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Some information theory.
The EM algorithm.
A toy example.

vV v v v

The Baum-Welsh algorithm as an example of EM.
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The information of an event

We assume given a probability mass function 7(x) on a finite set S.
» We want to define the “information” h(U) in an event U C S.
Requirements:

> An event with probability 1 should have zero information.

> The information should increase with decreasing probability w(U).

> The information in two independent events should be the sum of the
information in each.

> We define h(x) = — log(n(x)) for x € S.

» When using the base 2 logarithm log,, information is measured in
“bits”. We however use the natural logarithm.
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Expected information: Entropy

» Define the entropy H[X] of the random variable X as the expected
information:

HIX] =) h(x)m(x) = =Y m(x) log(m(x))
» Note: H[X] is always non-negative.

» Example: A uniform distribution on n values has entropy log n. This
is the largest entropy possible for a distribution on n values.

» Shannon's coding theorem: The entropy (using log,) is a lower
bound on the expected number of bits needed to transfer the
information from X.
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(Differential) entropy for continuous distributions

» For any random variable X, its (differential) entropy is defined as

HIX] = E [~ log(r(x))] = — / log((x))(x) dx

X

v

H[X] may now be negative.

v

Example: Assume X ~ Normal(u, 0?). Then

1 1 )
E {— log (%271_02) + E(X — 1) }
= % log(2r0?) + % E[(x— )] = % log(2m0?) + %

E [ log(m(x))]

v

In fact, among all random variables X with E[X] = x and
Var[X] = 02, the normal has the largest entropy.
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Conditional entropy and mutual information

>

The conditional entropy is defined as

Hiyix) = [ [ [ 710 tog(a(y | ) dy} () dx

Show that

v

HIX, Y] = H[Y|X] + H[X].

» The mutual information is defined as

11X, Y]:—//ﬂ'(x,y)log (W) dx dy

Show that

v

11X, Y] = HIX] + H[Y] — H[X, Y]

6/18



The Kullback-Leibler divergence (relative entropy)

For two densities p(x) and g(x) we define the Kullback-Leibler
divergence from p to q as

KLipllal = = [ plx) 1og (Zgg) dx

» Note that KL[p||q] is generally different from KL[g||p].

However, it has the distance property that KL[p||g] > 0 always,
while KL[p||g] = 0 if and only if p = q.

The standard proof uses Jensen's inequality.
Jensen’s inequality: If a function v is convex, then

P(E[X]) < E[Y(X)].

7/18



The KL divergence

> Note that
KL (7 (x, )llw(x)m(y)) = 11X, Y]
> Note that
KL[pllg] = Ep [—log(q(x))] — Hp[X]
where X is a random variable with density p(x).

» EXAMPLE: Assume X ~ Normal(ux,o%) and
Y ~ Normal(uy,o%).
Show by direct computation that

1 o 1 1 1
KL [7x]||my] = 5 Iog(2wo$)+ﬁ+ﬁ(/¢x—uy)2_§ Iog(27ra§<)—§.
14 4

We see how the result is zero when the two distributions are
identical.
We see how KL [nx||my] # KL [7y||7x] in general.
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Maximum posterior (MAP)

» The Maximal APosteriori (MAP): The value § that maximizes the
posterior m(6 | data).

» When the prior is flat, m(#) o 1, this corresponds to finding the
maximum likelihood (ML) estimate for 6.

» Recall the advantages and disadvantages of using a single estimate
instead of the full posterior.

» The MAP should be easy to compute when 6 consists of all
unknown variables: Just differentiate log(w (6 | data)), i.e.
differentiate log(w(data | 8)7(0)).

» Much harder if the model also contains other unknown variables Z:
Then (6 | data) is the marginal of 7(6, Z | data) and much harder
to maximize.

» The Expectation-Maximization (EM) algorithm comes to the
rescue...
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The EM algorithm

» We want to find the 6 maximizing the posterior 7(0 | x); i.e.,
maximizing

log (7(x | 0)m(6)) = log(m(x | 0)) + log(w(6))

» Assume we have a joint model 7(x, z | #) which includes augmented
data z. We may then write, for any density g(z),

log((x | 8)) + log(7(0)) = KL(ql|7z) + L(q,0) + log(n(0)) (1)

£(a.0) = [ a(=)og (W> dz

KL(ql[m) = —/q(Z) log (WZ(Z(LX)’G)) dz

where

and
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The EM algorithm, cont.

» Fix q(z) = m,(z | x,0°9) for some value §°.

» With this g(z), KL(g||7;) will be zero when 6 = 6°'¢ and positive
for other #'s. THUS: If we find 0" maximizing £(q, 0) + log(7(0)),
so that £(q,0™") + log(w(07")) > L(q, 0°) + log(w(6°'9)),
replacing 0°'¢ with ™" will increase the right side of Equation 1,
and thus also the left side.

> Set 6°9 to the value " and start again from the first step above.
Continue until convergence.

> Note that maximizing £(q, 0) + log(m(#)) is the same as maximizing

[ at)iog(r(x.z 1 6)) dz + og(x )
where the left term is the expected full loglikelihood, taking the

expectation over the density q(z) = 7,(z | x, 0°9).

» E-step: Computing the expectation above. M-step: Maximizing.
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A toy example

We have data xi, ..., x,, where we assume the following model, with a
single parameter u: With probability 0.5, x; ~ Normal(0, 1) and with
probability 0.5, x; ~ Normal(yu, 1). We assume a flat prior on p.

» The likelihood can be written as

n
(X1, oy Xn | 1) = H (0.5 - Normal(x;; 0,1) 4+ 0.5 - Normal(x;; i1, 1))

i=1

» We now introduce augmented data z, ..., z,, where each z has
value 0 or 1, so that z; ~ Bernoulli(0.5) and x; | z; ~ Normal(uz;,1).
The full joint density may be written as

n n
(X1, e vy Xny ZLy + -« y Zny 1) X H w(xi | zi, 1) = H Normal(x;; piz;, 1)
i=1 i=1

» One way to use this model is for finding the x maximizing the
posterior using the EM-algorithm.
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A toy example: Using the EM algorithm

» First, find the complete data logposterior (which in our case is the
same as the loglikelihood). It is (up to a constant)

() = 3"~ 5 — i)’

i=1

» Then, for a fixed value u = p°, find the distribution z | x;, u°":
7(Xt, . Xny ooz =0,...,1°4) = K -Normal(x;;0,1)
(Xt Xy zi=1,...,1°9) = K- Normal(x;; u°, 1)

Normalizing the distribution, we get

zi | xi, p®®  ~  Bernoulli(p;), where

Normal(x;; u°, 1)
Normal(x;; 0, 1) + Normal(x;; u°, 1)

pi =

> E step: Compute Ez[/(1)]. M step: Set u"" as the parameter
maximizing this function.
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A toy example continued

» The E step becomes

ElI(0)] = Ez [Z;(szm)z]

i=1

1 n
= E [2 Z;x,z — 2X;zZi 4 +z,-2u2

1 n
— _EZX’?—2X,'Ez[Z,'],u+EZ[Zi2]/~L2
i=1

1 n
= 3 E:X,2 — 2x;pip + pii®
i=1
» The M step becomes

8 1 n n n
T > (=2xipi +2pip) = > _xipi =y pi =0
i=1 i=1 i=1
resulting in " = (37, xipi) / (311 pi)-
» Presentation break for R computations
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The Baum-Welch algorithm (as example of EM algorithm)

We consider an HMM where all the x; have a finite state spaces

but where some of the parameters of the distributions 7(Xp),

m(X;i | Xi—1), and 7(Y; | X;) are unknown. Objective: Given fixed values
for the y;, find maximum likelihood estimates for the parameters in the
model.

» Note: If assuming flat priors the problem becomes that of computing

the parameters maximizing the posterior, i.e., finding the MAP.

» |dea: Use the EM algorithm, with the values of the x; as the

augmented data.

» The E step of the EM algorithm is computed using (a small
generalization of) the Forward-Backward algorithm.
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The Baum-Welch algorithm: Example

For simplicity we assume each X; can have values 1,..., M. Let
0= (q7 P) = ((q17 R CIM)» (p117 L) PMM))
be the parameters we want to estimate, where
g = Pr(X =)
pk = Pr(Xi=k|Xi1=])

The full loglikelihood given 6 becomes
|°g(7r(X07--~aXT:YO:~--»yT | 8))

= log (ﬂ(xo LO) [ [ (i | xie1,0) ] (i | x,-)>

i=1 i=0

T T
= logm(xo |0) + > logm(xi | xi-1,0) + Y logm(yi | xi)
i=1 i=0
T

M M M
= CH+> Ixo=J)logqi+ > > > I(xi1=j)l(xi = k) log pj
=

i=1 j=1 k=1
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The Baum-Welch algorithm: Example continued

> In the E step, we would like to compute the expectation of the full
loglikelihood under the distribution 7(xg, ..., xT | yo,...,yT,0°)
for some set of parameters §°9.

> Thus we need to compute the expectations E [/(xg = j)] and
E[/(xi—1 = j)I(x; = k)] under this distribution.

» Fixing 6°', we can use the Forward-Backward algorithm to compute
the densities 7(x; | yo,.-.,¥:) and w(yi+1,...,y7 | x;). Further we
have that

(X, Xiv1 | Yo, -5 ¥T)
o¢ T(Yig1s -5 y7 | Xis Xip1)T(Xi, Xiv1 | Yo, .-, ¥i)
X 7"()/:'+27 oyt Xi+1)7f(}/i+1 | Xi+1)7T(Xi+1 | Xi)7T(Xi | o, - a.yi)

making it possible to compute the joint posterior for x; and x;41
from these densities.
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The Baum-Welch algorithm: Example continued

The algorithm can now be summed up as
» Choose starting parameters 9.

» Run the Forward-Backward algorithm on the Markov model with
parameters §°9 to compute the numbers E [/(xo = j)] and

E [/(X,',l :j)I(X,' = k)]
» Find the # maximizing the expected loglikelihood

T M M

ZE[/(XO_J Jlogqi+> > > Ell(xi—1=j)I(x = k)] log pi

i=1 j=1 k=1
In fact, we get
S E (o1 =)l (xi = k)]
S S Ell (o1 = DI (xi = k)]

» Set 0°“ = ((41,---,8m), (P11, -- -, Pum)) and iterate until
convergence.

g =E[l(x =J)] and pi =

» See implementation in R

18/18



