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Review / overview

I We continue with ways of finding an (approximate) sample from the
posterior for complicated models.

I We go back to models with no time structure.

I First subject today: Handling missing data and using augmented
data.

I Second subject: Hamiltonian MCMC
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Missing data / augmented data

I Assume some data values are censored: You don’t know them
exactly, only that they are (for example) above some threshold. How
to deal with this?

I Example application: Survival analysis. You want to know how long
people live after some event. But some people are still alive at the
end of the study (or they died from other causes).

I We want to learn about density f (· | θ) from sample where x1, . . . , xk
are observed values and c1, . . . , cn are observations that the
corresponding xi is greater than some ai . The likelihood becomes

π(x1, . . . , xk , c1, . . . , cn | θ) =
k∏

i=1

f (xi | θ)
n∏

i=1

(1− F (ai | θ))

where F (· | θ) is the cumulative distribution function.
I You may simulate from the posterior for θ using for example random

walk MH.
I ALTERNATIVELY: You may add to the model variables representing

the censored values, and simulate these together with the unknown
θ. Presentation break for R example.
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Handling missing data

I In many classical statistical methods, missing data may present a
problem.

I The standard Bayesian answer in such cases: Add to the model
random variables representing the unobserved values, and simulate
them together with parameters and other variables of interest.

I This solves the problem in theory, but may of course sometimes be
difficult in practice.
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Example: Augmented data

I Example (7.7. in RC): In a genetics problem, one wants to know how
close two genes are on the chromosome, measured by a parameter θ.
Given n individuals, the number of individuals x1, x2, x3, x4 in each of
4 categories will be multinomially distributed accoring to

(x1, x2, x3, x4) | θ ∼ Multinomial

(
n,

1

2
+
θ

4
,

1

4
(1− θ),

1

4
(1− θ),

θ

4

)
Given a prior on θ, how do you simulate from the posterior?

I The likelihood for θ makes necessary approximate or numerical
simulation:

π(x1, . . . , x4 | θ) ∝θ
(

1

2
+
θ

4

)x1 (1

4
(1− θ)

)x2 (1

4
(1− θ)

)x3 (θ
4

)x4

.

I We extend the data (x1, x2, x3, x4) with a latent variable z , so that

(z , x1−z , x2, x3, x4) | θ ∼ Multinomial

(
n;

1

2
,
θ

4
,

1

4
(1− θ),

1

4
(1− θ),

θ

4

)
I The likelihood becomes

π(z , x1, . . . , x4 | θ) ∝θ θx1−z+x4(1− θ)x2+x3 .
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Example continued

I Note that, with the augmented data (z , x1, x2, x3, x4), the likelihood
has the Beta family of densities as conjugate priors! Assume, for
example, θ ∼ Beta(α, β).

I You can now use Gibbs sampling to sample from the distribution
π(z , θ | x1, . . . , x4):

I θ | z , x1, x2, x3, x4 ∼ Beta(α + x1 − z + x4, β + x2 + x3).

I z | θ, x1, x2, x3, x4 ∼ Binomial
(
x1,

1
2

1
2
+ θ

4

)
.

I Exercise: Derive the Binomal distribution for z above.
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Example: Augmenting the model to improve convergence

I In some models, the likelihood will have peaks that are far apart.
This may cause problems for Random Walk Metropolis Hastings.

I This may occur if the model has symmetries where the likelihood is
almost the same after for example a specific simultaneous change of
many parameters.

I A possibility is then to add an occational proposal where such
simultaneous changes are proposed.

I This may also be described as augmenting the model with an
additional parameter keeping track of the changes.

I Presentation break for R example
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Part 2. Using the target density in the proposal

I We have looked at several ideas for constructing good proposal
densities. Somehow, they take into account the properties of the
target density.

I Can one construct general methods that “automatically” learns
about the target density and makes good proposals based on that?

I Several methods exist that do this; they have varying degrees of
success with good convergence.

I We will look at one quite popular and clever method: Hamiltonian
Monte Carlo.
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Hamiltonian Monte Carlo: Idea

We are given a posterior density π(q) ∝q exp(−U(q)) for vectors
q = (q1, . . . , qd). We want to find a smart proposal function that utilizes
U:

I Look at U(q) as some kind of “potential energy” for a particle that
can move between different q’s.

I If the particle moves so that it looses potential energy, it gains
kinetic energy, i.e., it moves faster.

I If the particle moves in this way, it will move faster in the direction
of higher density for π(q).

I Idea: As a proposal function, randomly generate a direction and a
speed for the particle to move from the current q. Then let the
particle move according to dynamics above for time period s.

I Below, we use pairs (p, q) of particle momentum p = (p1, . . . , pd)
and particle position q, moving the particle so that the total energy

H(p, q) = U(q) +
1

2

d∑
i=1

p2i
m

is kept constant.
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Metropolis Hastings using an ancillary variable

You want to generate approximate sample from π(q) ∝q exp(−U(q)).
I Define

π(p, q) ∝p,q exp(−H(p, q)) = exp (−U(q)− g(p))

where g(p) is symmetric: g(−p) = g(p).
I Assume for all real s there is a transformation Ts on pairs (p, q)

such that
I T−s(Ts(p, q)) = (p, q)
I Ts(signswap(p, q)) = signswap(T−s(p, q)))
I H(Ts(p, q)) = H(p, q)

where signswap(p, q) = (−p, q).
I Given (p, q), the following two Metropolis Hastings proposal

functions have acceptance probability 1:
I Keep q, replace p simulaing from π(p) ∝p exp(−g(p)).
I Propose deterministically signswap(Ts(p, q)) for some s.

I Thus you alternate between the two steps, and keep just the
generated q’s.

I Ergodicity: Make sure combining the two steps can get you from
any q to any other q.
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Hamiltonian dynamics

Given a function H(p, q).

I A particle that has “position” q and “momentum” p at time t is
said to follow Hamiltonian dynamics if, for i = 1, . . . , d ,

dqi
dt

=
∂H

∂pi
and

dpi
dt

= −∂H
∂qi

.

I After a specific time s, a particle with position q and momentum p
will have position q∗ and momentum p∗. This defines a mapping Ts

sending the set of all pairs (p, q) to itself.

I It follows from the definition that T−s(Ts(p, q)) = (p, q).

I The differential equations, and thus solutions, are invariant if we
change the signs of both p and s. Thus
Ts(signswap(p, q)) = signswap(T−s(p, q)).

I We have H(Ts(p, q)) = H(p, q) because

dH

dt
=

d∑
i=1

(
dqi
dt

∂H

∂qi
+

dpi
dt

∂H

∂pi

)
=

d∑
i=1

(
∂H

∂pi

∂H

∂qi
− ∂H

∂qi

∂H

∂pi

)
= 0.
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Hamiltonian Monte Carlo

I In practice we use

g(p) =
1

2

d∑
i=1

p2i
mi
.

for some m1, . . . ,md .

I We then get

dqi
dt

=
pi
mi

and
dpi
dt

= −∂U
∂qi

.

I Then the pi are independent, with pi ∼ Normal(0,mi ).

I Summing up, the algorithm at each step starts with a current q
vector. Then

I Simulate p as above.
I For some s solve the differential equations to compute Ts(p, q).
I Keep only the q for the next step.

I It “only” remains to see how such differential equations can be
solved.
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The Leapfrog algorithm: A numerical approximation of Ts

I For simplicity set all mi = 1 and use vector notation: We need that

dq

dt
= p and

dp

dt
= −∇U(q)

I Let q0, q1, q2 . . . , qn be the values of q along the particle path at
times 0, sn1, sn2, . . . , snn = s, respectively.

I Let p0, p1, p2, . . . , pn be the values of p along the particle path at
times 0, sn (1− 1

2 ), sn (2− 1
2 ), . . . , sn (n − 1

2 ), respectively.
I Approximate dq

dt = p with

qj+1 − qj
s/n

= pj+1 j = 0, . . . , n − 1.

I Approximate dp
dt = −∇U(q) with

pj+1 − pj
s/n

= −∇U(qi ) j = 1, . . . , n − 1.

while using half stepsize for j = 0.
I We get the recursive equations for j = 0, . . . , n − 1

pj+1 = pj − (s/n)∇U(qj)

qj+1 = qj + (s/n)pj+1 13 / 14



Hamiltonian MCMC: Summary

I Note: n computations of the gradient ∇U must be done: Possible?
Time consuming?

I Note: As this is an approximation, we only have that
H(p∗, q∗) ≈ H(p, q). But this is no problem, as we can compute
and use the standard acceptance probability for Metropolis Hastings
proposals.

I Note: You must still check that the Markov chain is Ergodic: In
practice, that the algorithm can reach any q from any q.

I Can give great fast convergence in the cases where the gradient of
the logged density is easily available and computable.

I For more information see for example Neal (2011) “MCMC Using
Hamiltonian Dynamics”.

I Presentation break for computations in R
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