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A SURVEY OF SEQUENTIAL MONTE CARLO METHODS
FOR ECONOMICS AND FINANCE

Drew Creal

Booth School of Business, University of Chicago, Chicago, Illinois, USA

� This article serves as an introduction and survey for economists to the field of sequential
Monte Carlo methods which are also known as particle filters. Sequential Monte Carlo methods
are simulation-based algorithms used to compute the high-dimensional and/or complex integrals
that arise regularly in applied work. These methods are becoming increasingly popular in
economics and finance; from dynamic stochastic general equilibrium models in macro-economics
to option pricing. The objective of this article is to explain the basics of the methodology, provide
references to the literature, and cover some of the theoretical results that justify the methods in
practice.

Keywords Kalman filter; Markov chain Monte Carlo; Particle filter; Sequential Monte Carlo;
State space models.

JEL Classification C11; C15; C32.

1. INTRODUCTION

Economic theory often prescribes fundamental nonlinear relationships
between variables of interest. Nonlinear models for learning and
strategic interaction among agents provide the modern foundation
for microeconomic models. Building on these microfoundations,
macroeconomists formulate their structural models as dynamic stochastic
general equilibrium (DSGE) models, which have nonlinear first order
conditions. Many important economic time series also exhibit strong
patterns of non-Gaussian or time-varying behavior. Regime switching,
stochastic volatility, and time-varying parameter models have become
increasingly popular over the last decade.

Complex models often lead to integrals that cannot be solved
analytically. This has created an increase in the popularity of Bayesian

Address correspondence to Drew Creal, Booth School of Business, University of Chicago, 5807
South Woodlawn Ave., Chicago, IL 60637, USA; E-mail: dcreal@chicagobooth.edu

D
ow

nl
oa

de
d 

by
 [

L
un

d 
U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 0

3:
20

 0
8 

A
pr

il 
20

16
 



246 D. Creal

methods that utilize Markov chain Monte Carlo (MCMC) algorithms.
Sequential Monte Carlo (SMC) methods are alternative simulation-based
algorithms for solving analytically intractable integrals. In these methods,
a (partially) continuous probability distribution is approximated by a
discrete distribution made of weighted draws termed particles. From
one iteration of the algorithm to the next, particles are updated to
approximate one distribution after another by changing the particle’s
location on the support of the distribution and their weights. SMC
methods include the particle filter, which generalizes the Kalman filter and
hidden Markov model (HMM) filter to nonlinear, non-Gaussian state space
models. Particle filters were introduced into the economics literature by
Kim et al. (1998) to study the volatility of asset prices. Their popularity
has grown in economics since the publication of Fernández-Villaverde and
Rubio-Ramírez (2005, 2007), who used them to estimate DSGE models.
Particle filters also share a common mathematical structure with genetic
algorithms which are popular in economics.

The standard reference for SMC methods is Doucet et al. (2001).
A considerable number of advances have taken place since its publication;
advances ranging from stimulating new applications, improved algorithms,
and new theoretical results. Most of the methodological results have
occurred outside economics, where nice reviews for engineers and applied
mathematicians are provided by Cappé et al. (2007) and Doucet and
Johansen (2009). This article provides a guide to the growing literature
intended for economists. The presentation given here extends previous
reviews by including a discussion of SMC methods applied outside
state space models. The methods are also applied to several economic
applications. To reach as wide an audience as possible, the survey has
been split into two parts. The first half focuses on practical applications of
particle filters to general state space models. The second half covers recent
developments in the field with more emphasis on Bayesian computation as
well as an overview of the theoretical properties of SMC methods.

The theoretical properties of SMC algorithms have been intensely
studied since Del Moral (1996), who provided the first consistency proof
for the original particle filter of Gordon et al. (1993). In SMC algorithms,
the draws or particles interact and are therefore dependent. Traditional
limit theorems for Monte Carlo methods, e.g., Geweke (1989) and
Tierney (1994), do not apply. The main theoretical properties that are
relevant for applied researchers are reviewed in the article while additional
references are provided for those interested in further study. To make
the article shorter, readers are assumed to be modestly familiar with
linear, Gaussian state space models, importance sampling, accept-reject
algorithms (acceptance sampling), and MCMC. Harvey (1989) and Durbin
and Koopman (2001) provide introductions to linear, Gaussian state space
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A Survey of Sequential Monte Carlo Methods 247

models while Robert and Casella (2004) and Geweke (2005) are good
references for the traditional Monte Carlo methods.

In Section 2, SMC methods are introduced starting with the particle
filter and its application to nonlinear, non-Gaussian state space models.
This section contains a minimum of technical details and concentrates
on best practices that a researcher should consider when implementing
them. Some of the theoretical properties of SMC algorithms are reviewed
in Section 3. In Section 4, more advanced SMC algorithms are discussed
which are applicable outside the context of state space models. Both
Sections 2 and 4 include economic applications to illustrate the relevance
of the methods. The final section concludes.

2. PARTICLE FILTERS FOR STATE SPACE AND HIDDEN
MARKOV MODELS

2.1. Definition of the Models

State space or hidden Markov models are a convenient means for
studying dynamic systems. A state space model consists of two equations:
the observation or measurement equation and the transition equation
which are respectively given by

yn = mn (xn , �n) , (1)

xn = hn (xn−1, �n) � (2)

The state variables xn and observations yn may be continuous-valued,
discrete-valued, or a combination of the two. The functions mn and hn are
possibly nonlinear but of known form. Time is denoted by the subscripts
n. It is assumed that the distributions of the observations and state variable
admit density functions with respect to appropriate dominating measures
dyn and dxn , respectively. These densities p

(
yn | xn ; �

)
and p (xn | xn−1; �)

corresponding to (1) and (2), respectively, are called the observation (or
measurement) and transition densities. The latter terminilogy stems from
the fact that xn is a Markov process. The densities will typically depend
upon a vector of unknown parameters � that need to be estimated from
the observed data y1:T = �y1, � � � , yT �.

The sequence of state variables x0:n = �x0, � � � , xn� are generally
unobserved and it is the aim of the researcher to estimate them using
the observed data. Uncertainty about the state variable is formulated as a
joint conditional probability distribution p

(
x0:n | y1:n ; �

)
known as the joint

smoothing distribution. It is defined as

p
(
x0:n | y1:n ; �

) = p
(
x0:n , y1:n ; �

)
p(y1:n ; �)

, (3)

D
ow

nl
oa

de
d 

by
 [

L
un

d 
U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 0

3:
20

 0
8 

A
pr

il 
20

16
 



248 D. Creal

where the constant of integration p(y1:n ; �) is the likelihood of the
state space model. Three of its marginal distributions are of interest:
the one-step ahead predictive distribution p

(
xn | y1:n−1; �

)
, the filtering

distribution p
(
xn | y1:n ; �

)
, and the smoothing distribution p

(
xn | y1:T ; �

)
.

Each distribution conditions on a different set of observations. In addition,
researchers are often interested in computing the likelihood of the model
at a point �. Although � is unknown, it is traditional in the literature
to run filtering and smoothing algorithms assuming a fixed value of �.
Therefore, in Sections 2.1.2–2.7, the value of � is assumed to be known.
The estimation of � is considered in later sections.

2.1.1. Joint Smoothing Recursion
The joint smoothing distribution can be written recursively as

p
(
x0:n | y1:n ; �

) = p
(
yn | x0:n , y1:n−1; �

)
p

(
x0:n | y1:n−1; �

)
p

(
yn | y1:n−1; �

)
= p

(
yn | x0:n , y1:n−1; �

)
p

(
xn | x0:n−1, y1:n−1; �

)
p

(
yn | y1:n−1; �

) p
(
x0:n−1 | y1:n−1; �

)
= p

(
yn | xn ; �

)
p (xn | xn−1; �)

p
(
yn | y1:n−1; �

) p
(
x0:n−1 | y1:n−1; �

)
� (4)

This decomposition will be an important component for a particle
filter which will recursively approximate it through time. The marginal
distributions of interest are then obtained as a by-product.

2.1.2. Marginal Prediction and Filtering Recursions
An alternative to working with the joint distribution is to calculate

the one-step ahead predictive and filtering distributions recursively. These
recursions are the traditional approach taken in the state space modeling
literature. They begin under the assumption that the initial distribution of
the state variable p (x0; �) is known. At a future iteration n, the prediction
step projects last period’s filtering distribution p

(
xn−1 | y1:n−1; �

)
forward

using the dynamics of the model (2) and its transition density

p
(
xn | y1:n−1; �

) =
∫

p (xn | xn−1; �) p
(
xn−1 | y1:n−1; �

)
dxn−1� (5)

This distribution is a one-step ahead forecast of the state variable. With the
addition of another observation yn , the update step computes the filtering
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A Survey of Sequential Monte Carlo Methods 249

distribution by applying Bayes’ rule

p
(
xn | y1:n ; �

) = p
(
yn , xn | y1:n−1; �

)
p

(
yn | y1:n−1; �

)
= p

(
yn | xn , y1:n−1; �

)
p

(
xn | y1:n−1; �

)∫
p

(
yn | xn ; �

)
p

(
xn | y1:n−1; �

)
dxn

= p
(
yn | xn ; �

)
p

(
xn | y1:n−1; �

)∫
p

(
yn | xn ; �

)
p

(
xn | y1:n−1; �

)
dxn

� (6)

This completes one iteration of the recursion which continues until the
end of the dataset.

Difficulty arises in this approach because for most state space models
the integrals in (5) and in the denominator of (6) cannot be calculated
analytically. The latter integral p

(
yn | y1:n−1; �

)
is the contribution to the

likelihood since p
(
y1:n ; �

) = p
(
yn | y1:n−1; �

)
p

(
y1:n−1; �

)
. There are several

known cases in which it is possible to solve the recursions analytically.
The first case is when the functions in (1) and (2) are linear and the
densities are Gaussian. The recursions can then be solved by the Kalman
filter, see Kalman (1960) and Kalman and Bucy (1961). The other case
is when the state variable xn takes on a discrete number of values and
the recursions can be solved by the HMM filter, see Baum and Petrie
(1966) and Baum et al. (1970). The latter algorithm being rediscovered
and extended to autoregressions by Hamilton (1989) in his influential
model for the business cycle. For textbook treatments of these methods see
Harvey (1989) and Durbin and Koopman (2001) for the linear, Gaussian
state space model while Frühwirth-Schnatter (2006) covers models with
discrete state variables.

Outside of these cases, computing the distributions of interest
requires approximating the integrals in (5) and the denominator of
(6). Deterministic and functional approximations to the integrals have
been proposed in the literature, including Gaussian sum filters (Alspach
and Sorenson, 1972), numerical integration (Kitagawa, 1987), extended
Kalman filters (Anderson and Moore, 1979), and unscented Kalman filters
(Julier and Uhlmann, 1997; Julier et al., 2000). These methods may work
well on some problems however they all have the same limitation. The
approximation of the integrals at time n is a function of the approximation
of the integrals at the previous iteration. As noted by Künsch (2001), if
the approximation at iteration n − 1 is poor, the approximation error can
effect the current period’s estimate. Errors can accumulate over iterations
and as the number of observations increases the algorithms might diverge
from the true value. In the following sections, we discuss approximating
the integrals in these recursions by Monte Carlo methods.
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250 D. Creal

2.2. Importance Sampling

Consider approximating the entire joint distribution p
(
x0:n | y1:n ; �

)
.

Given a function f of the state variable, a standard Monte Carlo estimator
of the integral

� �f (x0:n)� =
∫

f (x0:n)p
(
x0:n | y1:n ; �

)
dx0:n

consists of drawing sequences x0:n directly from the target distribution
p

(
x0:n | y1:n ; �

)
. By the law of large numbers, sample averages will converge

to population moments as the number of draws increases. This strategy is
generally impossible for complex models because the target distribution is
nonstandard and it is unknown how to draw directly from it.

Instead, a researcher could use importance sampling (IS) where
random draws are taken from a proposal or importance distribution
g0:n

(
x0:n | y1:n ;	

)
from which it is easy to sample. The importance

distribution is chosen by the researcher with the restriction that its support
covers the support of the target distribution. The variable 	 denotes
a vector of tuning parameters which are used to make the proposal
distribution approximate the target distribution as closely as possible. The
integral of interest is now

� �f (x0:n)� =
∫

f (x0:n)
p

(
x0:n | y1:n ; �

)
g0:n

(
x0:n | y1:n ;	

)g0:n (
x0:n | y1:n ;	

)
dx0:n � (7)

After taking N draws
{
x(i)
0:n

}N
i=1

from the proposal distribution, the draws
are reweighted to correct for the fact that they were drawn from the wrong
distribution. The importance weights

{
w(i)

n

}N
i=1

are defined as the ratio of
the target distribution to the proposal distribution

w(i)
n ∝ p

(
x(i)
0:n | y1:n ; �

)
g0:n

(
x(i)
0:n | y1:n ;	

) � (8)

Given the draws
{
x(i)
0:n ,w

(i)
n

}N
i=1

, the importance sampling estimator of (7) is
given by

� �f (x0:n)� ≈
N∑
i=1

f
(
x(i)
0:n

)
ŵ(i)

n ŵ(i)
n = w(i)

n∑N
j=1 w

(j)
n

, (9)

where the importance weights are self-normalized because the constant of
integration in the target density may not be known.

IS was invented by Kahn and Marshall (1953) and Marshall (1956) and
was first used in econometrics by Kloek and van Dijk (1978). To facilitate IS
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A Survey of Sequential Monte Carlo Methods 251

for state space models, researchers need to find an importance distribution
g0:n

(
x0:n | y1:n ;	

)
that closely approximates the target distribution. General

procedures for finding proposal distributions that approximate the joint
smoothing distribution implied by a state space model have been
proposed by many authors. Shephard and Pitt (1997) and Durbin
and Koopman (2001) use Laplace approximations of the integral as a
proposal distribution. Alternatively, after selecting g0:n

(
x0:n | y1:n ;	

)
to be a

parameteric class of distributions (e.g., multivariate normal), researchers
have proposed using Newton–Raphson schemes to choose 	 to minimize a
criterion function such as the Kullback–Leibler distance or the coefficient
of variation that measures the separation between the two distributions;
see, e.g., Oh and Berger (1993) and Liu (2001, p. 42). This strategy has
been applied to state space models by Richard and Zhang (2007) who call
their method efficient importance sampling (EIS). Other flexible methods
for finding importance distributions that have recently been developed are
Hoogerheide et al. (2007), Cappé et al. (2008), and Cornuet et al. (2009),
although these have yet to be applied to state space models.

Geweke (1989) proved consistency and asymptotic normality of the
IS estimator (9). In order for the central limit theorem governing
asymptotic normality of the IS estimator to apply, the variance of the
importance weights must be finite. IS for high dimensional integrals can be
problematic because it can be shown that the variance of the importance
weights grows with the time index n; see Kong et al. (1994) for a theorem.
If the variance of the IS weights does not exist, estimates produced by IS
can be highly unreliable. This does not mean IS should be avoided for
all applications to state space models. However, researchers should always
check the stability of the importance weights by graphical diagnostics or
formal hypothesis tests; see, e.g., Koopman et al. (2009).

Recently, de Jong et al. (2009) proposed the EIS filter for estimating
state space models. They successfully apply their method to several DSGE
models. The EIS filter is an IS algorithm; however, it does not try
to approximate the entire joint distribution p

(
x0:n | y1:n ; �

)
at one time.

Instead it approximates the marginal prediction and filtering distributions
by applying the EIS algorithm of Richard and Zhang (2007) to the
integrals in (5) and (6) at each time period. The method is similar in spirit
to Kitagawa (1987) who uses numerical integration to approximate the
integrals in each time period instead of IS; see also Tanizaki and Mariano
(1994).

2.3. Sequential Importance Sampling

Another limitation of standard IS for state space models is that the
entire expression for the importance weights (8) needs to be recomputed
at each iteration. The computational demands of the algorithm grow over
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252 D. Creal

time. To avoid evaluating the entire expression each period, a researcher
can use sequential importance sampling (SIS). SIS is a special case of IS
where instead of drawing x0:n from a joint proposal distribution draws are
made from a sequence of conditional distributions. By redefining the joint
importance distribution, SIS iteratively approximates the joint smoothing
recursion in (4).

To see how this works, the importance distribution in a SIS algorithm
is factored into two parts

g0:n
(
x0:n | y1:n ;	

) ≡ gn
(
xn | x0:n−1, y1:n ;	

)
g0:n−1

(
x0:n−1 | y1:n−1;	

)
� (10)

The second distribution g0:n−1

(
x0:n−1 | y1:n−1;	

)
is per particle a Dirac

measure 
x0:n−1 placing a unit probability mass on each path that has
already been simulated in the previous iterations up to time n − 1. A
new set of values

{
x(i)
n

}N
i=1

are drawn at time n from the first part of
the importance distribution gn

(
xn | x0:n−1, y1:n ;	

)
. Consequently, a new

sequence of paths is obtained by keeping the trajectories of the old draws
up to time n − 1 fixed and appending the newly simulated values to the
end of the old trajectories,

{
x(i)
0:n

}N
i=1

= {
x(i)
0:n−1, x

(i)
n

}N
i=1

. The time subscript
on the importance distribution gn indicates that either it or its parameters
	 can potentially be chosen at time n and can change over time.

Substituting (4) and (10) into (8), one obtains

wn = p
(
yn | xn ; �

)
p (xn | xn−1; �) p

(
x0:n−1 | y1:n−1; �

)
p

(
yn | y1:n−1; �

)
gn

(
xn | x0:n−1, y1:n ;	

)
g0:n−1

(
x0:n−1 | y1:n−1;	

)
∝ wn−1

p
(
yn | xn ; �

)
p (xn | xn−1; �)

gn
(
xn | x0:n−1, y1:n ;	

)
∝ wn−1w̃n (11)

where

w̃n = p
(
yn | xn ; �

)
p (xn | xn−1; �)

gn
(
xn | x0:n−1, y1:n ;	

) � (12)

The densities p
(
yn | xn ; �

)
and p (xn | xn−1; �) are determined by the state

space model (1)-(2). The ratio of densities w̃n defined in (12) is known as
the incremental importance weight. It is the only part of the importance weight
that needs computed at each iteration. The conditioning information in
the importance distribution in the denominator of (11) will typically be
reduced to gn

(
xn | xn−1, yn ;	

)
for computational convenience. Calculating

the incremental weights then does not require the past observations or the
entire past trajectories

{
x(i)
0:n−2

}N
i=1

.
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A Survey of Sequential Monte Carlo Methods 253

At the end of each iteration, the SIS algorithm produces N simulated
paths and importance weights

{
x(i)
0:n ,w

(i)
n

}N
i=1

. In the literature on SMC
methods which includes the particle filter, these draws are known as
“particles.” They provide a discrete distribution that approximates the
(partially) continuous distribution. Estimates of the moments are the same
as in standard IS and are

� �f (x0:n)� ≈
N∑
i=1

f
(
x(i)
0:n

)
ŵ(i)

n , ŵ(i)
n = w(i)

n∑N
j=1 w

(j)
n

� (13)

An estimate of the target distribution is given by

p(x0:n | y1:n ; �) ≈
N∑
i=1

ŵ(i)
n 
x(i)0:n

(x0:n), (14)

where 
x(i)0:n
denotes a Dirac measure located at x(i)

0:n . An estimate of the
contribution to the likelihood at time n is

p
(
yn | y1:n−1; �

) ≈
N∑
i=1

ŵ(i)
n−1w̃

(i)
n ,

which is a function of the normalized weights from last period.
SIS was invented by Hammersley and Morton (1954) and first applied

to state space models by Handschin and Mayne (1969) and Handschin
(1970). It was first used in econometrics by Hendry and Richard (1991).
While the SIS algorithm avoids evaluating the entire expression for
the importance weights each period by computing them recursively, the
variance of the importance weights will grow over iterations. In fact, it
can be shown that the variance of the SIS weights grows exponentially
in time, see Chopin (2004). This is because as the number of iterations
increases all the probability mass will eventually be allocated to one
particle; one particle’s normalized importance weight converges to one
while the normalized weights of the other particles are converging to zero.
The SIS estimator will ultimately be a function of a single draw. This is
known as weight degeneracy in the literature.

2.4. Particle Filters

In their seminal article introducing the particle filter, Gordon et al.
(1993) added a resampling step within the SIS algorithm that mitigates
the weight degeneracy problem. Resampling means that a new population
of particles are replicated from the existing population in proportion
to their normalized importance weights. In its simplest form, we draw
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254 D. Creal

N random variables with replacement from a multinomial distribution
with probabilities

{
ŵ(i)

}N
i=1

. Particles with large importance weights are
randomly duplicated while particles with small probability are eliminated.
Once resampled the particles’ weights are set equal to any constant, e.g.,
w(i)

n = 1
N for i = 1, � � � ,N . This forces the weights not to permanently

degenerate as in the SIS algorithm.
This new algorithm called sequential importance sampling with

resampling (SISR) combined the sampling importance resampling (SIR)
method of Rubin (1987, 1988) with the SIS algorithm and applied it
to filtering in state space models. The basic SISR particle filter with
resampling applied in each time period is given as Algorithm 1 (see
Table 1). Different particle filtering algorithms are obtained by different
choices of the incremental importance distribution gn

(
xn | xn−1, yn ;	

)
and

different types of resampling algorithms, which are both chosen by the
user. Additional early contributions to the particle filtering literature
include Isard and Blake (1996), Liu and Chen (1995), Kitagawa (1996),
and Berzuini et al. (1997).

Given the particles, quantities of interest (e.g., moments, quantiles, etc.)
can be estimated during the algorithm. Estimates of the moments are

� �f (x0:n)� ≈
N∑
i=1

f
(
x(i)
0:n

)
ŵ(i)

n , ŵ(i)
n = w(i)

n∑N
j=1 w

(j)
n

, (15)

and an estimate of the joint target distribution (3) is given by

p(x0:n | y1:n ; �) ≈
N∑
i=1

ŵ(i)
n 
x(i)0:n

(x0:n)� (16)

Alternative estimators of these quantities can be obtained after the
particles have been resampled when their importance weights are equal.
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A Survey of Sequential Monte Carlo Methods 255

These are given by

� �f (x0:n)� ≈ 1
N

N∑
i=1

f
(
x(i)
0:n

)
� (17)

p(x0:n | y1:n ; �) ≈ 1
N

N∑
i=1


x(i)0:n
(x0:n)� (18)

Estimates of the state variable in (15) and the distribution in (16) should
always be preferred to estimators calculated after resampling such as (17)
and (18). Resampling introduces additional Monte Carlo variation into the
algorithm. In the discussion that follows in Section 2.6, we will see that it
is better not to resample at every iteration.

For an algorithm that resamples in every time period, an estimate of
the contribution to the likelihood at time n is

p
(
yn | y1:n−1; �

) =
∫

p
(
yn | xn ; �

)
p

(
xn | y1:n−1; �

)
dxn

≈ 1
N

N∑
i=1

w̃(i)
n � (19)

If resampling is performed in random time periods, an estimator of
contributions to the likelihood is given by

p
(
yn | y1:n−1; �

) ≈
N∑
i=1

ŵ(i)
n−1w̃

(i)
n , (20)

which includes (19) as a special case when ŵ(i)
n−1 = 1

N for i = 1, � � � ,N .
While resampling is a crucial feature to the success of the particle

filter, it is important to understand why particles are resampled and
what the side-effects of resampling are. Resampling does not cure the
degeneracy problem when it comes to the particle filter’s estimate of
the entire joint distribution p

(
x0:n | y1:n ; �

)
. Repeatedly resampling particles

copied from previous generations reduces the number of distinct particles
representing the early parts of the joint distribution. The past paths
will eventually coalesce into a single particle. The particle filter can
produce a good approximation of the marginal distribution p

(
xn | y1:n ; �

)
,

the likelihood contribution p
(
yn | y1:n−1; �

)
, and for small k the joint

distribution p
(
xn−k:n | y1:n ; �

)
. However, its approximation at time n of

the entire joint distribution p
(
x0:n | y1:n ; �

)
and the earlier marginal

distributions p
(
xn−l | y1:n ; �

)
will be poor as n and l increase. Because of this

effect, in practice only the most recent generation of particles
{
x(i)
n−k:n

}N
i=1
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256 D. Creal

are resampled and stored in memory. The purpose of resampling is
to prevent future degeneracy by replicating those particles that appear
relevant for estimating next period’s marginal distribution.

The number of particles also does not need to remain constant during
the algorithm. Particle size may vary either deterministically or at random
over time. For example, the number of particles can change within each
iteration. One can draw R particles (where R = �N for a positive integer
�) from the importance distribution, compute the importance weights and
any quantities of interest using the R particles, and then resample only N
out of the R particles. The advantage is that a larger number of particles
are used when the estimator is computed.

The popularity of particle filters has increased since the original article
of Gordon et al. (1993). A simple explanation being that basic particle
filters are extremely easy to implement. A second reason is that as long
as the dimension of xn is moderate the particle filters’ estimator of the
marginal filtering distribution p

(
xn | y1:n ; �

)
has good properties. In Section

3, we will see that many particle filters are consistent and asymptotically
normal and that they will “forget their past errors” sufficiently fast to
ensure that past errors do not accumulate. In practice, this means that
a particle filter can be applied to a long stretch of time series (e.g., a
financial time series) and the precision of the estimator of the marginal
p

(
xn | y1:n ; �

)
will not deteriorate as one obtains more observations.

Example #1 (Stochastic Volatility Model). To provide some intuition
about the SISR algorithm and the estimator that it produces, data were
simulated from a standard stochastic volatility model

yn = exp(xn/2)�n , �n ∼ � (0, 1),

xn = � + (xn−1 − �) + ���n , �n ∼ � (0, 1), (21)

with parameter values chosen as � = 0�5, = 0�985, and �2
� = 0�04.

Stochastic volatility models are popular in finance where they are used
to model heteroskedasticity in financial asset returns. Shephard (2005)
provides a recent review of the literature and discusses properties of the
model. To implement the SISR algorithm, we selected the conditional
proposal distribution at each iteration to be the transition density
gn

(
xn | x0:n−1, y1:n ;	

) = p (xn | xn−1; �) implied by the dynamics of the model
(21). This means that the incremental weight function is equal to the
measurement density, w̃n = p(yn | xn ; �). The algorithm uses multinomial
resampling at each iteration and is equivalent to the original particle filter
of Gordon et al. (1993) called the bootstrap filter.

Figure 1 plots the true value of the state variable xn from this
model over the first 50 time periods together with the particles. For
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A Survey of Sequential Monte Carlo Methods 257

FIGURE 1 Fifty iterations of a discrete-time log-normal stochastic volatility model. Pictured is the
true log-volatility (solid line) and a particle system with N = 15 particles after: (i) 5 time-steps;
(ii) n = 10 time-periods; (iii) n = 30 time-periods; and (iv) n = 50 time-periods. (Figure available
in color online.)

illustration purposes, the number of particles is N = 15. The panels
show the evolution of a particle system

{
x(i)
0:n , ŵ

(i)
n

}N=15

i=1
through time.

The graphs indicate how the particle filter approximates a continuous
distribution p

(
x0:n | y1:n ; �

)
with a discrete distribution. The affects of

repeated resampling on the early parts of the joint distribution can be
seen by comparing panel (ii) and panel (iv). After n = 10 time periods
in panel (ii), there are many distinct particles covering the support of
the distribution. By the time n = 50 in panel (iv), particles estimating the
first 10 time periods overlap one another as some particles have been
duplicated and others eliminated. The surviving particles do not cover the
support of early parts of the distribution resulting in a poor estimate of
the joint distribution. This will happen over time for any fixed value of the
number of particles.

The marginal filtering distribution p
(
xn | y1:n ; �

)
at the last iteration

however can still be estimated well. To see this, Fig. 2 provides perhaps
a more intuitive perspective of the estimator by plotting the empirical
distribution function implied by (16) for different particle sizes. Panel (i)
depicts the particles’ approximation of the marginal filtering distribution
at time n = 50 using N = 15 particles. The remaining panels in Fig. 2
demonstrate what happens as the number of particles increases. In this
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258 D. Creal

FIGURE 2 Empirical distribution functions created using the particles to approximate the marginal
filtering distribution p(x50 | y1:50; �) for the stochastic volatility model. (i) N = 15 particles; (ii) N =
250 particles; (iii) N = 1000 particles; and (iv) N = 10000 particles. (Figure available in color
online.)

example where the state variable xn is a continuous random variable, the
particles form a probability mass function that is converging towards a
continuous distribution function.

2.5. Choosing an Importance Distribution

This section covers the major classes of importance distributions. To
shorten the survey, detailed derivations of the algorithms are left to the
references.

2.5.1. Preliminary Comments
Before describing the literature on importance distributions for

particle filters, it is helpful to consider when a particle filter might run
into problems. The resampling step in a particle filter ensures that the
particles do not permanently degenerate as in SIS. However, the variance
of the incremental importance weights w̃n may still be large. If the variance
of the incremental importance weights is high, the marginal filtering
distribution may be poorly estimated in some time periods. This can
happen when the incremental importance distribution gn

(
xn | xn−1, yn ;	

)
is

a poor approximation of the incremental target p
(
yn | xn ; �

)
p (xn | xn−1; �).
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A Survey of Sequential Monte Carlo Methods 259

When designing a particle filter, a researcher should try to understand
the structure and properties of their model in order to understand
how different proposal distributions might cause the variance of the
incremental importance weights to be large.

Secondly, an important feature of the incremental importance
distribution in basic particle filters is that it is a function of the current
set of particles

{
x(i)
n−1

}N
i=1

whose locations represent the support of the
marginal filtering distribution p(xn−1 | y1:n−1; �). Most of these particles will
be located in the high probability mass regions of p(xn−1 | y1:n−1; �) with
few particles in the tails. When two neighboring marginals are extremely
different the majority of old particle locations will not form a good
proposal distribution. This is because they are not located near and may
not be informative about the high probability mass regions of the next
marginal p(xn | y1:n ; �). Consequently, the new set of particles will need to
be simulated far from their current locations

{
x(i)
n−1

}N
i=1

.
For example, the performance of a particle filter may deteriorate when

there exist observations that might be inconsistent with the proposed
model (e.g., outliers), which is demonstrated clearly by Pitt and Shephard
(1999). In this situation, it is important to incorporate the current
observation yn in the proposal distribution because it will carry more
information about xn than the past particles

{
x(i)
n−1

}N
i=1

. The presence
of outliers suggests a form of model miss-specification. The literature
on particle filters has generally not focused on how substantial miss-
specification of a model impacts the performance of particle filters.
However, there is a literature on the effects of misspecifying the initial
distribution, see Douc et al. (2009).

2.5.2. The Bootstrap Filter
The original particle filter of Gordon et al. (1993) called the bootstrap

filter is also the simplest to implement. It uses the transition density
as the proposal, gn

(
xn | xn−1, yn ;	

) = p (xn | xn−1; �) � Many authors call
this importance distribution the prior kernel or prior distribution given
the Bayesian interpretation of a state space model. The bootstrap filter
resamples in each time period making the incremental importance weights
equal to w̃n = p

(
yn | xn ; �

)
� This particle filter can perform well for some

models but notice that it does not use the information in the current
observation yn to propose new particles. Proposal distributions that do not
use the current observation yn are often called blind proposals. When the
variance of the measurement density (as a function of xn) is large, we
should expect the incremental weights to be unbalanced and for proposal
distributions that incorporate yn to outperform this choice.
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260 D. Creal

Example #2 (Nonlinear Measurement Equation with Additive Noise).
This example illustrates a potential limitation of this importance
distribution and what it means to have incremental importance weights
with a large variance. Consider the following state space model

yn = h(xn) + �n , �n ∼ � (0,��),

xn = � + (xn−1 − �) + �n , �n ∼ � (0,��),

where the function h(xn) in the measurement equation is potentially
nonlinear and the noise �n is additively Gaussian. In economics, models
that often fit within this framework are nonlinear DSGE models. Different
second-order solution methods for approximating the DSGE model will
result in different functions h(xn). Many researchers add measurement
noise �n and set the diagonal elements of the covariance matrix �� to
small values such as 10−3 or 10−6; see, e.g., An and Schorfheide (2007) and
Amisano and Tristani (2010).

Using the bootstrap filter, the incremental weight function is the
normal density w̃n = � (yn | h(xn),��) with mean h(xn) and diagonal
covariance matrix ��. When viewed as a function of xn for a fixed value
of yn , the properties of this function will depend on the covariance matrix
��. As �� → 0, the weight function will become increasingly peaked as the
observation yn becomes increasingly informative. Relative to the bootstrap
filter, we should expect the numerical efficiency gains of an alternative
particle filter that intelligently incorporates yn in the proposal to increase
as �� → 0. This illustrates that the efficiency of one proposal distribution
relative to another will generally depend on the parameter values of the
model.

To see why the variance of the incremental weights increases as �� →
0, consider the incremental weight function for a univariate model. Let
�� = �2

�. Figure 3 plots w̃n for four different functional forms for h(xn)
and different degrees of measurement error. In each panel, xn ranges from
[−2�5, 2] and we plot the function for different values �� = 1, �� = 0�5, and
�� = 0�05. Assume we observe yn = 1. The functional form h(xn) and the
observed value of yn will determine the location and width of the peak. The
height of the peak is determined by the amount of measurement noise.
Consider panel (ii) where h(xn) = x2

n , we can see that when yn = 1 this
functional form causes there to be two peaks at xn = −1, 1. If the proposal
density blindly simulates most of the particles between the peaks and only
a few particles around −1 and 1, the normalized importance weights will
be highly unstable for small values of ��. In this setting, the bootstrap filter
will tend to degenerate more as �� → 0.
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A Survey of Sequential Monte Carlo Methods 261

FIGURE 3 Incremental weight functions w̃n for three different levels of measurement error.
�� = 1, �� = 0�5, �� = 0�05. We observe yn = 1. Each panel plots a different functional form: (i)
h(xn) = xn ; (ii) h(xn) = x2

n ; (iii) h(xn) = sin(xn); and (iv) h(xn) = exp(xn). (Figure available in
color online.)

2.5.3. Conditionally Optimal Importance Distribution
The particle filtering literature includes the notion of a conditionally

optimal importance distribution for any model. The conditionally optimal
distribution is defined as the distribution that minimizes the Monte Carlo
variation of the importance weights. The “conditional” portion of this
statement emphasizes that the importance distribution is optimal if one
only conditions on the current observation yn and last period’s particles{
x(i)
n−1

}N
i=1

. This idea was introduced by Liu and Chen (1995), although it
exists in an earlier literature on SIS algorithms from Zaritskii et al. (1975)
and Akashi and Kumamoto (1977). The conditionally optimal importance
distribution is given by

gn
(
xn | xn−1, yn ;	

) = p
(
xn | xn−1, yn ; �

)
,

= p
(
yn | xn , xn−1; �

)
p (xn | xn−1; �)

p
(
yn | xn−1; �

) , (22)

= p
(
yn | xn ; �

)
p (xn | xn−1; �)

p
(
yn | xn−1; �

) � (23)
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262 D. Creal

A nice feature of p
(
xn | xn−1, yn ; �

)
is that it uses the information in yn and

xn−1 simultaneously. The incremental weight function w̃n = p
(
yn | xn−1; �

)
is interestingly a function of the previous state xn−1 and not the current
state xn . This importance distribution unfortunately requires drawing from
p

(
xn | xn−1, yn ; �

)
and evaluating p

(
yn | xn−1; �

)
. For most models, these are

rarely known in closed-form except in special circumstances, e.g., when the
measurement equation (1) is linear and its density is Gaussian see Doucet
et al. (2000). However, researchers use this distribution as a benchmark
and try to approximate it with sub-optimal choices. For an application of
this idea to DSGE models, see Amisano and Tristani (2010).

2.5.4. Auxiliary Particle Filters
The auxiliary particle filter (APF) of Pitt and Shephard (1999, 2001)

is a popular algorithm that is simple to implement and works well in
many cases. The presentation given here is different than the original
article, as this discussion does not explicitly include auxiliary variables.
When proposing new particles at the beginning of each iteration, we would
like to use the information available in the current observation yn . These
authors call particle filters that incorporate yn into their proposal adapted
particle filters. In addition, since particles carried over from last period
form part of this period’s proposal distribution, some of the old particles
provide more information about xn than others.

Pitt and Shephard (1999, 2001) approximate the incremental target
distribution in (4) with the importance distribution

p
(
yn | xn ; �

)
p (xn | xn−1; �) ≈ g1,n

(
yn | xn ;	

)
g2,n (xn | xn−1;	) ,

= g1,n
(
yn | xn−1;	

)
g2,n

(
xn | xn−1;	, yn

)
� (24)

The proposal distribution in (24) is decomposed into two parts implying
that the sampling of new values

{
x(i)
n

}N
i=1

from this distribution can
potentially be performed in two steps. The APF is given as Algorithm 2
(see Table 2).D
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A Survey of Sequential Monte Carlo Methods 263

The APF nests other algorithms in the literature as special cases. If
we select the proposal as g1,n

(
yn | xn−1; �

) = 1 and g2,n
(
xn | xn−1; �, yn

) =
p (xn | xn−1; �), the APF reduces to the bootstrap filter of Gordon et al.
(1993). Many economic models have a special structure with non-Gaussian
measurement densities and linear, Gaussian transition densities. In this
case if the measurement density is log-concave, Pitt and Shephard
(1999, 2001) suggest taking g1,n

(
yn | xn−1; �

)
to be the Taylor series

expansion of log p
(
yn | xn ; �

)
around a point �n and combining it with

the transition density g2,n
(
xn | xn−1; �, yn

) = p
(
xn | xn−1; �, yn

)
. The resulting

proposal distributions then locally approximate the conditionally optimal
distribution. Smith and Santos (2006) apply this APF to several models
demonstrating the improvement of a second-order expansions over first-
order expansions when there are outliers in the data.

In settings where one can evaluate p
(
yn | xn−1; �

)
, one can select

g1,n
(
yn | xn−1;	

)
= p

(
yn | xn−1; �

)
and g2,n

(
xn | xn−1; �, yn

) = p
(
xn | xn−1; �, yn

)
.

The incremental importance weights are then equal to one. Pitt and
Shephard (1999, 2001) call this situation full adaption or perfect adaption.
As it incorporates p

(
yn | xn−1; �

)
, it is similar to the conditionally optimal

distribution of Liu and Chen (1995). However, the APF is different than
the conditionally optimal distribution of Liu and Chen (1995) because it
uses p

(
yn | xn−1; �

)
to resample first and “pre-select” from the existing set

of particles. Pre-selecting from the previous period’s particles using yn can
potentially improve the current period’s proposal distribution because the
resampled particles after step (ii) form a different importance distribution
than the original particle filter that resamples at the end of each iteration.
The APF can encompass more general algorithms than discussed here. Pitt
and Shephard (1999, 2001) show that it is possible to use the accept-reject
algorithm or alternatively MCMC moves within an APF as well.

In the original article, the APF contained a second resampling stage at
the end of each iteration. In independent work by Johansen and Doucet
(2008) and Douc et al. (2009c), the authors prove that if one keeps the
particle size constant at each iteration then the second resampling stage in
the original algorithm is unnecessary. Including it increases the asymptotic
variance of the corresponding estimator. Johansen and Doucet (2008)
also demonstrate that the APF can actually degrade the performance of a
particle filter even in the case of perfect adaption. These authors show that
the performance of the APF will depend upon the signal to noise ratio in
the state space model.

2.5.5. Particle Filters Built from Accept-Reject Algorithms (Acceptance
Sampling)

Accept-reject algorithms (see Robert and Casella, 2004, p. 47) can
also be incorporated within a particle filter. This idea originates with
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264 D. Creal

Hürzeler and Künsch (1998) and also Tanizaki and Mariano (1998). For
example, when it is impossible to draw directly from the conditionally
optimal importance distribution (22), one can draw N particles from this
distribution using an accept–reject algorithm. The algorithms have been
studied theoretically by Künsch (2005), who also proposes some extensions
to the algorithms in the original articles. As an accept–reject algorithm
will be run for each particle in each time period, the user needs to find a
good proposal distribution within the accept–reject algorithm. If this is not
chosen well, a large number of trial simulations may be needed for each
particle to be accepted.

2.5.6. Other Approximations to the Conditionally Optimal Distribution
Other proposal distributions exist when either or both of the functions

mn (·) and hn (·) in (1) and (2) are nonlinear but the disturbances �n and
�n are additively Gaussian. Proposal distributions can then be formulated
by taking a Taylor series expansion of the non-linear function. These
importance distributions, given in Doucet et al. (2000), van der Merwe
et al. (2000), and Guo et al. (2005), make proposals using one-step of
the extended or unscented Kalman filter applied to each particle. The
extended and unscented Kalman filters are nonlinear filters that use
analytical approximations; see, e.g., Anderson and Moore (1979) and
Julier et al. (2000).

When both the observation and transition densities are log-concave,
the conditionally optimal proposal distribution will also be log-concave.
As suggested by Pitt and Shephard (1999) and Doucet et al. (2000),
another option is to choose the parameters 	 of the importance
distribution gn

(
xn | xn−1, yn ;	

)
in each time period and for each particle

so that its mode and curvature match the mode and curvature of the
incremental target density p

(
yn | xn ; �

)
p (xn | xn−1; �). This will provide an

approximation to the conditionally optimal distribution. Finding the mode
of the target can be accomplished using Newton–Raphson methods. One
can then choose the importance distribution gn

(
xn | xn−1, yn ;	

)
to be a

normal or Student’s t distribution setting the parameters 	 to have this
mode and an inflated variance to ensure its support includes the support
of the incremental target distribution.

2.5.7. Rao–Blackwellization
Some state space models have a special structure, where a subset of

the state vector may be integrated out analytically. Analytical integration
of part of the state vector reduces the Monte Carlo variation of the
resulting estimator and will always improve its numerical efficiency. It
is known as Rao–Blackwellization in the Monte Carlo literature because
it is an implication of the Rao–Blackwell Theorem; e.g., see Robert
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A Survey of Sequential Monte Carlo Methods 265

and Casella (2004, p. 130). When this is possible, the structure of the
model implies that the state vector can be separated into two parts xn =(
x′
1,n , x

′
2,n

)′
. The marginal filtering distribution can then be decomposed

as p(x1,n , x2,n | y1:n ; �) = p(x1,n | x2,n , y1:n ; �)p(x2,n | y1:n ; �). Particles are only
simulated randomly from p(x2,n | y1:n ; �), while conditional on each
individual draw x(i)

2,n the distribution p(x1,n | x(i)
2,n , y1:n ; �) can be evaluated

analytically.
A class of models amenable to Rao–Blackwellization that is popular in

economics is

yn = Zn

(
x2,n

)
x1,n + �n , �n ∼ �

(
0,Hn

(
x2,n

))
, (25)

x1,n = Tn

(
x2,n

)
x1,n−1 + �n , �n ∼ �

(
0,Qn

(
x2,n

))
, (26)

pij = p
(
x2,n = j | x2,n−1 = i

)
, x2,n ∈ �1, 2, � � � , k� , (27)

which is a linear, Gaussian state space model where the parameters in the
state space matrices Zn ,Tn ,Qn ,Hn depend upon the value of an additional
discrete state variable x2,n . The discrete state variables follow a first-order
Markov process as in (27). These models are covered in Kim and Nelson
(1999) and Frühwirth-Schnatter (2006).

Conditional on the discrete state variables
{
x(i)
2,n

}N
i=1

the resulting system
is a linear, Gaussian state space model and p(x1,n | x2,n , y1:n ; �) can be
evaluated by the Kalman filter. These particle filters are due to Chen
and Liu (2000) who named them mixture Kalman filters, see also Doucet
et al. (2001). de Freitas et al. (2004), Schön et al. (2005), and Bos and
Shephard (2006) are additional references which apply some form of this
methodology.

Other models that can be Rao–Blackwellized are partially observed
Gaussian state space models as in Andrieu and Doucet (2002), which
include dynamic probit and Tobit models with unobserved states. State
space models where the functions in (1) and (2) are nonlinear but
depend on both discrete and continuous-valued states can also be Rao–
Blackwellized; e.g., see Andrieu et al. (2003).

Example #3 (Applying a Rao–Blackwellized Particle Filter). Forecasting
inflation is an important part of monetary policy-making and has a long
history in economics. We illustrate the use of Rao–Blackwellized particle
filters on a model recently proposed by Stock and Watson (2007) to
forecast inflation �n . It is a time-varying random walk plus noise or local
level model

�n = x1,n + �n , �n ∼ � (0, exp(x2,n)), (28)

x1,n+1 = x1,n + �n , �n ∼ � (0, exp(x3,n)), (29)

D
ow

nl
oa

de
d 

by
 [

L
un

d 
U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 0

3:
20

 0
8 

A
pr

il 
20

16
 



266 D. Creal

x2,n+1 = x2,n + �1,n , �1,n ∼ � (0, 0�2), (30)

x3,n+1 = x3,n + �2,n , �2,n ∼ � (0, 0�2), (31)

where x1,n is the unobserved time-varying mean of inflation and xi ,n for
i = 2, 3 are unobserved log-variances. Stock and Watson (2007) argued
that this specification improves forecasting because the model accounts
for the structural breaks present in inflation. It can be shown, see, e.g.,
Harvey (1989, p. 68), that the local level model with constant variances
is equivalent to an ARIMA(0,1,1) model with additional restrictions
on the parameter space. The stochastic variances for the level and
irregular components in (28)–(31) imply a time-varying variance and MA
parameter in this ARIMA representation. The time-varying MA parameter
conveniently summarizes how the model’s forecast function changes
through time.

Stock and Watson (2007) estimate the state variables of the model by
MCMC, while it is (arguably) easier to implement a particle filter when
there are no static parameters that need to be estimated. The model
has a special structure because conditional on the log-variances x2,n and
x3,n the remaining model is a linear, Gaussian state space model. The
conditional distribution can then be calculated exactly by the Kalman
filter. A good particle filter for this application is an APF version of
the mixture Kalman filter; see, Chen and Liu (2000). Following the
discussion in Section 2.5.7, the proposal distribution can be broken into
two parts, gn(x1,n | x1,n−1, x2,n , x3,n , yn ; �)gn(x2,n , x3,n | x2,n−1, x3,n−1yn ; �). The
log-variances x2,n and x3,n are first simulated from the latter part of the
proposal distribution which was chosen to be the transition densities of the
state equations (30) and (31). Conditional on these values, the Kalman
filter can update the sufficient statistics of pn(x1,n | x1,n−1, x2,n , x3,n , yn ; �) =
gn(x1,n | x1,n−1, x2,n , x3,n , yn ; �) which are the mean and covariance matrix of
the Gaussian distribution denoted by x1,n |n and P1,n |n . Since part of the
state vector x1,n has been computed analytically, this algorithm should need
fewer particles to achieve the same level of statistical efficiency relative
to other simple particle filtering algorithms such as the SISR filter. This
particle filter is given in detail as Algorithm 3 (see Table 3). It can be used
for any model that is a conditionally Gaussian state space model.

In this example, the data are quarterly U.S. CPI inflation from
Q1:1959–Q7:2008 constructed from the “real-time” price indices available
from the U.S. Federal Reserve Bank of Philadelphia. The filtering
algorithm was implemented with N = 10,000 particles and systematic
resampling. Smoothed estimates of each of the components were
computed by taking 5,000 draws using the simulation smoothing algorithm
of Godsill et al. (2004) discussed in Section 2.7 below.

D
ow

nl
oa

de
d 

by
 [

L
un

d 
U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 0

3:
20

 0
8 

A
pr

il 
20

16
 



A Survey of Sequential Monte Carlo Methods 267

The one-step ahead forecast of inflation and the filtered and smoothed
estimates of the volatilities are pictured in Fig. 4. These estimates largely
confirm the results of Stock and Watson (2007). The volatility of the

FIGURE 4 Estimates from the time-varying local level model applied to quarterly U.S. inflation
Q1:1959-Q3:2008: (i) inflation and its one-step ahead forecast; (ii) filtered and smoothed estimates
of the implied MA(1) parameter; (iii) filtered and smoothed estimates of the irregular volatility
exp(x2,n/2); and (iv) filtered and smoothed estimates of the state volatility exp(x3,n/2). NBER
recession dates are indicated by the vertical bars. (Figure available in color online.)
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268 D. Creal

level or permanent component exp(x3,n/2) increased during the period of
high-inflation in the 1970s, while the volatility of the irregular component
exp(x2,n/2) was relatively more stable. Filtered and smoothed estimates of
the implied MA(1) parameter are shown in panel (ii), and they indicate
that it also increased during this period. The forecastability of inflation
appears to have changed over time as argued by Stock and Watson
(2007). This data set includes five additional years of inflation beyond that
analyzed by these authors. The volatility of inflation has recently increased
beginning in the middle of 2007. It appears to be concentrated in the
irregular or transitory component.

2.5.8. MCMC and Adaptive Proposals
If the particles were resampled during an iteration of the particle

filter, the resampling step causes some particles to be duplicated. The
duplicated particles form part of the importance density at the next
iteration. Resampling also causes the particles at the previous iterations to
coalesce. Gilks and Berzuini (2001) proposed the resample-move algorithm
which creates diversity among the particles by applying one iteration of
a Metropolis–Hastings or Gibbs sampler Markov kernel to each particle
conditional on the particles being resampled. At time n, the user can
choose their Markov kernel such that the algorithm returns k periods
into the past (for small k) and moves a block of variables

{
x(i)
n−k:n

}N
i=1

instead of only the last period’s. The resulting resample-move algorithm
will improve on a standard particle filter when it comes to estimating
the joint distribution p(xn−k:n | y1:n ; �). This is because it introduces some
diversity into the past paths whereas these paths are typically fixed in a
standard algorithm.

Another recent line of research considers using the past particles{
x(i)
0:n−1, ŵ

(i)
n

}N
i=1

to adapt the importance distribution over time. Cornebise
et al. (2008) consider selecting the parameters 	 of gn

(
xn | xn−1, yn ;	

)
each

period to minimize an empirical estimate of the Shannon entropy or the
coefficient of variation between the empirical distribution of the particles
and the target distribution. Their article contains additional references to
work on adaptive methods in particle filters. Using MCMC and adaptive
proposals within particle filters are relatively more advanced methods.
They are closely related to the algorithms discussed in Section 4.

2.5.9. Block Sampling
When using MCMC, it is well-known that better performing algorithms

can be built if one can find a proposal distribution that enables joint
sampling of blocks of variables from the target distribution. If the proposal
is chosen well, sampling variables in blocks improves the speed by which
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A Survey of Sequential Monte Carlo Methods 269

the Markov chain explores the support of the distribution. Doucet et al.
(2006) propose a similar idea for particle filters. At the beginning of
iteration n of a particle filter, the algorithm has already simulated and
stored the paths

{
x(i)
0:n−1

}N
i=1

. The goal is not only to extend each path
at the endpoint but instead returning k time periods into the past
(where k is say 5–10) and sample a block

{
x(i)
n−k:n

}N
i=1

. Instead of using
a proposal distribution for a single time period gn

(
xn | xn−1, yn ;	

)
, the

proposal distribution is over the path gn−k:n
(
xn−k:n | xn−k−1:n−1, yn−k:n ;	

)
.

Particle filters based on block-sampling proposal distributions do not
directly approximate the joint smoothing recursion (4) like a standard
particle filter. Instead, they rely on defining a sequence of articial target
distributions and are related to the simulation algorithms discussed in
Section 4.

In order to implement block sampling, the importance weight
recursions (11) need to be rewritten to account for the alternative
sequence of target distributions. This changes the definition of the
incremental weights, see Doucet et al. (2006) for details. If the proposals
gn−k:n

(
xn−k:n | xn−k−1:n−1, yn−k:n ;	

)
are chosen well, this algorithm will

perform better at estimating the joint distribution p
(
xn−k:n | y1:n ; �

)
than

a standard particle filter for the same number of particles. However,
selecting good joint proposals may be challenging in practice and the
algorithms are more computationally expensive.

2.6. Resampling and Branching Algorithms

There are four resampling algorithms that dominate most of the
literature: multinomial resampling of Gordon et al. (1993), stratified
resampling of Kitagawa (1996), residual resampling of Liu and Chen
(1998), and systematic resampling of Carpenter et al. (1999).1 All of
these algorithms can be performed in O(N ) operations.2 The main point
for applied researchers to note is that some resampling algorithms are
preferable because they introduce less Monte Carlo variation into the
particle filter’s estimator. Douc et al. (2005) compare their efficiency in
terms of Monte Carlo variation. They prove that the stratified resampling
algorithm and the residual resampling scheme should be preferred to the
original multinomial resampling. The Monte Carlo variation introduced by
these algorithms is strictly smaller. The systematic resampling algorithm is
the easiest to implement. It can also perform well in Monte Carlo studies

1The residual and systematic resampling schemes are also known in the genetic algorithm
literature under alternative names, see Whitley (1994).

2Matlab code for each of the resampling algorithms can be found at Nando de Freitas’
webpage at http://www.cs.ubc.ca/∼nando/software.html.
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270 D. Creal

but does not always dominate multinomial resampling in terms of variance,
see Douc et al. (2005).

The residual and stratified resampling algorithms are also unbiased
in the sense that the expected number of times a particle x(i)

n will be
resampled is equal to its importance weight. Thus, the algorithms satisfy
the condition

�
[
N #(i)

n | {
ŵ(i)

n

}N
i=1

]
= N ŵ(i)

n ,

where N #(i)
n is the number of times the ith particle is replicated during

resampling. This condition is a maintained assumption in the consistency
and asymptotic normality proofs behind most particle filters.

Other notable resampling algorithms include the optimal resampling
algorithm of Fearnhead and Clifford (2003), which should be used for any
model whose state variable has a discrete component, e.g., the Markov-
switching state space model (25)–(27). The stopping-time resampling
algorithm of Chen et al. (2005) is another recent alternative. The articles
by Fearnhead and Clifford (2003) and Chen et al. (2005) illustrate the
point that a resampling algorithm can be tailored for specific classes of
models or even a specific application.

The original particle filter of Gordon et al. (1993) carries out
resampling every time period. To lower the degree of Monte Carlo
variation introduced into the estimator, Liu and Chen (1995) suggested
resampling only after time periods where the importance weights are
unstable. They suggested using the effective sample size (ESS) as a measure
of weight instability. The ESS is given by

ESS = 1∑N
i=1

(
ŵ(i)

n
)2 , (32)

and is a number between 1 and N . If the ESS = N , the interpretation
is that the weights are equally balanced and that all N particles are
contributing to the estimator. At each iteration of the algorithm, the user
calculates the ESS and, if it drops below a user chosen threshold, then
resampling is performed. Resampling is therefore performed at random
times, see Algorithm 4 (see Table 4). The threshold for the ESS is typically
chosen to be a percentage of the number of particles, say 0.5 to 0.75.

Two other commonly used measures of weight instability are the
coefficient of variation (CV) of Kong et al. (1994) and the Shannon
entropy of the weights. These can be substituted into Algorithm 4 instead
of the ESS. The CV is defined as

CV =
[
1
N

N∑
i=1

(
N ŵ(i)

n − 1
)2]0�5

, (33)
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A Survey of Sequential Monte Carlo Methods 271

and is a number between zero and
√
N − 1.3 If all the weights are equal,

then CV = 0, and if one particle has all the probability mass, then CV =√
N − 1. Note that ESS = N /(1 + CV2). The Shannon entropy (SE) is

SE = −
N∑
i=1

ŵ(i)
n log2 ŵ

(i)
n , (34)

which is minimal at zero when one particle has all the mass. Its largest
value is log2 N when all the weights are equal. When using the CV and SE
criteria to determine when to resample, the threshold will depend upon
the model and on the particle size N .

An alternative to resampling algorithms for rejuvenating the particles
are “branching” algorithms, which are popular in the theoretical
probability literature and are reasonably simple to implement. In most
implementations, the number of particles will be random over time Nn

and therefore these methods are not as common in applications. For
more details on branching algorithms; see, e.g., Crisan et al. (1999) and
Del Moral and Miclo (2000).

2.7. Particle Smoothing and Maximum a Posteriori Estimation

The marginal smoothing distribution p
(
xn | y1:T ; �

)
characterizes

the state variable given all T observations in the dataset. Computing the
distribution p

(
xn | y1:T ; �

)
for all possible n while T is held fixed is the most

common form of smoothing in economics. This is known as fixed-interval
smoothing in the engineering literature; see, e.g., Anderson and Moore

3The squared coefficient of variance CV2 is equal to the estimator of the asymptotic variance
for the self-normalized IS estimator (see Geweke, 1989, 2005), where the function being integrated
is equal to one, i.e., f (x0:n) = 1.
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272 D. Creal

(1979). Fixed-interval smoothing algorithms for state space models are
historically based upon one of two frameworks known as forward-filtering
backward-smoothing or two-filter formula smoothing. Both types of algorithms
compute the same sequence of marginal distributions

{
p

(
xn | y1:T ; �

)}T
n=1

.
Particle smoothing algorithms have been created using both approaches.
A good reference for this material is Briers et al. (2004) on which my
discussion is based while Chapter 3 of Cappé et al. (2005) contains a more
general, measure-theoretic treatment.

After running a filtering algorithm forward and computing each of the
predictive and filtering distributions

{
p

(
xn+1 | y1:n ; �

)
, p

(
xn | y1:n ; �

)}T
n=1

, the
sequence of marginal smoothing distributions can be computed from n =
T − 1, � � � , 1 using the following backward recursion

p
(
xn | y1:T ; �

) =
∫

p
(
xn , xn+1 | y1:T ; �

)
dxn+1,

=
∫

p
(
xn+1 | y1:T ; �

)
p

(
xn | xn+1, y1:T ; �

)
dxn+1,

=
∫

p
(
xn+1 | y1:T ; �

)
p

(
xn | xn+1, y1:t ; �

)
dxn+1,

= p
(
xn | y1:n ; �

) ∫
p

(
xn+1 | y1:T ; �

)
p (xn+1 | xn ; �)

p
(
xn+1 | y1:n ; �

) dxn+1�

(35)

The backward recursion is initialized using the last filtering distribution
p

(
xT | y1:T ; �

)
and the predictive distribution p

(
xT+1 | y1:T ; �

)
from the

forward filtering recursions. The smoothing algorithms for the linear,
Gaussian state space model that are popular in economics, e.g., Harvey
(1989), Kim and Nelson (1999), and Durbin and Koopman (2001), are
versions of this approach based upon original work by Rauch et al.
(1965). Doucet et al. (2000) invented a particle smoother using this
framework, but it is an O(N 2T ) operation making it uncompetitive with
MCMC. A second shortcoming is the particles’ locations on the support
of the distributions are fixed on the forward filtering pass. These particles
are then simply reweighted by changing their importance weights on
a backwards pass using the information in the future data. Although
future observations are available, new particle locations are not simulated
on the backwards pass. These one-sided particle locations may not be
representative of the marginal smoothing distributions given more data.

Two-filter formula smoothing consists of running two filters that
are independent of one another and using their output to construct
the marginal smoothing distributions. This method was proposed by
Fraser and Potter (1969) for linear, Gaussian models. The first filter
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A Survey of Sequential Monte Carlo Methods 273

calculates the one-step ahead predictive and filtering distributions{
p

(
xn | y1:n−1; �

)
, p

(
xn | y1:n ; �

)}T
n=1

running forward in time and the second
filter calculates a series of functions

{
p

(
yn:T | xn ; �

)}T
n=1

running backward
in time. Together these can compute the marginal smoothing distributions
using the forward recursion

p
(
xn | y1:T ; �

) = p
(
xn | y1:n−1, yn:T ; �

)
,

= p
(
xn | y1:n−1; �

)
p

(
yn:T | y1:n−1, xn ; �

)
p

(
yn:T | y1:n−1; �

) ,

∝ p
(
xn | y1:n−1; �

)
p

(
yn:T | xn ; �

)
,

∝ p
(
xn | y1:n ; �

)
p

(
yn+1:T | xn ; �

)
�

The set of backward functions p
(
yn:T | xn ; �

)
can be computed

recursively via

p
(
yn:T | xn ; �

) =
∫

p
(
yn+1:T | xn+1; �

)
p (xn+1 | xn ; �) p

(
yn | xn ; �

)
dxn+1,

which is known as the backward information filter and was first proposed by
Mayne (1966). Difficulty may sometimes arise with this approach because
p

(
yn:T | xn ; �

)
is not a probability density. The integral of this function can

grow without bound (the integral is infinite). Practical implementations
of two-filter formula smoothing are therefore based on normalization of
p

(
yn:T | xn ; �

)
to ensure that it is a density.

Kitagawa (1996) proposed the first particle smoother based upon two-
filter formula smoothing. However, this algorithm implicitly assumes that
p

(
yn:T | xn ; �

)
is integrable. Briers et al. (2004) develop a two-filter formula

particle smoother that solves the integrability problem. Their method also
simulates fresh particle locations on the backward pass, but it remains
an O(N 2T ) operation. Building on this work, Fearnhead et al. (2008)
have recently shown how to apply a two-filter formula particle smoother
which is only an O(NT ) operation making it competitive with MCMC. This
smoother does not solve the problem for all general state space models
(1) and (2) but applies to only those models whose state equation is
linear and Gaussian. This is typically the case in economics. Details of the
implementation of the algorithm are relatively lengthy, and therefore, we
refer to their article for further discussion.

Godsill et al. (2004) developed a simulation smoothing algorithm for
a general nonlinear, non-Gaussian state space model using particle filters
that is an O(NT ) operation. A simulation smoother is an algorithm that
takes random draws of a sequence of state variables x0:T from the joint
smoothing distribution p

(
x0:T | y1:T ; �

)
. Their method can be viewed as

an extension of the simulation smoothing algorithms for linear, Gaussian
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274 D. Creal

models of Carter and Kohn (1994), Frühwirth-Schnatter (1994), de Jong
and Shephard (1995), and Durbin and Koopman (2002). By repeatedly
drawing samples from this distribution, smoothed estimates of the state
variable can be computed by averaging across the simulations as in
standard i.i.d. Monte Carlo methods. The algorithm is particularly simple,
and therefore, we refer to Godsill et al. (2004) for its implementation.
Recently, Douc et al. (2009) have provided a theoretical analysis of this
algorithm and have suggested ways of improving its implementation.

Particle smoothing can be used to approximate the mean of the
marginal or joint smoothing distributions. This is the optimal estimator
if the user has a quadratic loss function. Viewing the joint smoothing
distribution as a posterior distribution, it is also possible for particle filters
to approximate the maximum a posteriori (MAP) estimator. This is the
sequence x0:T that maximizes the posterior distribution p

(
x0:T | y1:T ; �

)
and

is the optimal estimator under a zero-one loss function. Godsill et al.
(2002) solve this problem by extending the well-known Viterbi (1967)
algorithm for discrete-state HMM models to the context of particle filters.
The algorithm is a simple dynamic programming problem and is an
O(N 2T ) operation.

2.8. Parameter Estimation and Hypothesis Testing Using
Particle Methods

2.8.1. Computing the Likelihood for a General State Space Model
The log-likelihood of a time series model is given by the prediction

error decomposition

logL
(
� | y1:T

) = log p
(
y1, � � � , yT ; �

) =
T∑

n=1

log p
(
yn | y1:n−1; �

)
�

The particle filter’s approximation of the likelihood function for a single
observation was given in (20). It is an unbiased estimator. Taking the log
of this approximation and summing over all the observations gives

logL
(
� | y1:T

) ≈
T∑

n=1

log

[
N∑
i=1

w(i)
n−1w̃

(i)
n

]
�

The particle filters estimator of the likelihood can be used in hypothesis
testing as well as in parameter estimation.

2.8.2. Hypothesis Testing and Model Evaluation
In a frequentist setting, estimates of the likelihood can be used for

model diagnostics such as likelihood ratio and Ljung–Box statistics; see
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Andrieu et al. (2004, p. 429) for details. When � is treated as a random
variable with prior p(�), the likelihood can be combined with the prior
to obtain the posterior p(� | y1:T ). Given a set of models m = 1, � � � ,M ,
the particle filter can be used to help compute the marginal likelihood
p(y1:T |m) = p(y1:T | �,m)p(� |m)

p(� | y1:T ,m)
. The marginal likelihood is needed for Bayesian

hypothesis testing; see, e.g., Geweke (2005) and Chapter 5 of Frühwirth-
Schnatter (2006) for a general discussion of different ways to compute
marginal likelihoods. Kim et al. (1998) and Chib et al. (2002) among
others use the particle filter’s approximation of the likelihood to compute
the marginal likelihood and compare different stochastic volatility models.

2.8.3. Frequentist Likelihood-Based Parameter Estimation
Frequentist parameter estimation of nonlinear, non-Gaussian state

space models by particle filters remains a current research topic. The two
major issues to consider are computing the maximum likelihood (ML)
estimator in a computationally efficient way and its statistical properties
(i.e., consistency and asymptotic normality) once it is computed. Although
the particle filter’s approximation of the likelihood function at a point �
is consistent asymptotically in the number of particles, the log-likelihood
function is not a continuous function of the parameters. This is true even
if one tries to use common random numbers. The discontinuity is created
from the resampling stage within a particle filter and can cause problems
for gradient-based optimizers; e.g., see Hürzeler and Künsch (2001) for a
detailed example of the problem.

Pitt (2002) developed a new algorithm called the smooth particle
filter to overcome the problem of a non-smooth log-likelihood function.
This algorithm replaces the standard resampling algorithm with a new
resampling method. It builds a continuous c.d.f. using piecewise linear
approximations between particles instead of the discrete c.d.f. used in
the standard resampling algorithms. Pitt’s algorithm is only viable when
the state dimension is equal to one or perhaps two because smoothing
the c.d.f. requires the ordering of the state variables during each iteration
of the filter. The method becomes an O(N 2T ) operation beyond a one-
dimensional state vector.

Olsson and Rydén (2008) consider maximization of the log-likelihood
and also address the resulting estimator’s theoretical properties. They
approximate the parameter space using a discrete grid of points and
evaluate the log-likelihood function by particle filter at each point. They
then prove what conditions are needed on the grid size, the number of
particles, and the state space model in order to guarantee consistency and
asymptotic normality of the resulting ML estimator. This appears to be the
first result of this kind.
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276 D. Creal

Otherwise, most work on ML estimation using particle filters has
focused on using approaches other than gradient-based optimizers that
avoid the discontinuity problem. These methods include stochastic
gradient-based methods, recursive maximum likelihood methods (Doucet
and Tadić, 2003; Poyiadjis et al., 2005a,b) and Monte Carlo expectation
maximization (MCEM) methods (Cappé et al., 2005; Olsson et al., 2008).
The last article also analyzes the statistical properties of the estimator. To
my knowledge, none of these methods have been applied in the economics
literature.

2.8.4. Alternative Methods and Online Estimation
A number of other proposals have been made for estimating the

parameters of general state space models using particle methods.
In particular, researchers are interested in accounting for parameter
uncertainty by approximating the distributions p

(
x0:n , � | y1:n

)
and

p
(
xn , � | y1:n

)
online as data arrives. These provide estimates of the

marginal distributions p
(
� | y1:n

)
and p

(
xn | y1:n

)
instead of the traditional

marginal filtering distribution p
(
xn | y1:n ; �

)
which does not account for

parameter uncertainty.
Research in this area is still on-going. Some of the earlier methods

are reviewed in Doucet et al. (2001). Assume throughout this section
that we are in a Bayesian setting with an initial prior for the parameters
p(�) at time n = 0. Kitagawa (1998) proposed simulating from p(�) and
then placing the parameters in the state vector with the variance set to
zero, i.e., �n = � ∀ n. Unfortunately, the parameter space is then only
explored at initialization of the algorithm and after several stages of
resampling the particles will consist of only one value of � making for
a poor estimator. Kitagawa (1998) and Liu and West (2001) proposed
making the parameters dynamic, �n = �n−1 + �n , where �n is artificial
noise whose covariance is converging to zero asymptotically as n → ∞.
The parameters are then added to the state vector. Liu and West (2001)
considered an extension of this where they approximate the distribution
p(� | y1:n) using a nonparametric kernel, e.g., Epanechnikov or normal.
This has been a popular approach taken in the literature. However, some
researchers argue that this changes the original problem of interest as
the true parameters in the model of interest are fixed and not dynamic.
Selecting the tuning parameters within the nonparametric kernel may also
be difficult in practice.

Storvik (2002) proposed learning the parameters sequentially in time
by simulating new parameter values � = (�1, � � � , �k) each period along with
the state variables. New parameter values are drawn from their posterior
conditional distribution which he summarizes by a set of low-dimensional
sufficient statistics. Fearnhead (2002), Johannes et al. (2006), Carvalho
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A Survey of Sequential Monte Carlo Methods 277

et al. (2008), and Johannes et al. (2008) apply more advanced versions
of these methods to several applications. The basic idea behind these
methods is that in many models the posterior conditional distribution
of each individual parameter p(�i | y1:n , x0:n) can often be summarized by
a low dimensional set of sufficient statistics denoted by sn = s(y1:n , x0:n).
The sufficient statistics can often be written as a recursive function of
the past period’s sufficient statistics, the new data, and the state variable
from the current time period such that sn = s(y1:n , x0:n) = s̃(yn , xn , sn−1).
Instead of storing the entire history of the particles

{
x(i)
0:n−1

}N
i=1

, the
algorithm only needs to store the sufficient statistics

{
s(i)n

}N
i=1

which
provides computational savings. Redefine each particle as x̃n = (s′

n , x
′
n , �

′)′.
At each iteration, new state variables are simulated from their proposal
distribution conditional on the existing parameters and then the sufficient
statistics are updated using the recursion sn = s̃(yn , xn , sn−1). Conditional
on the sufficient statistics, new parameter values are simulated from their
posterior conditional distribution. The particles x̃n are reweighted given
the particle filter’s importance weights and then resampled (potentially
conditional on the ESS as noted above). The methodology outlined in
these articles has the advantage of being extremely simple to implement.

Andrieu et al. (1999), Andrieu et al. (2005), and Künsch (2006)
note, however, that the success of these methods will depend upon the
mixing properties of the Markov kernels within the algorithm. Past errors
produced by the particle filter’s approximations need to be forgotten and
not accumulated over time. Keep in mind that the particle filter does not
generally give a good approximation of the joint distribution p

(
x0:n | y1:n ; �

)
for large n because there will be few particles representing early parts of
the distribution (see Example #1 and Fig. 1). As n increases, the particles
representing p

(
x0:n−k | y1:n ; �

)
for large k should contribute information

toward estimating the parameters �. However, information about � may not
always accumulate if there exist few particle paths representing this part of
the joint distribution, see Andrieu et al. (2005) for further discussion.

3. THEORETICAL PROPERTIES

Early reviews of the theoretical properties of particle filters can be
found in Chapters 2 and 3 of Doucet et al. (2001) and Crisan and Doucet
(2002), while a full-length treatment is given by Del Moral (2004). Recent
papers on consistency and asymptotic normality for more general classes of
algorithms are Chopin (2004), Künsch (2005), Douc and Moulines (2008),
and Del Moral et al. (2008). The goal of this section is to discuss some of
the main results at an intuitive level and describe what their implications
are for applied researchers.
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278 D. Creal

3.1. Consistency and Asymptotic Normality

At each iteration, a particle filter produces samples
{
x(i)
0:n ,w

(i)
n

}N
i=1

that
can be used to approximate the expectation of a function f with respect to
the joint smoothing distribution. The exact conditions for consistency and
asymptotic normality of the estimator depend upon the particle filter one
implements. Proofs in the literature vary accordingly with different types
of regularity conditions favored by different authors. It is not possible to
cover all the results in the literature and the different types of regularity
conditions. Instead, the discussion here is limited to Theorem 1 from
Chopin (2004), whose regularity conditions are relatively simple. This
theorem covers the SISR and APF algorithms under multinomial sampling
at each iteration (i.e., Algorithms 1, 2, and 3).

Standard IS algorithms require some regularity conditions on the
importance weights and the set of functions f within the integrals
for which the estimator will be well defined; see, e.g., Geweke (2005,
p. 114). These are that the importance weights remain bounded so that
the estimator remains well-behaved. In addition, the function f within
the integral must have finite variance when evaluated under the target
distribution. There are similar conditions for particle filters limiting both
the set of functions f that are valid and conditions to ensure that
the variance of the importance weights is finite at each iteration. In a
particle filter, the importance weights are determined recursively through
the weight recursion (11). The variability of the importance weights wn

depends on the Monte Carlo variation introduced at the current iteration
as well as any variability that is carried over from previous periods. This
is due to the fact that particles simulated at previous iterations form part
of the future joint importance distribution through the Dirac measure on
past paths, see (10).

A particle filter produces several estimators of interest. The results of
Chopin (2004) cover three cases: the estimator of the moments prior to
resampling given by (15), the estimator of the moments after resampling
given by (17), and the estimator of the marginal distribution of the
unweighted particles. We consider here only the case of the marginal
filtering distribution p(xn | y1:n ; �), and we denote by �pn the expectation
with respect to this distribution. The estimator of the marginal distribution
of the unweighted particles xn is generally not of interest, but it is used
as an intermediate quantity in the theorem. This marginal can be defined
recursively as

gn(xn) =
∫

gn(xn | xn−1, yn ; �)gn−1(xn−1)dxn−1,

where we omit the fact that this distribution is implicitly a function of the
observations and �. Let �gn denote the expectation of a function f with
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A Survey of Sequential Monte Carlo Methods 279

respect to this distribution, and let �g0:n be the expectation with respect to
the joint distribution (10).

The initial iteration of a particle filter is a standard importance
sampling iteration. Therefore, the standard importance sampling
assumptions apply to the first iteration n = 0. Given the results in Geweke
(1989), these are given by:

(i) �p0[f (x0)] exists;
(ii) �p0[f (x0)] exists;
(iii) The support of the initial importance distribution g0(x0) includes the

target p(x0);
(iv) The initial importance weights w0 are bounded.

Proofs of consistency and asymptotic normality for later iterations of a
particle filter follow by induction. If one starts with a sample that produces
a consistent and asymptotically normal estimator for a function f , then
one iteration of the sampling and resampling operations produce a new
sample whose estimator is also consistent and asymptotically normal for
any function f within a class of functions. The basic idea behind the
results of Chopin (2004) (and many other results in the literature) follows
by noting that, conditional on the past draws, each new iteration of the
algorithm produces a set of draws that are independent but not identically
distributed. It is then possible to apply a conditional law of large numbers
(LLN) and central limit theorem (CLT) to each iteration.

Let ‖�‖ denote the Euclidean norm in Rm . Denote by �(m)
n the

set of measurable functions for which the estimator will be consistent
and asymptotically normal at iteration n. This set of functions will be
determined recursively. The initial set of functions �(m)

0 contains those
measurable functions whose second moments are finite with respect to the
initial proposal distribution (implied by conditions (ii) and (iv) above). At
later iterations, the set �(m)

n is constrained by the following two conditions:

(a) For some 
 > 0, �gn‖wnf (xn)‖2+
 < ∞;
(b) The function �g0:n (xn−1,�)[wn(�)f (�)] ∈ �n−1;

Condition (a) implies that the importance weights (for a function f )
must have finite moments of order 2 + 
 with respect to gn . Additional
assumptions necessary for future iterations are:

(v) For all n ≥ 0, the constant function belongs to �(1)
n ;

(vi) For all n ≥ 0, the support of the incremental importance distribution
gn

(
xn | xn−1, yn ;	

)
includes the support of the incremental target

p
(
yn | xn ; �

)
p (xn | xn−1; �);
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280 D. Creal

The last assumption is a necessary condition for all IS algorithms.
Given the discussion above, Theorem 1 of Chopin (2004) states that

the three estimators produced by the particle filter are consistent at
iteration n for any measurable function f ∈ �(m)

n meaning that as N → ∞

1
N

N∑
i=1

f (x(i)
n )

a�s�−→ �gn �f (xn)� , (36)

N∑
i=1

ŵ(i)
n f (x(i)

n )
a�s�−→ �pn �f (xn)� , (37)

1
N

N∑
i=1

f (x(i)
n )

a�s�−→ �pn �f (xn)� � (38)

The estimators (37) and (38) differ by the fact that the former is computed
before the particles are resampled while the latter is computed using the
particles after the resampling step. The two estimators (37) and (38) are
asymptotically normal for any measurable function f ∈ �(m)

n meaning that
as N → ∞

√
N

[
N∑
i=1

ŵ(i)
n f (xn) − �pn �f (xn)�

]
d−→ �

(
0,Vn(f )

)
, (39)

√
N

[
1
N

N∑
i=1

f (xn) − �pn �f (xn)�

]
d−→ �

(
0, V̂n(f )

)
, (40)

where Vn(f ) and V̂n(f ) are the respective asymptotic variances. The
notation makes explicit that the asymptotic variances are a function of the
function f being integrated.

The asymptotic variances within the CLTs are written recursively as

Ṽn(f ) = V̂n−1

{
�g0:n [f (xn)]

} + �pn−1

{
Varg0:n [f (xn)]

}
, n > 0, (41)

Vn(f ) = Ṽn

{
wn(f (xn) − �pn [f (xn)])

}
, n ≥ 0, (42)

V̂n(f ) = Vn(f ) + Varpn [f (xn)], n ≥ 0� (43)

where the recursions are initialized with Ṽ0(f ) = Varg0[f (x0)]. A particle
filter consists of three basic steps: (i) drawing new particles at each
iteration; (ii) weighting the draws with their importance weights; and (iii)
resampling the particles. The asymptotic variance is broken into three
parts and written recursively to demonstrate the impact each of these three
steps has on the variability of the estimator in each period. For example,
the difference between Vn(f ) and V̂n(f ) in (42) and (43) is the additional
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A Survey of Sequential Monte Carlo Methods 281

variance created by the resampling step. As noted by Chopin (2004), the
resampling step has an additive effect and will always increase the variance
of the current period’s estimator (for any nonconstant function f ) by the
factor Varpn [f (xn)]. This is why the estimator computed from the particles
before resampling is preferred to the estimator available after resampling.

The expressions for the asymptotic variance will depend on the particle
filter one implements, including what type of resampling. Several authors
have evaluated the relative numerical efficiency of different algorithms
by comparing these theoretical expressions; see, e.g., Chopin (2004)
and Künsch (2005). For example, both these authors prove that the
asymptotic variance of the SISR algorithm with residual resampling will
be strictly smaller than the SISR filter with multinomial resampling.
Chopin (2004) also verifies the discussion from Section 2.5.7 that Rao–
Blackwellization of a particle filter will always increase its numerical
efficiency. In applications of standard importance sampling, an estimator
of the asymptotic variance within the CLT is often used to measure
the ex-post numerical efficiency of the simulation algorithm; these are
the numerical standard errors, see, e.g., Geweke (2005). The asymptotic
variance expressions for particle filters are complicated enough that
estimators of the asymptotic variances have not been seriously evaluated
in the particle filtering literature, although one was proposed by Gilks
and Berzuini (2001). Most practioners simply use the ESS to measure
instability. Under some simplifying assumptions, Johansen and Doucet
(2008) show that it is possible to write the asymptotic variance expressions
explicitly for the SISR and APF algorithms.

For standard importance sampling, the variance of the importance
weights grows to infinity as the time dimension increases. A theoretical
result that has important implications for applied researchers using
particle filters is that the asymptotic variance in the CLT can be proven
to be finite and bounded by a constant that is not a function of time.
In practice, this means that a particle filter can be applied to a long
stretch of time series (e.g., financial time series) and the precision of
the estimator will not systematically deteriorate as one obtains more
observations.4 In this sense, the particle filter forgets its past errors. We
note that these results have been established for the marginal filtering
distribution but generally will not hold for the joint smoothing distribution
(due to the resampling step causing the past particles to coalesce). In
addition, they do not apply for all particle filters. These results generally
require additional regularity conditions such that the transition density
p (xn | xn−1; �) of the state space model as well as the Markovian transition

4Keep in mind that the estimator may be poor in some time periods when gn(xn | xn−1, yn ; �)
is a poor approximation of p

(
yn | xn ; �

)
p (xn | xn−1; �).
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282 D. Creal

kernel gn(xn | xn−1, yn ; �) have good mixing properties.5 Bounds on the
asymptotic variance have been obtained by many authors for different
types of particle filtering algorithms and under different metrics, see
Del Moral and Guionnet (2001), Le Gland and Oudjane (2004), Del Moral
(2004), Künsch (2005), Chapter 9 of Cappé et al. (2005), and Douc et al.
(2009c).

Although the asymptotic variance within the CLT can be proven to be
bounded by a finite constant, this constant is (generally) a function of the
dimension of the state vector and will get larger as the state vector gets
larger. In practice, this means that as the state vector’s dimension grows the
only way to keep the same level of efficiency is to increase the number of
particles. Note that this is a problem shared by all Monte Carlo estimators
including MCMC, IS, etc., and is not necessarily a criticism of only particle
filters.

3.2. Additional References on Consistency and
Asymptotic Normality

The first consistency proof of the bootstrap filter was given by
Del Moral (1996) with asymptotic normality established in Del Moral
and Guionnet (1999) and Del Moral and Miclo (2000). The CLT was
later extended to include more advanced algorithms in Chopin (2004)
and Künsch (2005). These include the SISR, APF, and resample move
algorithms under multinomial and residual resampling. Künsch (2005)
provides a CLT for particle filters based on the accept–reject algorithm.
Del Moral (2004) includes consistency and asymptotic normality results
for the particle filters’ estimator of the likelihood p(yn ; �) of the state
space model. Douc and Moulines (2008) and Del Moral et al. (2008) both
prove consistency and asymptotic normality for algorithms that resample
at random times (see Algorithm 4). Douc and Moulines (2008) consider
algorithms that resample at random times via the coefficient of variation
(CV) while Del Moral et al. (2008) covers algorithms that resample
according to the effective sample size (ESS). Douc et al. (2009c) is an
in-depth analysis of the auxiliary particle filter using the limit theorems
from Douc and Moulines (2008). In the discussion above, we focused

5For example, Theorem 5 of Chopin (2004) states that the asymptotic variance (42) will
remain bounded if there exist constants C, p, p such that for any n ≥ 0:

(a) For any x , x ′, x ′′ ∈ X, the transition density satisfies p(x ′ | x ;�)
pn (x ′′ | x ;�) ≤ C;

(b) For any x , x ′, x ′′ ∈ X, the incremental importance density satisfies gn (x ′ | x ;	)
gn (x ′′ | x ;	) ≤ C;

(c) For any x ∈ X, y ∈ Y, the observation density satisfies 0 < p ≤ p(y | x ; �) ≤ p;

where X and Y are the state spaces of the Markov chain.
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A Survey of Sequential Monte Carlo Methods 283

on consistency and asymptotic normality of estimators of the moments.
Some of the authors, particularly Del Moral (2004) and Künsch (2005),
investigate empirical process results and the convergence of the empirical
distribution function to the true distribution.

3.3. Properties Other Than Consistency and Asymptotic
Normality

Del Moral (2004) includes more advanced coverage of particle
systems including properties other than consistency and asymptotic
normality. These include results on Berry–Esseen theorems for the CLT,
empirical process theory, large deviations, and propogation of chaos
properties. Del Moral and Doucet (2009) provides a recent review
of theoretical properties using Feynman-Kac path integral theory as a
unifying framework. There also exists a literature on forgetting of the
initial condition and initial distribution, see Douc et al. (2009) with
additional references therein. This is relevant when the initial condition
is miss-specified, and we would like to know how this miss-specification
affects the performance of the algorithm. Finally, this survey does not
cover contributions in the applied probability theory literature that analyze
optimal filtering algorithms for continuous-time models; see, e.g., Bain and
Crisan (2008) and Xiong (2008).

4. RECENT DEVELOPMENTS IN SEQUENTIAL MONTE CARLO

This section covers two more recent developments that extend
SMC outside the context of traditional particle filtering. In the first
extension, researchers working in Monte Carlo methods recognized
that SMC could be used to simulate from sequences of distributions
other than the filtering distributions defined by a state space model.
These methods are particularly applicable to Bayesian inference problems
because they provide an alternative to MCMC for simulating from complex
distributions. They can also be applied to models for cross-sectional data.
Sections 4.1–4.2 review this research. The second extension of standard
particle filtering uses the particle filter to provide a proposal distribution
for draws within MCMC algorithms. This type of algorithm is currently
being used in the macroeconomics literature on Bayesian estimation of
DSGE models. Section 4.3 covers this material.

4.1. SMC Samplers

Recognizing that the particles form a collection of interacting Markov
chains on a sequence of general state spaces is the key to building other
types of SMC algorithms. Leading references in this field include Gilks and
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284 D. Creal

Berzuini (2001), Chopin (2002), Liang (2002), and Cappé et al. (2004).
Del Moral et al. (2006a,b) built a framework titled SMC samplers that
encompasses a number of the algorithms in the literature.

Research in this area of Monte Carlo methods is on-going. There
are several key themes in this research: (i) an emphasis on building
adaptive Monte Carlo algorithms that learn from their previous draws;
(ii) understanding the practical circumstances where allowing the Markov
chains to interact is beneficial relative to MCMC; and (iii) developing the
necessary limit theory to justify the methods in practice.

Consider a setting where a researcher would like to sample from a
sequence of probability distributions, �pn(xn)�

J
n=1. The iteration number n

in the sequence is a counter that may or may not represent calendar time.
The number of observations in the researcher’s sample (not necessarily a
time series) is denoted by T while J is the number of distributions in the
sequence. The random variable or particle xn is no longer restricted to
denote a state variable in a state space model as in Section 2. It is simply a
quantity of interest with its interpretation depending upon the application.
Some examples are:

(i) Filtering in state space models: the sequence of target distributions are
equal to the marginal filtering distributions with pn (xn) = p

(
xn | y1:n�

)
.

A particle is equal to the state variable at time n;
(ii) Sequential Bayesian estimation: Consider a Bayesian model resulting

in a posterior distribution p(� | y1:n) where � denotes a (k × 1) vector
of unknown parameters. The sequence of target distributions are
equal to the posterior distribution given the number of observations
pn (xn) = p(� | y1:n). A particle is equal to the vector of parameters xn =
� for all n = 1, � � � , J .

In the former problem, the sequence of distributions is naturally defined
by the problem. The second example demonstrates that the researcher can
artificially define the sequence of distributions.

Each density in the sequence is defined as

pn (xn) = �n (xn)

Zn
, (44)

where �n (xn) is the unnormalized density which can be calculated for any
realization of xn . The normalizing constant Zn in the denominator of (44)
typically includes integrals that cannot be solved analytically.

An SMC sampler begins by drawing N particles
{
x(i)
1

}N
i=1

from an initial
importance density g1 (x1) and reweighting the particles using standard
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A Survey of Sequential Monte Carlo Methods 285

importance weights. Importance weights at the first iteration are

w1 = �1 (x1)

g1 (x1)
, (45)

which can be computed explicitly because the user knows the
initial importance density g1 (x1). Beginning at the second iteration
and continuing forward, each particle is sampled from a forward
nonhomogenous Markov transition kernel x(i)

n ∼ Kn

(
x(i)
n−1, �

)
. This Markov

kernel is simply a generalization of the Markovian importance distribution
gn

(
xn | xn−1, yn ;	

)
within a standard particle filter from Section 2. The

marginal distribution of the unweighted particles after drawing from the
transition kernel Kn is

gn(xn) =
∫

gn−1(dxn−1)Kn(xn−1, xn)� (46)

The importance weights at the nth iteration are the ratio of the target
density to the importance density and are given by

wn = �n (xn)

gn (xn)
� (47)

Unfortunately, the integral in (46) cannot usually be solved analytically for
an arbitrary choice of the transition kernel Kn . This makes it impossible to
directly calculate the importance weights.

Del Moral et al. (2006a) solve the problem of having to evaluate
the unknown importance density gn (xn) to compute importance weights
beyond the first iteration by introducing new artificial target densities
p1:n (x1:n). The sequence of artificial targets �p1:n (x1:n)�

J
n=1 are the joint

distributions associated with the sequence of random variables x1, � � � , xn .6

The artificial joint densities in an SMC sampler are not of interest in
themselves but their introduction allows the importance weights to be
computed. An artificial target must be defined up to a normalizing
constant

p1:n (x1:n) = �1:n (x1:n)
Zn

, (48)

where the new target is intentionally designed to admit pn (xn) as a
marginal density. The expanded target is similar to the earlier presentation
of the particle filter which operated on the joint smoothing distributions
to approximate the marginal filtering distributions. By sampling in a

6In a standard particle filter from Section 2, the joint smoothing densities are analagous to
the artificial joint densities described here.
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286 D. Creal

larger space, estimates of the marginal using the particles’ locations and
importance weights can be computed as a by-product.

Del Moral et al. (2006a) provide a framework for choosing both the
artificial target densities p1:n (x1:n) as well as the forward Markov kernels.
As in Jarzynski (1997) and Neal (2001), they suggest defining the artificial
targets as a sequence of artificial backward Markov kernels Ln (xn+1, xn)
which can be written as

�1:n (x1:n) = �n (xn)

n−1∏
k=1

Lk (xk+1, xk) � (49)

Given particles
{
w(i)

n−1, x
(i)
1:n−1

}N
i=1

that approximate the artificial target
�1:n−1 (x1:n−1), the next artificial target �1:n (x1:n) can be approximated by
sampling from the forward Markov kernel. The (unweighted) particles’
joint distribution after n transitions is

g1:n (x1:n) = g1 (x1)

n∏
j=2

Kj

(
xj−1, xj

)
� (50)

Reweighting the particles using the importance weights changes their
distribution from g1:n (x1:n) to p1:n (x1:n).

The unnormalized importance weights wn for the joint distribution are
defined as the ratio of the (unnormalized) joint target density (49) to the
joint importance density (50) and are given by

wn = �1:n (x1:n)
g1:n (x1:n)

� (51)

These can be written recursively such that at each iteration one only
calculates the incremental importance weights w̃n given by

wn = wn−1w̃n w̃n = �n (xn)Ln−1 (xn , xn−1)

�n−1 (xn−1)Kn (xn−1, xn)
� (52)

Notice the similarities between this recursion and (11). After normalizing
the importance weights, an estimator of the moments is

� �f (xn)� ≈
N∑
i=1

f
(
x(i)
n

)
ŵ(i)

n , ŵ(i)
n = w(i)

n∑N
j=1 w

(j)
n

� (53)

Estimates of a marginal target distribution can be calculated as

pn(xn) ≈
N∑
i=1

ŵ(i)
n 
x(i)n

(xn) �
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and estimates of the ratio of normalizing constants can be computed as

Ẑn

Zn−1
=

N∑
i=1

w(i)
n−1w̃

(i)
n � (54)

If the user chooses an initial distribution where the normalizing constant
Z1 can be calculated, then they obtain an estimate of the normalizing
constant for any distribution in the sequence including the final iteration
ẐJ . For example, this could be the marginal likelihood in a Bayesian
context or the likelihood of a general state space model.

Like the standard particle filter described previously, it is usually not
optimal to resample the particles at each iteration of an SMC sampler.
Particles should only be resampled when the variance of the importance
weights grows and becomes unstable. This can be measured by any of the
criterion described in Section 2.6. A standard SMC sampler is given by
Algorithm 5 (see Table 5).

Although an SMC sampler is simply a particle filter in a more general
context, it requires more input and experience from the user. In a
standard particle filter, the sequence of target densities (and implicitly the
backwards kernels) are already defined for the user by their state space
model. This leaves only the choice of the forward Markov kernel (i.e.,
the importance distribution gn

(
xn | xn−1, yn ;	

)
) which is relatively easy to

select. Conversely in an SMC sampler, the user will have to define the
sequence of target densities and choose the forward and backward Markov
kernels. Different choices for the forward and backward Markov kernels
also determine how challenging it is to compute the incremental weight
(52). Del Moral et al. (2006a) provide suggestions to users for choosing
each of these quantities in practice. Although these authors consider
many options, the easiest algorithms to implement for practitioners with
experience using MCMC will be to choose Kn (xn−1, xn) to be a Gibbs or
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Metropolis–Hastings kernel. Del Moral et al. (2006a,b) give the equations
to calculate the incremental weights (52) when using these kernels,
see their article for details. Many of these only involve evaluating the
unnormalized target density (44) as in a standard MCMC algorithm.

4.2. Additional References and Comments

A number of algorithms in the Monte Carlo methods literature are
special cases of an SMC sampler for specific choices of the sequence of
target distributions and forward and backward Markov transition kernels.
These include the resample move particle filtering algorithm of Gilks and
Berzuini (2001), which has been applied either explicitly or implicitly by a
number of authors including Chopin (2002), Chopin and Pelgrin (2004),
and Carvalho et al. (2008). Chopin (2002) introduced the concept of
applying SMC for static parameter estimation in models without latent
state variables; his applications also included cross-sectional data. Chopin
and Pelgrin (2004) and Chopin (2007) estimate discrete-state HMM
models with the unique ability to estimate the number of states in the
HMM as the data-set gets processed. Carvalho et al. (2008) focus on
learning the parameters sequentially in time using the sufficient statistics
structure proposed by Storvik (2002) as described in Section 2.8.4.

Another special case of an SMC sampler are the Population Monte
Carlo (PMC) algorithms developed in a series of papers by Cappé et al.
(2004), Celeux et al. (2006), Douc et al. (2007a), Douc et al. (2007b).
In most of these papers, the sequence of target distributions are equal at
each iteration. The purpose of introducing iterations into the Monte Carlo
algorithm is to try and adapt the proposal distribution (i.e., the forward
Markov kernel Kn (xn−1, xn)) over iterations by using the information in the
previously simulated draws.

Additional applications of SMC samplers include Johansen et al.
(2006), who consider applications to rare event simulation. Jasra et al.
(2008b) use adaptive SMC samplers to estimate Lévy-driven SV models.
Jasra et al. (2008a) extended SMC samplers one step further by allowing
the particles to be defined on different state spaces at different iterations
of the algorithm.

The theoretical analysis of adaptive SMC algorithms is a current area
of research. Del Moral et al. (2006a) provide a LLN and a CLT for their
SMC sampler under some simplying assumptions. For the PMC algorithm,
Douc et al. (2007a) consider the conditions under which adapting the
conditional importance distribution using the past particles will and will
not improve the algorithm.
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4.3. Using SMC Algorithms as Proposal Distributions Within
MCMC Algorithms

The discussion in Sections 4.1–4.2 assumed that SMC algorithms
are used as an alternative to MCMC. Another possibility is to use an
SMC algorithm as a proposal distribution within a MCMC algorithm.
This computational method has been used within the macroeconomics
literature for the Bayesian analysis of second-order approximations to
DSGE models; see, e.g., Fernández-Villaverde and Rubio-Ramírez (2007)
and An and Schorfheide (2007). In these papers, a particle filter is used to
approximate the likelihood function of the nonlinear DSGE model. The
log-likelihood approximation is then used within a standard random-walk
Metropolis algorithm.

Recently, Andrieu et al. (2010) have given a formal proof for the
convergence of the algorithm. These authors prove that as long as
the estimate of the likelihood function is unbiased then the estimation
error produced by the approximation does not change the equilibrium
distribution of the Markov chain being simulated. These authors label
their algorithms Particle Markov chain Monte Carlo (PMCMC). Andrieu
et al. (2010) call the PMCMC algorithm currently being used in the
macroeconomics literature a particle marginal Metropolis–Hastings sampler.
In addition to providing convergence results for this algorithm, they
also establish the results for a particle Gibbs sampler and a particle
independent Metropolis–Hastings algorithm. They note that the particle
Gibbs sampler should not be treated like a standard Gibbs sampler.
Additional care needs to be used when implementing an MCMC algorithm
that uses a particle filter within it and has steps other than random-walk
Metropolis. Flury and Shephard (2008) apply the methodology to several
simple economic models to demonstrate its applicability.

For practictioners, it is important to use a resampling algorithm
that is known to be unbiased (e.g., multinomial, residual, or stratified
resampling). This is one of the assumptions needed to apply the
convergence results established by Andrieu et al. (2010). In addition, the
performance of the PMCMC algorithm will depend on the quality of
the approximation of the normalizing constant (i.e., the log-likelihood).
If the variance of the approximation is high, the performance may
deteriorate. Finally, it is possible to use the more advanced SMC algorithms
such as an SMC sampler from Section 4.1 within the PMCMC algorithm.

5. SUMMARY

This article surveyed SMC methods that are applicable for economics
and finance. From either a frequentist or Bayesian perspective, particle
filters enable researchers to perform prediction and filtering in nonlinear,
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non-Gaussian state space models. Particle filters and other SMC
methods may play a larger role in risk management, option pricing,
and high-frequency financial econometrics. Following recent trends in
macroeconomics, particle filters are appearing more frequently to estimate
structural models. Applied econometricians can use the particle filter
in testing situations; i.e., to compute marginal likelihoods, likelihood-
ratio statistics, or Ljung-Box statistics. Maximum likelihood estimation
of nonlinear, non-Gaussian state space models using particle filters still
remains an open research area. No single method has demonstrated an
overwhelming computational or theoretical advantage for a reasonably
large class of models. Work remains to be done on the statistical properties
of the estimators as well.

SMC methods are likely to have a continued impact on Bayesian
inference. SMC opens many new research avenues for estimating
challenging models. These include trans-dimensional models, models that
result in multimodal posteriors, and models with potentially a large
number of parameters. The emphasis in this literature is currently on
developing adaptive Monte Carlo algorithms that learn from previous
draws. Understanding how the algorithms should be built in practice
to make adaption work and its comparison with MCMC is part of this
research. The limit theorems needed to justify their use is another.
A second theme is the introduction of particle filters as proposal
distributions within MCMC algorithms.
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