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Goals for today:

• Recap of the MCMC sampling from π̂(θ|y1:T) with embedded
SMC approximation for p(y1:T |θ);

• example of Bayesian inference for a state-space model driven by
an SDE;

• related tuning problems;

• show that what we do is exact-approximate inference: the
“pseudo-marginal” MCMC approach.
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Some recap from the previous lecture

An example we considered was that of:



xt = 0.5xt−1 + 25 xt−1
(1+x2

t−1)
+ 8 cos(1.2(t − 1)) + vt,

yt = 0.05x2
t + et,

vt ∼ N(0, q)

et ∼ N(0, r)

Data generated with q = 0.1 and r = 1.
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Then we have shown the logic behind the construction of a sequential
approximation to the likelihood
p(y1:T |θ) = p(y1|θ) ·

∏T
t=2 p(yt|y1:t−1; θ).

Basically via SMC we have p̂(yt|y1:t−1; θ) = 1
N

∑N
i=1 wi

t

Simplest case has wi
t = p(yt|xi

t) (“bootstrap filter”).

The secret to SMC is

• “propagate particles xi
t forward”,

• then “weight” the particles,

• “resample particles”. The last operation is essential to let
unimportant particles die.
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Propagation→weighting→resampling→propagation of resampled
particles→weighting→etc
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What do we need to run the bootstrap filter?

Two things only:

1. being able to forward propagate the latent X process (particles);
2. evaluate the observational density p(yt|xt; θ) at each triplet

(yt, xt, θ).

Point 1 means (for the example): write a code that at the current
value of θ∗ = (q∗, r∗), and starting from x0 it produces x1, and once
in x1 it gives you x2 etc until the final t = T .

xt = 0.5xt−1 + 25
xt−1

(1 + x2
t−1)

+ 8 cos(1.2(t − 1)) + N(0, q)

But at each time t we do the above starting from each resampled
particle x̃i

t−1 so we have

xi
t = 0.5x̃i

t−1+25
x̃i

t−1

(1 + x̃i2
t−1)

+8 cos(1.2(t−1))+N(0, q), i = 1, ..., N
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Pseudo-algorithm for the example

We are at a generic iteration of Metropolis-Hastings with proposal
θ∗ = (q∗, r∗) being evaluated (maybe will be accepted or rejected).

1 t = 0 (initialize) e.g. set xi
0 = 0, assign w̃i

0 = 1/N, i = 1, ..., N

2 here all particles have the same weight, call them x̃i
0

3 propagate all particles forward towards t = 1

xi
1 = 0.5x̃i

0 + 25
x̃i

0

(1 + x̃i2
0 )

+ 8 cos(1.2(0)) + N(0, q∗), i = 1, ..., N

4 weight the particles via

wi
1 ∝ p(y1|xi

1) ≡ N(0.05(xi
1)

2, r∗), i = 1, ..., N

5 Likelihood term: p̂(y1|θ
∗) = 1

N

∑N
i=1 wi

1

6 normalise weights as w̃i
1 = wi

1/
∑N

i=1 wi
1. We interpret each w̃i

1 ∈ (0, 1)
as a probability to be resampled for xi

1

7 from the set {xi
1, w̃i

1}
N
i=1, resample particles with replacement N times to

obtain the set {x̃i
1, i = 1, ..., N}.
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8 propagate forward towards t=2

xi
2 = 0.5x̃i

1+25
x̃i

1

(1 + x̃i2
1 )

+8 cos(1.2(1))+N(0, q∗), i = 1, ..., N

9 weight the particles via

wi
2 ∝ p(y2|xi

2) ≡ N(0.05(xi
2)

2, r∗), i = 1, ..., N

10 Likelihood term: p̂(y2|y1; θ∗) = 1
N

∑N
i=1 wi

2

11 normalise weights as w̃i
2 = wi

2/
∑N

i=1 wi
2.

12 from the set {xi
2, w̃i

2}
N
i=1, resample particles with replacement N

times to obtain the set {x̃i
2, i = 1, ..., N}.

13 etc. continue until you reach the last time-point t = T

Return the approximate likelihood for the current θ∗ = (q∗, r∗)

p̂(y1:T |θ
∗) = p̂(y1|θ

∗) ·
T∏

t=2

p̂(yt|y1:t−1; θ∗)
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So we can now happily run our Metropolis-Hastings sampler to sample from
the posterior:

1. current value is θr and current estimated likelihood is p̂(y1:T |θr);

2. propose a new θ∗ ∼ q(θ∗|θr), e.g. θ∗ ∼ N(θr,Σθ) for some covariance
matrix Σθ.

3. run the bootstrap filter using θ∗ and obtain p̂(y1:T |θ
∗).

4. compute

A =
p̂(y1:T |θ

∗)

p̂(y1:T |θr)
× π(θ

∗)

π(θr)
× q(θr |θ

∗)

q(θ∗|θr)

Draw a uniform u ∼ U(0, 1) and if u < A accept θ∗ and set θr+1 := θ∗.
Otherwise, reject θ∗, set θr+1 := θr.

5. Set r := r + 1, go to 1 and repeat.

Accepted parameters are from

π̂(θ|y1:T) ∝ p̂(y1:T |θ)× π(θ)

but later we prove that actually samples are from the exact posterior

π(θ|y1:T) ∝ p(y1:T |θ)× π(θ)
9



Then it was sort of informally implied that we just plug p̂(y1:T |θ) into
Metropolis-Hastings and sample from

π̂(θ|y1:T) ∝ p̂(y1:T |θ)× π(θ)

Where for our case study θ = (q, r).
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But what are we really sampling from?

• the p̂(y1:T |θ) =
∏T

t=1(
1
N

∑N
i=1 wi

t) is clearly a random variable.

• instead for standard Metropolis-Hastings p(y1:T |θ) is a deterministic
quantity.

• effectively, p̂(y1:T |θ) ≡
∫

p̂(y1:T |ξ, θ)× p(ξ)dξ

• the ξ ∼ p(ξ) is a vector of random variates independent of θ.

Example:xt = 0.5xt−1 + 25 xt−1
(1+x2

t−1)
+ 8 cos(1.2(t − 1)) + N(0, q),

yt = 0.05x2
t + N(0, r),

orxt = 0.5xt−1 + 25 xt−1
(1+x2

t−1)
+ 8 cos(1.2(t − 1)) +

√
q · ξ(1)

t , ξ
(1)
t ∼ N(0, 1)

yt = 0.05x2
t +
√

r · ξ(2)
t , ξ

(2)
t ∼ N(0, 1)

11



So certainly

ξ =
(
(ξ

(1)
1 , ξ(2)

1 ), ..., (ξ(1)
T , ξ(2)

T ), ...?
)

and what other random variates can we also include?

Resampling! Performing resampling involves the generation of
pseudo-random variates so we finally have

ξ =
(
(ξ

(1)
1 , ξ(2)

1 ), ..., (ξ(1)
T , ξ(2)

T ),

plus ALL the variates produced during resampling
)
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The Metropolis-Hasting actually samples from an artificially extended
posterior

π̂(θ, ξ|y1:T) ∝ p̂(y1:T |ξ, θ) · p(ξ) · π(θ)

1. current value is θr, propose a new θ∗ ∼ q(θ∗|θr), e.g.
θ∗ ∼ N(θr,Σθ) for some covariance matrix Σθ.

2. Sample ξ∗ ∼ p(ξ) (useful for propagation and resampling)

3. compute

A =
p̂(y1:T |ξ

∗, θ∗)
p̂(y1:T |ξr, θr)

× p(ξ∗)
p(ξr)

× π(θ
∗)

π(θr)
× q(θr|θ

∗)

q(θ∗|θr)

Draw a uniform u ∼ U(0, 1) and if u < A accept (θ∗, ξ∗) and set
(θr+1, ξr+1) := (θ∗, ξ∗).
Otherwise, reject, and set (θr+1, ξr+1) := (θr, ξr).

4. Set r := r + 1, go to 1 and repeat.
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Typically ξ ∼ N(0, 1) or ξ ∼ U(0, 1) and generally p(ξ) independent
of θ, so the ratio of the p(ξ) cancels out.

So in practice just run Metropolis-Hastings as usual, and do not
reestimate the likelihood at the denominator, just use the one you have
previously accepted.
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Incredible result

Quite astonishingly Andrieu and Roberts1 proved that using an unbiased and
non negative estimate of the likelihood function into the MCMC routine is
sufficient to obtain exact Bayesian inference for θ!

That is using the Metropolis-Hastings acceptance probability

min
{

1,
p̂(y1:T |ξ

∗, θ∗)
p̂(y1:T |ξ, θ)

× π(θ
∗)

π(θ)
× q(θ|θ∗)

q(θ∗|θ)

}
will return a Markov chain with stationary distribution π(θ|y1:T) regardless
the finite number N of particles used to approximate the likelihood!.

The good news is that Eξ(p̂(y1:T |ξ, θ)) = p(y1:T |θ) with p̂(y1:T |ξ, θ)
obtained via SMC.

1Andrieu and Roberts (2009), Annals of Statistics, 37(2) 697–725.
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The previous result is, in my opinion, one of the most important statistical
results of the last 30 years.

In fact, it offers an “exact-approximate” approach, where because of
computing limitations we can only produce N <∞ particles, while still be
reassured to obtain exact (Bayesian) inference under minor assumptions.

But let’s give a rapid (technically informal) look at why it works.

Key result: unbiasedness (del Moral 20042)
We have that

Eξ(p̂(y1:T |ξ, θ)) =
∫

p̂(y1:T |θ, ξ)p(ξ)dξ = p(y1:T |θ)

with ξ ∼ p(ξ) vector of all random variates generated during SMC (both to
propagate forward the state and to perform particles resampling).

2Easier to look at Pitt, Silva, Giordani, Kohn. J. Econometrics 171, 2012 or page 87
of Naesseth’s PhD thesis 2018.
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To prove the exactness of the approach we look at the (easier and less
general) argument in sec. 2.2 of Pitt, Silva, Giordani, Kohn. J.
Econometrics 171, 2012 or my even more introductive blog post.

To simplify the notation take y := y1:T .

• π̂(θ, ξ|y) approximate joint posterior of (θ, ξ) obtained via SMC

π̂(θ, ξ|y) =
p̂(y|θ, ξ)p(ξ)π(θ)

p(y)

(notice ξ and θ are assumed a-priori independent)

Notice we put p(y) not p̂(y) at the denominator: this follows
from the unbiasedeness assumption as we obtain∫ ∫

p̂(y|θ, ξ)p(ξ)π(θ)dξdθ =
∫
π(θ){

∫
p̂(y|θ, ξ)p(ξ)dξ}dθ =∫

π(θ)p(y|θ)dθ = p(y).
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The exact (unavailable) posterior of θ is

π(θ|y) =
p(y|θ)π(θ)

p(y)

therefore the marginal likelihood (evidence) is

p(y) =
p(y|θ)π(θ)
π(θ|y)

and

π̂(θ, ξ|y) =
p̂(y|θ, ξ)p(ξ)π(θ)

p(y)

=
π(θ|y)p̂(y|θ, ξ)p(ξ)���π(θ)

p(y|θ)���π(θ)
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Now, we know that applying an MCMC targeting π̂(θ, ξ|y) then
discarding the output pertaining to ξ corresponds to integrate-out ξ
from the posterior∫

π̂(θ, ξ|y)dξ =
π(θ|y)
p(y|θ)

∫
p̂(y|θ, ξ)p(ξ)dξ︸                 ︷︷                 ︸
E(p̂(y|θ))=p(y|θ)

= π(θ|y)

We are thus performing a pseudo-marginal approach: “marginal”
because we disregard ξ; pseudo because we use p̂(·) not p(·).

Therefore we proved that, using MCMC on an (artificially)
augmented posterior, then discard from the output all the random
variates ξ created during SMC, returns samples from the true
posterior. Exact Bayes!

Notice that discarding the ξ is something that we naturally do in
Metropolis-Hastings hence nothing strange is happening here. The ξ
are just instrumental, uninteresting, variates independent of θ and
independent of {Xt}. 19



Actually...

When I wrote that we obtain samples from the true posterior, that’s
true.

However it is not quite like having exact samples as when we use
conjugacy properties, or when the posterior is analytically available.

When we run a small number of iterations, not an infinite number, it
can still happen that we struggle to explore the whole posterior
surface thoroughly.

So the pseudomarginal method is not a silver-bullet. It comes with the
usual problems of MCMC (eg difficulty with exploring multimodal
surfaces).
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Example: SSM with latent SDE

dxt = f (xt; θ)dt + g(xt; θ)dBt, dBt∼iidN(0, dt)

yt = xt + et, et ∼iid N(·, ·)

We consider an Ornstein-Uhlenbeck (OU) process for the latent
dynamics:

dxt = −β(xt − α)dt + σ · dBt,

yt = xt + et, et ∼iid N(0, 0.3162)

where

• α ∈ R is the stationary mean of the process;
• β > 0 is the growth rate;
• σ > 0 diffusion coefficient (intensity of the intrinsic noise).
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OU has known (Gaussian) transition densities, however for our
purposes it is more useful to write how we simulate a path exactly:

xt+∆ = α+ (xt − α)e−β∆ +

√
σ2

2β
(1 − exp(−2β∆))× ξt+∆

with ξt ∼ N(0, 1) iid.
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Simulation setup

dxt = −β(xt − α)dt + σ · dBt,

yt = xt + et, et ∼iid N(0, 0.3162)

• T = 50 observations at equispaced integer times t = 1, 2, ..., T , so
∆ = 1.

• ground-truth parameters: α = 5, β = 20, σ = 1.
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Inference setup

For SMC we use the bootstrap filter with N = 50 particles.

Priors: α ∼ U(1, 10), β ∼ InvGamma(3, 50), σ ∼ InvGamma(3, 4).
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Marginal posteriors.

Priors: α ∼ U(1, 10), β ∼ InvGamma(3, 50), σ ∼ InvGamma(3, 4).
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We obtain the similar inference with N = 500 (instead of N=50) but
faster convergence:
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With N=500:
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The effect of selecting N

What’s the effect of choosing a small or a large number of particles N?

Thinks about it: the estimated likelihood used a stochastic procedure,
it’s not a deterministic approximation.

p̂(y1:T |θ) from either importance sampling or SMC is a random
variable (variability induced by Monte Carlo).

The smaller the N the larger the variance of p̂(y1:T |θ).

The larger N the more precise the approximation (ie the smaller the
variance is).
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Here I fix the values of α and β to their true values, and instead
consider the equispaced grid for σ ∈ (0.1, 0.2, ..., 10).

I estimate the likelihood via bootstrap filter for each σ value in the
grid, and repeat the estimation independently for 50 times.

I used N=10 particles. Below are loglikelihood values for the
procedure. Recall the true σ = 1.
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Figure 1: N=10

For increasing σ the likelihood has noticeable variability (it’s
logscale!).
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Same but with N=100.
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Figure 2: N=100
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A more dramatic figure for a different model (see
https://tinyurl.com/4h7k3utv)
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The variability of the approximation depends also on θ, not only N.

If the current θ value is implausible, for the given data, the likelihood
approximation gets noisy because many particles end-up in
unimportant regions.

If the likelihood approximation via SMC gets very variable, it can
occur that in Metropolis-Hastings (MH) we occasionally accept an
overestimated likelihood→ goes in the denominator of the MH ratio
→ difficult to accept further proposals→ many rejections→ chain
slowly moving.

Easiest solution: increase the number of particles N but this will
increase the computational effort.
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Plug-and-play strategies

The use of the bootstrap filter into MCMC is sometimes denoted a
“plug-and-play” strategy.

This means you can write a generic code that you can reuse for pretty
much any state-space model without analytic calculations involved.

This is because you only need to define in your code how the states X
advance/propagate from xt to xt+1.

And then we assume we can evaluate p(yt|xt; θ) pointwisely for any of
its arguments.

That’s it! You plug the model equations in your code, and you play.
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Other plug-and-play methods

There exist several other plug-and-play methods. These are all
examples of simulation-based inference methods, in that they are very
generic and only require model simulations to get around the
intractability of the likelihood function.

The R package pomp supports a number of plug-and-play methods:

• particle marginal methods
• iterated filtering
• approximate Bayesian computation (ABC)
• synthetic likelihoods
• ...and more.

Notice pseudomarginal methods, ABC and synthetic likelihoods are
not only working with state-space models! They are very general
methods.
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Conclusions

• We have outlined a powerful methodology for exact Bayesian
inference. Theoretically exact regardless the number of particles
N.

• In practice, a too small N will have a negative impact on chain
mixing→ many rejections, sticky chain.

• the methodology is perfectly suited for state-space modelling.
However it can deal with more general models.
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Downsides when using bootstrap filter

• Recall, in general we wanted to propose particles
xi

t ∼ h(xi
t|x

i
0:t−1, y1:t), i=1,...,N;

• the above (if implemented) allows particles at time t-1 to be able
to “lookahead” to the next datapoint yt;

• the bootstrap filter has xi
t ∼ h(xt|xi

0:t−1, y1:t) ≡ p(xt|xi
t−1). It is

“myopic”;

• if the dimension dim(xt) increases, we might need a very very
large N (computationally intensive);

• There are more intelligent SMC filters. Such as the “auxiliary
particle filter” (Pitt& Shephard), or the use of “bridges” and
“guided proposals” when discretizing an SDE numerically (lots
of work by Schauer, and also Golightly-Wilkinson).

36



Important issues

How to tune the number of particles?

• Doucet, Pitt, and Kohn. Efficient implementation of Markov
chain Monte Carlo when using an unbiased likelihood estimator.
arXiv:1210.1871 (2012).

• Pitt, dos Santos Silva, Giordani and Kohn. On some properties of
Markov chain Monte Carlo simulation methods based on the
particle filter. Journal of Econometrics 171, no. 2 (2012):
134-151.

• Sherlock, Thiery, Roberts and Rosenthal. On the efficiency of
pseudo-marginal random walk Metropolis algorithms.
arXiv:1309.7209 (2013).
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More suggestions for further reading in my blog post:

https://tinyurl.com/4964pesp
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Software

Some possibilities are:

• Birch

• LiBBi (C++ template library)

• Biips (C++ with interfaces to MATLAB/R)

• demo("PMCMC") in the R package smfsb.

• R package pomp

• accompanying MATLAB code for the book by S. Särkkä. Code
available here.
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