MSA101/MVE187 2021 Lecture 12 Some Information Theory
 The EM algorithm

Petter Mostad

Chalmers University

October 5, 2021

Overview

- Some information theory.
- The EM algorithm.
- A toy example.
- The Baum-Welsh algorithm as an example of EM.

The information of an event

We assume given a probability mass function $\pi(x)$ on a finite set S.

- We want to define the "information" $h(U)$ in an event $U \subseteq S$. Requirements:
- An event with probability 1 should have zero information.
- The information should increase with decreasing probability $\pi(U)$.
- The information in two independent events should be the sum of the information in each.
- We define $h(x)=-\log (\pi(x))$ for $x \in S$.
- When using the base 2 logarithm $\log _{2}$, information is measured in "bits". We however use the natural logarithm.

Expected information: Entropy

- Define the entropy $H[X]$ of the random variable X as the expected information:

$$
H[X]=\sum_{x} h(x) \pi(x)=-\sum_{x} \pi(x) \log (\pi(x))
$$

- Note: $H[X]$ is always non-negative.
- Example: A uniform distribution on n values has entropy $\log n$. This is the largest entropy possible for a distribution on n values.
- Shannon's coding theorem: The entropy (using $\log _{2}$) is a lower bound on the expected number of bits needed to transfer the information from X.

(Differential) entropy for continuous distributions

- For any random variable X, its (differential) entropy is defined as

$$
H[X]=\mathrm{E}[-\log (\pi(x))]=-\int_{x} \log (\pi(x)) \pi(x) d x
$$

- $H[X]$ may now be negative.
- Example: Assume $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$. Then

$$
\begin{aligned}
\mathrm{E}[-\log (\pi(x))] & =\mathrm{E}\left[-\log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)+\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right] \\
& =\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)+\frac{1}{2 \sigma^{2}} \mathrm{E}\left[(x-\mu)^{2}\right]=\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)+\frac{1}{2} .
\end{aligned}
$$

- In fact, among all random variables X with $\mathrm{E}[X]=\mu$ and $\operatorname{Var}[X]=\sigma^{2}$, the normal has the largest entropy.

Conditional entropy and mutual information

- The conditional entropy is defined as

$$
H[Y \mid X]=\int\left[\int \pi(y \mid x)(-\log (\pi(y \mid x))) d y\right] \pi(x) d x
$$

- Show that

$$
H[X, Y]=H[Y \mid X]+H[X] .
$$

- The mutual information is defined as

$$
I[X, Y]=-\iint \pi(x, y) \log \left(\frac{\pi(x) \pi(y)}{\pi(x, y)}\right) d x d y
$$

- Show that

$$
I[X, Y]=H[X]+H[Y]-H[X, Y]
$$

The Kullback-Leibler divergence (relative entropy)

- For two densities $p(x)$ and $q(x)$ we define the Kullback-Leibler divergence from p to q as

$$
\mathrm{KL}[p \| q]=-\int p(x) \log \left(\frac{q(x)}{p(x)}\right) d x
$$

- Note that $\mathrm{KL}[p \| q]$ is generally different from $\mathrm{KL}[q \| p]$.
- However, it has the distance property that $\mathrm{KL}[p \| q] \geq 0$ always, while $\mathrm{KL}[p \| q]=0$ if and only if $p=q$.
- The standard proof uses Jensen's inequality.
- Jensen's inequality: If a function ψ is convex, then $\psi(\mathrm{E}[X]) \leq \mathrm{E}[\psi(X)]$.

The KL divergence

- Note that

$$
\mathrm{KL}(\pi(x, y) \| \pi(x) \pi(y))=I[X, Y]
$$

- Note that

$$
\mathrm{KL}[p \| q]=\mathrm{E}_{p}[-\log (q(x))]-H_{p}[X]
$$

where X is a random variable with density $p(x)$.

- EXAMPLE: Assume $X \sim \operatorname{Normal}\left(\mu_{X}, \sigma_{X}^{2}\right)$ and
$Y \sim \operatorname{Normal}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$.
Show by direct computation that

$$
\mathrm{KL}\left[\pi_{X} \| \pi_{Y}\right]=\frac{1}{2} \log \left(2 \pi \sigma_{Y}^{2}\right)+\frac{\sigma_{X}^{2}}{2 \sigma_{Y}^{2}}+\frac{1}{2 \sigma_{Y}^{2}}\left(\mu_{X}-\mu_{Y}\right)^{2}-\frac{1}{2} \log \left(2 \pi \sigma_{X}^{2}\right)-\frac{1}{2}
$$

We see how the result is zero when the two distributions are identical.
We see how $\operatorname{KL}\left[\pi_{X} \| \pi_{Y}\right] \neq \operatorname{KL}\left[\pi_{Y} \| \pi_{X}\right]$ in general.

Maximum posterior (MAP)

- The Maximal APosteriori (MAP): The value $\hat{\theta}$ that maximizes the posterior $\pi(\theta \mid$ data $)$.
- When the prior is flat, $\pi(\theta) \propto 1$, this corresponds to finding the maximum likelihood (ML) estimate for θ.
- Recall the advantages and disadvantages of using a single estimate instead of the full posterior.
- The MAP should be easy to compute when θ consists of all unknown variables: Just differentiate $\log (\pi(\theta \mid$ data $))$, i.e. differentiate $\log (\pi($ data $\mid \theta) \pi(\theta))$.
- Much harder if the model also contains other unknown variables Z : Then $\pi(\theta \mid$ data $)$ is the marginal of $\pi(\theta, Z \mid$ data $)$ and much harder to maximize.
- The Expectation-Maximization (EM) algorithm comes to the rescue...

The EM algorithm

- We want to find the θ maximizing the posterior $\pi(\theta \mid x)$; i.e., maximizing

$$
\log (\pi(x \mid \theta) \pi(\theta))=\log (\pi(x \mid \theta))+\log (\pi(\theta))
$$

- Assume we have a joint model $\pi(x, z \mid \theta)$ which includes augmented data z. We may then write, for any density $q(z)$,

$$
\begin{equation*}
\log (\pi(x \mid \theta))+\log (\pi(\theta))=\mathrm{KL}\left(q \| \pi_{z}\right)+\mathcal{L}(q, \theta)+\log (\pi(\theta)) \tag{1}
\end{equation*}
$$

where

$$
\mathcal{L}(q, \theta)=\int q(z) \log \left(\frac{\pi(x, z \mid \theta)}{q(z)}\right) d z
$$

and

$$
\mathrm{KL}\left(q \| \pi_{z}\right)=-\int q(z) \log \left(\frac{\pi_{z}(z \mid x, \theta)}{q(z)}\right) d z
$$

The EM algorithm, cont.

- Fix $q(z)=\pi_{z}\left(z \mid x, \theta^{\text {old }}\right)$ for some value $\theta^{\text {old }}$.
- With this $q(z), \operatorname{KL}\left(q \| \pi_{z}\right)$ will be zero when $\theta=\theta^{\text {old }}$ and positive for other θ 's. THUS: If we find $\theta^{\text {new }}$ maximizing $\mathcal{L}(q, \theta)+\log (\pi(\theta))$, so that $\mathcal{L}\left(q, \theta^{\text {new }}\right)+\log \left(\pi\left(\theta^{\text {new }}\right)\right)>\mathcal{L}\left(q, \theta^{\text {old }}\right)+\log \left(\pi\left(\theta^{\text {old }}\right)\right)$, replacing $\theta^{\text {old }}$ with $\theta^{\text {new }}$ will increase the right side of Equation 1 , and thus also the left side.
- Set $\theta^{\text {old }}$ to the value $\theta^{\text {new }}$ and start again from the first step above. Continue until convergence.
- Note that maximizing $\mathcal{L}(q, \theta)+\log (\pi(\theta))$ is the same as maximizing

$$
\int q(z) \log (\pi(x, z \mid \theta)) d z+\log (\pi(\theta))
$$

where the left term is the expected full loglikelihood, taking the expectation over the density $q(z)=\pi_{z}\left(z \mid x, \theta^{o l d}\right)$.

- E-step: Computing the expectation above. M-step: Maximizing.

A toy example

We have data x_{1}, \ldots, x_{n}, where we assume the following model, with a single parameter μ : With probability $0.5, x_{i} \sim \operatorname{Normal}(0,1)$ and with probability $0.5, x_{i} \sim \operatorname{Normal}(\mu, 1)$. We assume a flat prior on μ.

- The likelihood can be written as

$$
\pi\left(x_{1}, \ldots, x_{n} \mid \mu\right)=\prod_{i=1}^{n}\left(0.5 \cdot \operatorname{Normal}\left(x_{i} ; 0,1\right)+0.5 \cdot \operatorname{Normal}\left(x_{i} ; \mu, 1\right)\right)
$$

- We now introduce augmented data z_{1}, \ldots, z_{n}, where each z_{i} has value 0 or 1 , so that $z_{i} \sim \operatorname{Bernoulli}(0.5)$ and $x_{i} \mid z_{i} \sim \operatorname{Normal}\left(\mu z_{i}, 1\right)$. The full joint density may be written as

$$
\pi\left(x_{1}, \ldots, x_{n}, z_{1}, \ldots, z_{n}, \mu\right) \propto \prod_{i=1}^{n} \pi\left(x_{i} \mid z_{i}, \mu\right)=\prod_{i=1}^{n} \operatorname{Normal}\left(x_{i} ; \mu z_{i}, 1\right)
$$

- One way to use this model is for finding the μ maximizing the posterior using the EM-algorithm.

A toy example: Using the EM algorithm

- First, find the complete data logposterior (which in our case is the same as the loglikelihood). It is (up to a constant)

$$
I(\mu)=\sum_{i=1}^{n}-\frac{1}{2}\left(x_{i}-\mu z_{i}\right)^{2}
$$

- Then, for a fixed value $\mu=\mu^{\text {old }}$, find the distribution $z_{i} \mid x_{i}, \mu^{\text {old }}$:

$$
\begin{aligned}
\pi\left(x_{1}, \ldots, x_{n}, \ldots, z_{i}=0, \ldots, \mu^{\text {old }}\right) & =K \cdot \operatorname{Normal}\left(x_{i} ; 0,1\right) \\
\pi\left(x_{1}, \ldots, x_{n}, \ldots, z_{i}=1, \ldots, \mu^{\text {old }}\right) & =K \cdot \operatorname{Normal}\left(x_{i} ; \mu^{\text {old }}, 1\right)
\end{aligned}
$$

Normalizing the distribution, we get

$$
\begin{aligned}
z_{i} \mid x_{i}, \mu^{\text {old }} & \sim \operatorname{Bernoulli}\left(p_{i}\right), \text { where } \\
p_{i} & =\frac{\operatorname{Normal}\left(x_{i} ; \mu^{\text {old }}, 1\right)}{\operatorname{Normal}\left(x_{i} ; 0,1\right)+\operatorname{Normal}\left(x_{i} ; \mu^{\text {old }}, 1\right)}
\end{aligned}
$$

- E step: Compute $\mathrm{E}_{Z}[/(\mu)]$. M step: Set $\mu^{\text {new }}$ as the parameter maximizing this function.

A toy example continued

- The E step becomes

$$
\begin{aligned}
\mathrm{E}_{Z}[/(\mu)] & =\mathrm{E}_{Z}\left[\sum_{i=1}^{n}-\frac{1}{2}\left(x_{i}-z_{i} \mu\right)^{2}\right] \\
& =\mathrm{E}_{Z}\left[-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}-2 x_{i} z_{i} \mu+z_{i}^{2} \mu^{2}\right] \\
& =-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}-2 x_{i} \mathrm{E}_{Z}\left[z_{i}\right] \mu+\mathrm{E}_{Z}\left[z_{i}^{2}\right] \mu^{2} \\
& =-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}-2 x_{i} p_{i} \mu+p_{i} \mu^{2}
\end{aligned}
$$

- The M step becomes

$$
\frac{\partial}{\partial \mu} E_{Z}[I(\mu)]=-\frac{1}{2} \sum_{i=1}^{n}\left(-2 x_{i} p_{i}+2 p_{i} \mu\right)=\sum_{i=1}^{n} x_{i} p_{i}-\mu \sum_{i=1}^{n} p_{i}=0
$$

resulting in $\mu^{\text {new }}=\left(\sum_{i=1}^{n} x_{i} p_{i}\right) /\left(\sum_{i=1}^{n} p_{i}\right)$.

- Presentation break for R computations

The Baum-Welch algorithm (as example of EM algorithm)

We consider an HMM where all the x_{i} have a finite state spaces

but where some of the parameters of the distributions $\pi\left(X_{0}\right)$, $\pi\left(X_{i} \mid X_{i-1}\right)$, and $\pi\left(Y_{i} \mid X_{i}\right)$ are unknown. Objective: Given fixed values for the y_{i}, find maximum likelihood estimates for the parameters in the model.

- Note: If assuming flat priors the problem becomes that of computing the parameters maximizing the posterior, i.e., finding the MAP.
- Idea: Use the EM algorithm, with the values of the x_{i} as the augmented data.
- The E step of the EM algorithm is computed using (a small generalization of) the Forward-Backward algorithm.

The Baum-Welch algorithm: Example

For simplicity we assume each X_{i} can have values $1, \ldots, M$. Let

$$
\theta=(q, p)=\left(\left(q_{1}, \ldots, q_{M}\right),\left(p_{11}, \ldots, p_{M M}\right)\right)
$$

be the parameters we want to estimate, where

$$
\begin{aligned}
q_{j} & =\operatorname{Pr}\left(X_{0}=j\right) \\
p_{j k} & =\operatorname{Pr}\left(X_{i}=k \mid X_{i-1}=j\right)
\end{aligned}
$$

The full loglikelihood given θ becomes

$$
\begin{aligned}
& \log \left(\pi\left(x_{0}, \ldots, x_{T}, y_{0}, \ldots, y_{T} \mid \theta\right)\right) \\
= & \log \left(\pi\left(x_{0} \mid \theta\right) \prod_{i=1}^{T} \pi\left(x_{i} \mid x_{i-1}, \theta\right) \prod_{i=0}^{T} \pi\left(y_{i} \mid x_{i}\right)\right) \\
= & \log \pi\left(x_{0} \mid \theta\right)+\sum_{i=1}^{T} \log \pi\left(x_{i} \mid x_{i-1}, \theta\right)+\sum_{i=0}^{T} \log \pi\left(y_{i} \mid x_{i}\right) \\
= & C+\sum_{j=1}^{M} I\left(x_{0}=j\right) \log q_{j}+\sum_{i=1}^{T} \sum_{j=1}^{M} \sum_{k=1}^{M} I\left(x_{i-1}=j\right) I\left(x_{i}=k\right) \log p_{j k}
\end{aligned}
$$

The Baum-Welch algorithm: Example continued

- In the E step, we would like to compute the expectation of the full \log likelihood under the distribution $\pi\left(x_{0}, \ldots, x_{T} \mid y_{0}, \ldots, y_{T}, \theta^{\text {old }}\right)$ for some set of parameters $\theta^{\text {old }}$.
- Thus we need to compute the expectations $\mathrm{E}\left[I\left(x_{0}=j\right)\right]$ and $\mathrm{E}\left[I\left(x_{i-1}=j\right) I\left(x_{i}=k\right)\right]$ under this distribution.
- Fixing $\theta^{\text {old }}$, we can use the Forward-Backward algorithm to compute the densities $\pi\left(x_{i} \mid y_{0}, \ldots, y_{i}\right)$ and $\pi\left(y_{i+1}, \ldots, y_{T} \mid x_{i}\right)$. Further we have that

$$
\begin{aligned}
& \pi\left(x_{i}, x_{i+1} \mid y_{0}, \ldots, y_{T}\right) \\
\propto & \pi\left(y_{i+1}, \ldots, y_{T} \mid x_{i}, x_{i+1}\right) \pi\left(x_{i}, x_{i+1} \mid y_{0}, \ldots, y_{i}\right) \\
\propto & \pi\left(y_{i+2}, \ldots, y_{T} \mid x_{i+1}\right) \pi\left(y_{i+1} \mid x_{i+1}\right) \pi\left(x_{i+1} \mid x_{i}\right) \pi\left(x_{i} \mid y_{0}, \ldots, y_{i}\right)
\end{aligned}
$$

making it possible to compute the joint posterior for x_{i} and x_{i+1} from these densities.

The Baum-Welch algorithm: Example continued

The algorithm can now be summed up as

- Choose starting parameters $\theta^{\text {old }}$.
- Run the Forward-Backward algorithm on the Markov model with parameters $\theta^{\text {old }}$ to compute the numbers $\mathrm{E}\left[I\left(x_{0}=j\right)\right]$ and $\mathrm{E}\left[I\left(x_{i-1}=j\right) I\left(x_{i}=k\right)\right]$.
- Find the θ maximizing the expected loglikelihood

$$
\sum_{j=1}^{M} \mathrm{E}\left[I\left(x_{0}=j\right)\right] \log q_{j}+\sum_{i=1}^{T} \sum_{j=1}^{M} \sum_{k=1}^{M} \mathrm{E}\left[I\left(x_{i-1}=j\right) I\left(x_{i}=k\right)\right] \log p_{j k}
$$

In fact, we get

$$
\hat{q}_{j}=\mathrm{E}\left[I\left(x_{0}=j\right)\right] \text { and } \hat{p}_{j k}=\frac{\sum_{i=1}^{T} \mathrm{E}\left[I\left(x_{i-1}=j\right) I\left(x_{i}=k\right)\right]}{\sum_{k=1}^{M} \sum_{i=1}^{T} \mathrm{E}\left[I\left(x_{i-1}=j\right) I\left(x_{i}=k\right)\right]}
$$

- Set $\theta^{\text {old }}=\left(\left(\hat{q}_{1}, \ldots, \hat{q}_{M}\right),\left(\hat{p}_{11}, \ldots, \hat{p}_{M M}\right)\right)$ and iterate until convergence.
- See implementation in \mathbf{R}

