \tau_{2}^{-1}\right) \\
\pi\left(x_{0}\right) & =\operatorname{Normal}\left(x_{0} ; \mu_{0}, \tau_{0}^{-1}\right)
\end{aligned}
$$

- For $i=0, \ldots, T$, we define values a_{i}, α_{i} such that

$$
\pi\left(x_{i} \mid y_{0}, \ldots, y_{i}\right)=\operatorname{Normal}\left(x_{i} ; a_{i}, \alpha_{i}^{-1}\right)
$$

and use the Forward algorithm to obtain a recursive formula.

- For $i=T-1, \ldots, 0$, we define values b_{i}, β_{i} such that

$$
\pi\left(y_{i+1}, \ldots, y_{T} \mid x_{i}\right) \propto_{x_{i}} \operatorname{Normal}\left(x_{i} ; b_{i}, \beta_{i}^{-1}\right)
$$

and use the Backward algorith to obtain a recursive formula.

- The normal-normal conjugacy gives directly that

$$
\pi\left(x_{i} \mid y_{0}, \ldots, y_{T}\right)=\operatorname{Normal}\left(x_{i} ; \frac{\alpha_{i} a_{i}+\beta_{i} b_{i}}{\alpha_{i}+\beta_{i}},\left(\alpha_{i}+\beta_{i}\right)^{-1}\right)
$$

Forward recursive formula

- For $i=0$ we get

$$
\begin{array}{rll}
\pi\left(x_{0} \mid y_{0}\right) & \propto_{x_{0}} & \operatorname{Normal}\left(y_{0} ; x_{0}, \tau_{2}^{-1}\right) \operatorname{Normal}\left(x_{0} ; \mu_{0}, \tau_{0}^{-1}\right) \\
& \propto_{x_{0}} & \operatorname{Normal}\left(x_{0} ; \frac{\mu_{0} \tau_{0}+y_{0} \tau_{2}}{\tau_{0}+\tau_{2}},\left(\tau_{0}+\tau 2\right)^{-1}\right)
\end{array}
$$

so $a_{0}=\frac{\mu_{0} \tau_{0}+y_{0} \tau_{2}}{\tau_{0}+\tau_{2}}$ and $\alpha_{0}=\tau_{0}+\tau_{2}$.

- For $i=1, \ldots, T$,

$$
\begin{aligned}
& \pi\left(x_{i} \mid y_{0}, \ldots, y_{i}\right) \\
\propto_{x_{i}} \quad & \pi\left(y_{i} \mid x_{i}\right) \int \pi\left(x_{i} \mid x_{i-1}\right) \pi\left(x_{i-1} \mid y_{0}, \ldots, y_{i-1}\right) d x_{i-1} \\
= & \operatorname{Normal}\left(y_{i} ; x_{i}, \tau_{2}^{-1}\right) \int \operatorname{Normal}\left(x_{i} ; x_{i-1}, \tau_{1}^{-1}\right) \operatorname{Normal}\left(x_{i-1} ; a_{i-1}, \alpha_{i-1}^{-1}\right) d x_{i-1} \\
= & \operatorname{Normal}\left(y_{i} ; x_{i}, \tau_{2}^{-1}\right) \operatorname{Normal}\left(x_{i} ; a_{i-1}, \tau_{1}^{-1}+\alpha_{i-1}^{-1}\right) \\
\propto_{x_{i}} \quad & \operatorname{Normal}\left(x_{i} ; \frac{\left(\tau_{1}^{-1}+\alpha_{i-1}^{-1}\right)^{-1} a_{i-1}+\tau_{2} y_{i}}{\left(\tau_{1}^{-1}+\alpha_{i-1}^{-1}\right)^{-1}+\tau_{2}},\left(\left(\tau_{1}^{-1}+\alpha_{i-1}^{-1}\right)^{-1}+\tau_{2}\right)^{-1}\right)
\end{aligned}
$$

so $a_{i}=\frac{\left(\tau_{1}^{-1}+\alpha_{i-1}^{-1}\right)^{-1} a_{i-1}+\tau_{2} y_{i}}{\left(\tau_{1}^{-1}+\alpha_{i-1}^{-1}\right)^{-1}+\tau_{2}}$ and $\alpha_{i}=\left(\tau_{1}^{-1}+\alpha_{i-1}^{-1}\right)^{-1}+\tau_{2}$.

Backward recursive formula

- Set $b_{T}=0, \beta_{T}=0$.
- For $i=T-1, \ldots, 0$, we get

$$
\begin{aligned}
& \pi\left(y_{i+1}, \ldots, y_{T} \mid x_{i}\right) \\
&= \int \pi\left(y_{i+2}, \ldots, y_{T} \mid x_{i+1}\right) \pi\left(y_{i+1} \mid x_{i+1}\right) \pi\left(x_{i+1} \mid x_{i}\right) d x_{i+1} \\
& \propto_{x_{i}} \quad \int \operatorname{Normal}\left(x_{i+1} ; b_{i+1}, \beta_{i+1}^{-1}\right) \cdot \operatorname{Normal}\left(y_{i+1} ; x_{i+1}, \tau_{2}^{-1}\right) . \\
& \operatorname{Normal}\left(x_{i+1} ; x_{i}, \tau_{1}^{-1}\right) d x_{i+1} \\
& \propto_{x_{i}} \quad \int \operatorname{Normal}\left(x_{i+1} ; \frac{\beta_{i+1} b_{i+1}+\tau_{2} y_{i+1}}{\beta_{i+1}+\tau_{2}},\left(\beta_{i+1}+\tau_{2}\right)^{-1}\right) . \\
& \operatorname{Normal}\left(x_{i} ; x_{i+1}, \tau_{1}^{-1}\right) d x_{i+1} \\
&= \operatorname{Normal}\left(x_{i} ; \frac{\beta_{i+1} b_{i+1}+\tau_{2} y_{i+1}}{\beta_{i+1}+\tau_{2}},\left(\beta_{i+1}+\tau_{2}\right)^{-1}+\tau_{1}^{-1}\right)
\end{aligned}
$$

so $b_{i}=\frac{\beta_{i+1} b_{i+1}+\tau_{2} y_{i+1}}{\beta_{i+1}+\tau_{2}}$ and $\beta_{i}=\left(\left(\beta_{i+1}+\tau_{2}\right)^{-1}+\tau_{1}^{-1}\right)^{-1}$.

- Presentation break for computations in \mathbf{R}

