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This lecture will explore possibilities offered by particle filters, also
known as Sequential Monte Carlo (SMC) methods, when applied to
parameter estimation problems.

We will not give a thorough introduction to SMC methods.

Instead, we will introduce the most basic (popular) SMC method with
the main goal of performing inference for model parameters for a
state space / Hidden Markov model.

Results anticipation (next lecture)
Thanks to recent and astonishing results, we show how it is possible
to construct a practical method for exact Bayesian inference on the
parameters of a state-space model.
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Working framework for my 2 lectures

For this and next lecture we consider the (important) case where data
are modelled according to an Hidden Markov Model (HMM) or a
state-space model (SSM).

A state-space model refers to a class of probabilistic graphical models
that describes the probabilistic dependence between latent state
variables and the observed measurements of a dynamical system.
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SSMs as “graphical models”

Graphically:
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Yt−1 Yt Yt+1

Xt−1 Xt Xt+1- - - -

6 6 6

... ... (Markov chain)

(Observations)

(Yt|Xt = xt; θ) ∼ p(yt|xt, θ) (Observation density)

(Xt+1|Xt = xt, θ) ∼ p(xt+1|xt, θ) (Transition density)

X0 ∼ π(x0|θ) (Initial distribution)

From the arrows, obviously Xt+1 depends on Xt only.
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Notation: I use the colon-notation a : b to mean a, a + 1, ..., b.

• Our system of interest is {Xt}t>0. This is a latent/unobservable
stochastic process.

• (Unavailable) values of the system on a discrete time grid
{0, 1, ..., T} are X0:T = {X0, ..., XT }

(we consider integer times t for ease of notation).

• Actual observations (data) are noisy y1:T = {y1, ..., yT }

• That is at time t each yt is a noisy/corrupted version of the true
state of the system Xt.

• {Xt}t>0 is assumed a Markovian stochastic process.

• Observations yt are assumed conditionally independent given the
corresponding latent state Xt.

• I denote the model parameters with θ.
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In previous lectures you have seen the Kalman filter.

Not sure how much detail has been covered in previous lectures but:
when the latent system X is linear and random noises are Gaussian
distributed then

• (predictive distribution) p(xt|y1, ..., y1:t−1) is Gaussian;

• (filtering distribution) p(xt|y1, ..., y1:t) is Gaussian;

• (likelihood term) p(yt|y1, ..., y1:t−1) is Gaussian;

and all three distributions have mean and covariance that can be
computed iteratively (not reported for brevity, see 1).

1Simo Särkkä (2013). Bayesian Filtering and Smoothing. Free pdf at http://
users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf
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Example: Gaussian random walk

A most trivial example (linear, Gaussian SSM).

xt = xt−1 + ξt, ξt∼iidN(0, q2)

yt = xt + et, et ∼iid N(0, r2)

Therefore

p(xt|xt−1) = N(xt; xt−1, q2)

p(yt|xt) = N(yt; xt, r2)

Here the parameter to infer would be θ = (q, r).
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So we want to infer model parameters θ.

We need the likelihood function both for frequentist estimation
(maximum likelihood) and Bayesian estimation (eg for MCMC).

The likelihood function of θ is

p(y1, ..., yT |θ) = p(y1|θ)

T∏
t=2

p(yt|y1:t−1, θ)

but we’ll see computing this is often not trivial.
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Example: SSM with latent SDE

A way less trivial example: here we have a continuous-time model

dxt = f (xt; θ)dt + g(xt; θ)dBt, dBt∼iidN(0, dt)

yt = xt + et, et ∼iid N(·, ·)

Under conditions, the stochastic differential equation (SDE) has a
solution {xt} that is a Markov process.

Huge problem: p(xt|xs; ·) generally unknown! (s < t).

Notation: I will keep writing p(xt|xt−1; ·) instead of p(xt|xs; ·), as if
the continuous-time process was evolving between integer times.
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Notation reminder

Always remember X0 is NOT the state for the first observational time,
that one is X1. Instead X0 is the (typically unknown) system’s initial
state for process {Xt}.

X0 can be set to be a deterministic constant (as in the example we are
going to discuss soon).
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In general {Xt} and {Yt} can be either continuous– or discrete–valued
stochastic processes.

However in the following we assume {Xt} and {Yt} to be defined on
continuous spaces.
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Our goal

Main goal
We introduce general methods for SSM producing inference for the
vector of parameters θ. We will be particularly interested in Bayesian
inference.
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A quick look into the final goal

• I denote with p(y1:T |θ) is the likelihood of the measurements
conditionally on θ.

• π(θ) is the prior density of θ. Encloses knowledge about θ
before we “see” our current data y1:T .

• Bayes theorem gives the posterior distribution:

π(θ|y1:T) =
p(y1:T |θ)π(θ)

p(y1:T)
∝ p(y1:T |θ)π(θ)

• inference based on π(θ|y1:T) is called Bayesian inference.

• p(y1:T) is the marginal likelihood (evidence), independent of θ.

• Goal: obtain samples from π(θ|y1:T).

• Remark: θ is a random quantity in the Bayesian framework.
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Am I obsessed with the Bayesian approach? NO! However it
sometimes offers the easiest way to deal with complex, non-trivial
models. Some good reads

The Bayesian approach actually opens the possibility for a surprising
result (next lecture...).
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The likelihood function for SSMs

• In a SSM data are not independent, they are only conditionally
independent→ complication!:

p(y1:T |θ) = p(y1|θ)

T∏
t=2

p(yt|y1:t−1, θ) =?

Except for the simplest cases, we generally don’t have a closed-form
expression for the product above because we do not know how to
calculate p(yt|y1:t−1, θ).

Exceptions are for example linear/Gaussian models where Kalman
filtering can be applied.
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In a SSM the observed process is assumed to depend on the latent
Markov process {Xt}: we can write

p(y1:T |θ) =

∫
p(y1:T , x0:T |θ)dx0:T =

∫
p(y1:T |x0:T , θ)︸            ︷︷            ︸

use cond. indep.

× p(x0:T |θ)︸      ︷︷      ︸
use Markovianity

dx0:T

=

∫ T∏
t=1

p(yt|xt, θ)×
{

p(x0|θ)

T∏
t=1

p(xt|xt−1, θ)
}

dx0:T

Problems

• The expression above is a (T + 1)-dimensional integral /

• For most (nontrivial) models, transition densities p(xt|xt−1) are
unknown /
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Special cases

• In some simple cases, closed form solutions do exist: for
example when the SSM is linear and Gaussian (see the Gaussian
random walk example) then the classic Kalman filter gives the
exact likelihood.

• In the SSM literature important (Gaussian) approximations are
given by the extended and unscented Kalman filters. However,
approximations offered by particle filters (a.k.a. sequential
Monte Carlo) are presently the state-of-art for general non-linear
non-Gaussian SSM.
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What if we had p(y1:T |θ)...

Ideally if we had p(y1:T |θ) we could use Metropolis-Hastings (MH) to
sample from the posterior π(θ|y1:T). At iteration r + 1 we have:

1. current value is θr, propose a new θ∗ ∼ q(θ∗|θr), e.g.
θ∗ ∼ N(θr,Σθ) for some covariance matrix Σθ.

2. compute

A =
p(y1:T |θ

∗)

p(y1:T |θr)
× π(θ

∗)

π(θr)
× q(θr|θ

∗)

q(θ∗|θr)

Draw a uniform u ∼ U(0, 1) and if u < A accept θ∗ and set
θr+1 := θ∗. Otherwise, reject θ∗, set θr+1 := θr.

3. Set r := r + 1, go to 1 and repeat.

18



By repeating steps 1-3 as much as wanted we are guaranteed that, by
discarding a “long enough” number of iterations (burnin), the
remaining draws form

• a Markov chain (hence dependent values) having π(θ|y1:T) as
their stationary distribution.

• for a vector valued θ ∈ Rp create p separate histograms of the
draws pertaining each component of θ. Such histograms
represent the posterior marginals π(θj|y1:T), j = 1, ..., p.
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Brush up MH with a simple example

A simple toy problem not related to state-space modelling.

• Data: n = 1, 000 observations i.i.d yj ∼ N(3, 1).

• Now assume µ = E(yj) unknown. Estimate µ.

• Assume for example a “wide” prior: µ ∼ N(2, 22) (do not look at
data!)

• Gaussian random walk to propose µ∗ = µr + 0.1 · ξ, with
ξ ∼ N(0, 1). Notice Gaussian proposals are symmetric, hence
q(µ∗|µr) = q(µr|µ

∗) therefore

A =
p(y1:n|µ

∗)

p(y1:n|µr)
× π(µ

∗)

π(µr)

20



Start far at µ = 10. Produce 10,000 iterations.

MCMC iterations
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

2
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10

True value µ = 3
-1 0 1 2 3 4 5 6

0

2
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6

8

10

12

14
posterior π(µ|y) after burnin

posterior
prior

The posterior on the right plot discards the initial 500 draws (burnin).
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Example: a nonlinear SSM

xt = 0.5xt−1 + 25 xt−1
(1+x2

t−1)
+ 8 cos(1.2(t − 1)) + vt,

yt = 0.05x2
t + et,

with a deterministic x0 = 0, measurements at times t = 1, 2, ..., 100.

vt ∼ N(0, q), et ∼ N(0, r) all independent.

Data generated with q = 0.1 and r = 1.

time
0 10 20 30 40 50 60 70 80 90 100

-20

-15

-10

-5

0

5

10

15

20

X
Y
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Priors: q ∼ InvGamma(0.01, 0.01), r ∼ InvGamma(0.01, 0.01)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Prior density InvGamma(0.01,0.01)

Recall true values are q = 0.1 and r = 1. The chosen priors cover
both.
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Results anticipation...

Perform an MCMC (how about the likelihood? we’ll see this later).

R = 10, 000 iterations (generous burnin = 3, 000 iterations).

Proposals: qnew ∼ N(qold, 0.22), and similarly for rnew.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5
Trace plot of p(q | y

1:T
), acc. rate 1.103015e+01 percent

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3
Trace plot of p(r | y

1:T
), acc. rate 1.103015e+01 percent

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

5

10
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20
Empirical PDF of p(q | y

1:T
) after burnin

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

1

2

3
Empirical PDF of p(r | y

1:T
) after burnin
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How do we deal with general SSM for which the exact likelihood
p(y1:T |θ) is unavailable? That’s the case of the previous example.

For example, the previously analysed model is nonlinear in xt and
therefore the exact Kalman filter can’t be used.

Also, if we were to assume that vt and et are non-Gaussian, also in
that case Kalman couldn’t be used.

But we introduce more general methods that are able to deal with
states nonlinearities and non-Gaussianity.
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General Monte Carlo integration

Recall our likelihood function:

p(y1:T |θ) = p(y1|θ)

T∏
t=2

p(yt|y1:t−1, θ)

We can write p(yt|y1:t−1, θ) as

p(yt|y1:t−1, θ) =
∫

p(yt|xt, θ)p(xt|y1:t−1, θ)dxt = E(p(yt|xt, θ))

Use Monte Carlo integration: generate N draws from p(xt|y1:t−1, θ), then
invoke the law of large numbers.

• produce N independent draws xi
t ∼ p(xt|y1:t−1, θ), i = 1, ..., N

• for each xi
t compute p(yt|xi

t, θ)

• and by LLN we have

1
N

N∑
i=1

p(yt|xi
t, θ)→ E(p(yt|xt, θ)), N →∞

• error term is O(N−1/2) regardless the dimension of xt ,
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SMC and the bootstrap filter

But how to generate “good” draws (particles) xi
t ∼ p(xt|y1:t−1, θ)?

Here “good” means that we want particles such that the values of
p(yt|xi

t, θ) are not negligible (“explain” a large fraction of the
integrand).

For SSM, sequential Monte Carlo (SMC) is the winning strategy.

We will NOT give a thorough introduction to SMC methods. We only
use a few notions to solve our parameter inference problem.

[the term particle filters can be used interchangeably with SMC.]
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Importance sampling

Let’s remove for a moment the dependence on θ.

p(yt|y1:t−1) =

∫
p(yt|x0:t)p(x0:t|y1:t−1)dx0:t

=

∫
p(yt|xt)p(xt|xt−1)p(x0:t−1|y1:t−1)dx0:t

=

∫
p(yt|xt)p(xt|xt−1)p(x0:t−1|y1:t−1)

h(x0:t|y1:t)
h(x0:t|y1:t)dx0:t

where h(·) is an arbitrary (positive) density function called
“importance density”. Choose an h(·) “easy to simulate from”.

1. simulate N samples: xi
0:t ∼ h(x0:t|y1:t), i = 1, ..., N

2. construct importance weights wi
t =

p(yt|xi
t)p(xi

t|x
i
t−1)p(xi

0:t−1|y1:t−1)

h(xi
0:t|y1:t)

3. p(yt|y1:t−1) = E(p(yt|xt)) ≈ 1
N

∑N
i=1 wi

t
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Importance Sampling

Importance Sampling is an appealing and revolutionary idea for
Monte Carlo integration.

However generating at each time a “cloud of particles” xi
0:t is not

really computationally appealing, and it’s not clear how to do so.

Much better to try to split the problem into a sequential mechanism,
as t increases.
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Sequential Importance Sampling

When h(·) is chosen in an intelligent way, an important property is the
one that allows sequential update of weights. After some simple
derivation , we have (see p. 121 in Särkkä2 and p. 5 in Cappe et al.3)

wi
t ∝

p(yt|xi
t)p(x

i
t|x

i
t−1)

h(xi
t|xi

0:t−1, y1:t)
w̃i

t−1, i = 1, ..., N

where the proportionality symbol means that we will not particularly
care of the (unknown) proportionality constant, and w̃ denotes
normalised weights, i.e.

w̃i
t−1 =

wi
t−1∑N

i=1 wi
t−1

2Särkkä, Bayesian filtering and smoothing, available here.
3Cappe, Godsill and Moulines. Available here.
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Sequential importance sampling

We can now write a sequential algorithm:

1. t = 0 (initialize) xi
0 ∼ π(x0), assign w̃i

0 = 1/N, i = 1, ..., N
2. at the current t assume we have the particles xi

t

3. From your model propagate forward xi
t+1 ∼ h(xt+1|xi

0:t, y1:t+1),
i = 1, ..., N.

4. Compute (unnormalised weights)

wi
t+1 ∝

p(yt+1|xi
t+1)p(x

i
t+1|x

i
t)

h(xi
t+1|x

i
0:t, y1:t+1)

× w̃i
t.

and normalise weights w̃i
t+1 = wi

t+1/
∑N

i=1 wi
t+1

5. we can finally approximate (Creal, p. 253)

p(yt+1|y1:t) ≈
N∑

i=1

wi
t+1 × w̃i

t

6. set t := t + 1 and if t < T go to step 2. 31
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(simplified) Sequential importance sampling

Two huge problems:

• sometimes we do not know the transition density p(xt|xt−1) hence the
weights cannot be computed.

• We may be unable to find a useful proposal function h(xt|xi
0:t−1, y1:t)

the depends on data.

An often useful approach (sometimes the only thing we can do) is to take

h(xt|xi
0:t−1, y1:t) ≡ p(xt|xt−1)

this implies a huge simplification

wi
t ∝

p(yt|xi
t)p(x

i
t|x

i
t−1)

h(xi
t|xi

0:t−1, y1:t)
w̃i

t−1 =
p(yt|xi

t)p(x
i
t|x

i
t−1)

p(xi
t|xi

t−1)
w̃i

t−1 = p(yt|xi
t)w̃

i
t−1

So we got read of the (often unavailable) transition density. We only need to
simulate from the model, not to evaluate the transition density.
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The particle degeneracy problem

Particle degeneracy occurs when at time t all but one of the
importance weights wi

t are close to zero. This implies a poor
approximation to p(yt|y1:t−1).

Notice that when a particle gets a zero weight (or a “small” positive
weight that your computer sets to zero→ numerical underflow) that
particle is doomed! Since

wi
t ∝

p(yt|xi
t)p(x

i
t|x

i
t−1)

h(xi
t|xi

0:t−1, y1:t)
w̃i

t−1.

if for a given i we have w̃i
t−1 = 0 particle i will have zero weight for

all subsequent times.
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The particle degeneracy problem

• For example, suppose a new data point yt is encountered and this
is an outlier.

• Then most particles will end up far away from yt, so p(yt|xi
t) ≈ 0

and hence weights will be ≈ 0.

• Those particles will die.

• Eventually, for a time horizon T which is long enough, all but
one particle will have zero weight.

• This means particle degeneracy has affected this methodology
for decades.
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The Resampling idea

A life saving solution is to use resampling with replacement (Gordon et al.4).

1. (normalization) set w̃i
t := wi

t/
∑

i wi
t;

2. interpret w̃i
t as the probability to sample xi

t from the weighted set
{xi

t, w̃i
t, i = 1, ..., N}.

3. draw N times with replacement from the weighted set. Replace the old
particles with the new ones {x̃1

t , ..., x̃N
t }.

4. Reset weights wi
t = 1/N.

Since resampling is done with replacement, a particle with a large weight is
likely to be drawn multiple times.

Particles with very small weights are not likely to be drawn at all. Nice!

4Gordon, Salmond and Smith. IEEE Proceedings F. 140(2) 1993.
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Propagation→weighting→resampling→propagation of resampled
particles→weighting→etc
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The next animation illustrates the concept of sequential importance
sampling resampling with N = 5 particles.

• Light blue: observed trajectory (data)

• dark blue: simulation of the latent process {Xt}

• pink balls: particles xi
t

• green balls: selected particles x̃i
t from resampling

• red curve: density p(yt|xt)
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Sequential Importance Sampling Re-sampling (SISR)

Introducing the resmpling trick into sequential importance sampling
produces the SISR (sequential importance sampling with resampling)
which will save our day.

Because of time, we only describe the simplest example of SISR,
namely the bootstrap filter.
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Bootstrap filter

The bootstrap filter is the simplest example of SISR.

• Choose h(xi
t|x

i
0:t−1, y1:t) := p(xi

t|x
i
t−1)

• Important: we do NOT need to know p(xi
t|xt−1), we only need to be

able to sample from it (forward model simulation!).

• propagate forward the particles→ compute unnormalised weights wi
t

→ normalise the weights→ resample the particles according to
normalised weights→ propagate forward etc.

• In SISR after performing resampling reset all weights→ w̃i
t−1 = 1

N

Thus

wi
t ∝

p(yt|xi
t)p(x

i
t|x

i
t−1)

h(xi
t|xi

0:t−1, y1:t)
w̃i

t−1

=
1
N

p(yt|xi
t) ∝ p(yt|xi

t), i = 1, ..., N

This is a SISR strategy therefore we still have that xi
t ≈ p(x0:t|y1:t−1)
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Bootstrap filter in detail

1. t = 0 (initialize) xi
0 ∼ π(x0), assign w̃i

0 = 1/N, i = 1, ..., N

2. at the current t assume we have the N weighted particles
{xi

t, w̃i
t}

N
i=1

3. from the current {xi
t, w̃i

t}
N
i=1, resample particles with replacement

N times to obtain {x̃i
t, i = 1, ..., N}.

4. From your model propagate forward xi
t+1 ∼ p(xt+1|x̃i

t),
i = 1, ..., N.

5. Compute wi
t+1 = p(yt+1|xi

t+1) and normalise weights
w̃i

t+1 = wi
t+1/
∑N

i=1 wi
t+1

6. set t := t + 1 and if t < T go to step 2.
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So the bootstrap filter by et al. (1993)5 easily provide what we need!

• p̂(yt|y1:t−1; θ) = 1
N

∑N
i=1 wi

t

• Finally a likelihood approximation:

p̂(y1:T |θ) = p̂(y1)

T∏
t=2

p̂(yt|y1:t−1; θ)

We obtain:

• approximate maximum likelihood

θmle = argmaxθp̂(y1:T ; θ)

or

• Bayesian inference by using p̂(y1:T |θ) inside Metropolis-Hastings.

5Gordon, Salmond and Smith. IEEE Proceedings F. 140(2) 1993.
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Resampling particles using some software

To resample particles you can make use of built-in routines. Always
remember that in this context we wish to sample with replacement.
Below normw denotes the normalised weights w̃ at a given time and
xres is the vector of resampled particles obtained from the current x.

• In Matlab you can use, say, xres =

randsample(x,N,1,normw), this will create a new vector xres of
length N of values resampled from x with replacement.

• similarly, in R you can use xres <- sample(x, size = N,

replace = TRUE, prob = normw)
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Back to the nonlinear SSM example

We can now comment on how we obtained previously shown results
(reproposed here). We used the bootstrap filter with N = 500 particles and
R = 10, 000 MCMC iterations.

• forward propagation: xt+1 = 0.5xt + 25 xt
(1+x2

t )
+ 8 cos(1.2t) + vt+1

• wi
t+1 = N(0.05(xi

t+1)
2, r)
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Numerical issues with particle degeneracy

When coding your algorithms try to consider the following before
normalizing weights

• code unnormalised weights on log-scale: e.g. when
wi

t = N(yt|xi
t) the exp() in the Gaussian pdf will likely produce

an underflow (wi
t = 0) for xi

t far from yt.
Solution: reason in terms of logw instead of w.
• However afterwards we necessarily have to go back to
w:=exp(logw) then normalize and the above might still not
be enough.
Solution: subtract the maximum (log)weight from each
(log)weight, e.g. set logw:=logw-max(logw). This is
totally ok, the importance of particles is unaffected, weights are
only scaled by the same constant c=max(logw).
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Safe (log)likelihood computation

As usual, better compute the (approximate) loglikelihood instead of
the likelihood:

log p̂(y1:T |θ) =

T∑
t=1

(
− log N + log

N∑
i=1

wi
t

)
At time t set ct = max{log wi

t, i = 1, ..., N} and set
wi∗

t := exp(log wi
t − ct)

Once all the wi∗
t are available compute

log
∑N

i=1 wi
t = ct + log

∑N
i=1 wi∗

t .

(the latter follows from wi
t = wi∗

t exp{ct} which you don’t need to
evaluate)
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Appendix
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Multinomial resampling

This is the simplest to explain (not the most efficient though) resampling
scheme.

At time t we wish to sample from a population of weighted particles
(xi

t, w̃i
t, i = 1, ..., N). What we actually do is to sample N times particle

indeces with replacement from the population (i, w̃i
t, i = 1, ..., N). This will

be a sample of size N from a multinomial distribution.

Pick at particle from the “urn”, the larger its probability w̃i
t the more likely it

will be picked. Record its index i and put it back in the urn. Repeat for a
total of N times.

To code the sampling procedure we just need to recall the inverse transform
method.
For a generic random variable X, let FX be an invertible cdf. We can sample
an x from FX using x := F−1

X (u), with u ∼ U(0, 1).
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For example let’s start from a simple example of multinomial
distribution, the Bernoulli distribution.

X ∈ {0, 1} with p = P(X = 1), 1 − p = P(X = 0). Then

FX(x) =


0 x < 0

1 − p 0 6 x < 1

1 x > 1

(1)

Draw the “stair” represented by the plot of FX . Generate a u ∼ U(0, 1)
and “hit the stair’s steps”. If 0 < u 6 1 − p then set x := 0 and if
u > 1 − p set x := 1.

For the multinomial case it is a simple generalization. Drop time t and
set w̃i = pi. FX is a stair with N steps. Shoot a u ∼ U(0, 1) and return
index i

i := min
{

i ′ ∈ {1, ..., N}; (
i ′∑

i=1

pi) − u > 0
}

.
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Cool reads on Bayesian methods (titles are linked)

• You have an engineeristic/signal processing background: check
S. Särkkä “Bayesian Filtering and Smoothing” (free PDF from
the author!)

• You are a data-scientist: check K. Murphy “Machine Learning: a
probabilistic perspective”.

• You are a theoretical statistician: C. Robert “The Bayesian
Choice”.

• You are interested in bioinformatics/systems biology: check D.
Wilkinson “Stochastic Modelling for Systems Biology, 2ed.”.

• You are interested in inference for SDEs with applications to life
sciences: check the book by Wilkinson above and C. Fuchs
“Inference for diffusion processes”.
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Cool reads on Bayesian methods (titles are linked)

• You are a computational statistician: check “Handbook of
MCMC”. Older (but excellent) titles are: J. Liu “Monte Carlo
strategies in Scientific Computing” and Casella-Robert “Monte
Carlo Statistical Methods”.

• You want a practical hands-on and (almost) maths free
introduction: check “The BUGS Book” and “Doing Bayesian
Data Analysis”.

• “Statistical Rethinking”
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Here follow appendix slides to refresh some concepts if needed.



Markov property of hidden states

Briefly: Xt (and actually the whole future Xt+1, Xt+2,...) given Xt−1 is
independent from anything that has happened before time t − 1:

p(xt|x0:t−1, y1:t−1) = p(xt|xt−1), t = 1, ..., T

Also, past is independent of the future given the present:

p(xt−1|xt:T , yt:T) = p(xt−1|xt)
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Conditional independence of measurements

The current measurement yt given xt is conditionally independent of
the measurement and state histories:

p(yt|x0:t, y1:t−1) = p(yt|xt).

The Markov property on {Xt} and the conditional independence on
{Yt} are the key ingredients for defining an HMM or SSM.

"!
# 
"!
# 
"!
# 

"!
# 
"!
# 
"!
# 

Yt−1 Yt Yt+1

Xt−1 Xt Xt+1- - - -

6 6 6

... ... (Markov chain)

(Observations)
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