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Overview

I Some information theory.

I The EM algorithm.

I A toy example.

I The Baum-Welsh algorithm as an example of EM.
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The information of an event

We assume given a probability mass function π(x) on a finite set S .

I We want to define the “information” h(U) in an event U ⊆ S .
Requirements:

I An event with probability 1 should have zero information.
I The information should increase with decreasing probability π(U).
I The information in two independent events should be the sum of the

information in each.

I We define h(x) = − log(π(x)) for x ∈ S .

I When using the base 2 logarithm log2, information is measured in
“bits”. We however use the natural logarithm.
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Expected information: Entropy

I Define the entropy H[X ] of the random variable X as the expected
information:

H[X ] =
∑
x

h(x)π(x) = −
∑
x

π(x) log(π(x))

I Note: H[X ] is always non-negative.

I Example: A uniform distribution on n values has entropy log n. This
is the largest entropy possible for a distribution on n values.

I Shannon’s coding theorem: The entropy (using log2) is a lower
bound on the expected number of bits needed to transfer the
information from X .
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(Differential) entropy for continuous distributions

I For any random variable X , its (differential) entropy is defined as

H[X ] = E [− log(π(x))] = −
∫
x

log(π(x))π(x) dx

I H[X ] may now be negative.

I Example: Assume X ∼ Normal(µ, σ2). Then

E [− log(π(x))] = E

[
− log

(
1√

2πσ2

)
+

1

2σ2
(x − µ)2

]
=

1

2
log(2πσ2) +

1

2σ2
E
[
(x − µ)2

]
=

1

2
log(2πσ2) +

1

2
.

I In fact, among all random variables X with E[X ] = µ and
Var[X ] = σ2, the normal has the largest entropy.

5 / 18



Conditional entropy and mutual information

I The conditional entropy is defined as

H[Y |X ] =

∫ [∫
π(y | x)(− log(π(y | x))) dy

]
π(x) dx

I Show that
H[X ,Y ] = H[Y |X ] + H[X ].

I The mutual information is defined as

I [X ,Y ] = −
∫ ∫

π(x , y) log

(
π(x)π(y)

π(x , y)

)
dx dy

I Show that
I [X ,Y ] = H[X ] + H[Y ]− H[X ,Y ]
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The Kullback-Leibler divergence (relative entropy)

I For two densities p(x) and q(x) we define the Kullback-Leibler
divergence from p to q as

KL[p||q] = −
∫

p(x) log

(
q(x)

p(x)

)
dx

I Note that KL[p||q] is generally different from KL[q||p].

I However, it has the distance property that KL[p||q] ≥ 0 always,
while KL[p||q] = 0 if and only if p = q.

I The standard proof uses Jensen’s inequality.

I Jensen’s inequality: If a function ψ is convex, then
ψ(E[X ]) ≤ E[ψ(X )].
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The KL divergence

I Note that
KL (π(x , y)||π(x)π(y)) = I [X ,Y ]

I Note that
KL[p||q] = Ep [− log(q(x))]− Hp[X ]

where X is a random variable with density p(x).

I EXAMPLE: Assume X ∼ Normal(µX , σ
2
X ) and

Y ∼ Normal(µY , σ
2
Y ).

Show by direct computation that

KL [πX ||πY ] =
1

2
log(2πσ2

Y )+
σ2
X

2σ2
Y

+
1

2σ2
Y

(µX−µY )2−1

2
log(2πσ2

X )−1

2
.

We see how the result is zero when the two distributions are
identical.
We see how KL [πX ||πY ] 6= KL [πY ||πX ] in general.
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Maximum posterior (MAP)

I The Maximal APosteriori (MAP): The value θ̂ that maximizes the
posterior π(θ | data).

I When the prior is flat, π(θ) ∝ 1, this corresponds to finding the
maximum likelihood (ML) estimate for θ.

I Recall the advantages and disadvantages of using a single estimate
instead of the full posterior.

I The MAP should be easy to compute when θ consists of all
unknown variables: Just differentiate log(π(θ | data)), i.e.
differentiate log(π(data | θ)π(θ)).

I Much harder if the model also contains other unknown variables Z :
Then π(θ | data) is the marginal of π(θ,Z | data) and much harder
to maximize.

I The Expectation-Maximization (EM) algorithm comes to the
rescue...
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The EM algorithm

I We want to find the θ maximizing the posterior π(θ | x); i.e.,
maximizing

log (π(x | θ)π(θ)) = log(π(x | θ)) + log(π(θ))

I Assume we have a joint model π(x , z | θ) which includes augmented
data z . We may then write, for any density q(z),

log(π(x | θ)) + log(π(θ)) = KL(q||πz) + L(q, θ) + log(π(θ)) (1)

where

L(q, θ) =

∫
q(z) log

(
π(x , z | θ)

q(z)

)
dz

and

KL(q||πz) = −
∫

q(z) log

(
πz(z | x , θ)

q(z)

)
dz
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The EM algorithm, cont.

I Fix q(z) = πz(z | x , θold) for some value θold .

I With this q(z), KL(q||πz) will be zero when θ = θold and positive
for other θ’s. THUS: If we find θnew maximizing L(q, θ) + log(π(θ)),
so that L(q, θnew ) + log(π(θnew )) > L(q, θold) + log(π(θold)),
replacing θold with θnew will increase the right side of Equation 1,
and thus also the left side.

I Set θold to the value θnew and start again from the first step above.
Continue until convergence.

I Note that maximizing L(q, θ) + log(π(θ)) is the same as maximizing∫
q(z) log (π(x , z | θ)) dz + log(π(θ))

where the left term is the expected full loglikelihood, taking the
expectation over the density q(z) = πz(z | x , θold).

I E-step: Computing the expectation above. M-step: Maximizing.
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A toy example

We have data x1, . . . , xn, where we assume the following model, with a
single parameter µ: With probability 0.5, xi ∼ Normal(0, 1) and with
probability 0.5, xi ∼ Normal(µ, 1). We assume a flat prior on µ.

I The likelihood can be written as

π(x1, . . . , xn | µ) =
n∏

i=1

(0.5 · Normal(xi ; 0, 1) + 0.5 · Normal(xi ;µ, 1))

I We now introduce augmented data z1, . . . , zn, where each zi has
value 0 or 1, so that zi ∼ Bernoulli(0.5) and xi | zi ∼ Normal(µzi , 1).
The full joint density may be written as

π(x1, . . . , xn, z1, . . . , zn, µ) ∝
n∏

i=1

π(xi | zi , µ) =
n∏

i=1

Normal(xi ;µzi , 1)

I One way to use this model is for finding the µ maximizing the
posterior using the EM-algorithm.
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A toy example: Using the EM algorithm

I First, find the complete data logposterior (which in our case is the
same as the loglikelihood). It is (up to a constant)

l(µ) =
n∑

i=1

−1

2
(xi − µzi )2

I Then, for a fixed value µ = µold , find the distribution zi | xi , µold :

π(x1, . . . , xn, . . . , zi = 0, . . . , µold) = K · Normal(xi ; 0, 1)

π(x1, . . . , xn, . . . , zi = 1, . . . , µold) = K · Normal(xi ;µ
old , 1)

Normalizing the distribution, we get

zi | xi , µold ∼ Bernoulli(pi ) , where

pi =
Normal(xi ;µ

old , 1)

Normal(xi ; 0, 1) + Normal(xi ;µold , 1)

I E step: Compute EZ [l(µ)]. M step: Set µnew as the parameter
maximizing this function.
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A toy example continued

I The E step becomes

EZ [l(µ)] = EZ

[
n∑

i=1

−1

2
(xi − ziµ)2

]

= EZ

[
−1

2

n∑
i=1

x2i − 2xiziµ+ z2i µ
2

]

= −1

2

n∑
i=1

x2i − 2xi EZ [zi ]µ+ EZ [z2i ]µ2

= −1

2

n∑
i=1

x2i − 2xipiµ+ piµ
2

I The M step becomes

∂

∂µ
EZ [l(µ)] = −1

2

n∑
i=1

(−2xipi + 2piµ) =
n∑

i=1

xipi − µ
n∑

i=1

pi = 0

resulting in µnew =
(∑n

i=1 xipi
)
/
(∑n

i=1 pi
)
.

I Presentation break for R computations
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The Baum-Welch algorithm (as example of EM algorithm)

We consider an HMM where all the xi have a finite state spaces

but where some of the parameters of the distributions π(X0),
π(Xi | Xi−1), and π(Yi | Xi ) are unknown. Objective: Given fixed values
for the yi , find maximum likelihood estimates for the parameters in the
model.

I Note: If assuming flat priors the problem becomes that of computing
the parameters maximizing the posterior, i.e., finding the MAP.

I Idea: Use the EM algorithm, with the values of the xi as the
augmented data.

I The E step of the EM algorithm is computed using (a small
generalization of) the Forward-Backward algorithm.
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The Baum-Welch algorithm: Example

For simplicity we assume each Xi can have values 1, . . . ,M. Let

θ = (q, p) = ((q1, . . . , qM), (p11, . . . , pMM))

be the parameters we want to estimate, where

qj = Pr(X0 = j)

pjk = Pr(Xi = k | Xi−1 = j)

The full loglikelihood given θ becomes

log (π(x0, . . . , xT , y0, . . . , yT | θ))

= log

(
π(x0 | θ)

T∏
i=1

π(xi | xi−1, θ)
T∏
i=0

π(yi | xi )

)

= log π(x0 | θ) +
T∑
i=1

log π(xi | xi−1, θ) +
T∑
i=0

log π(yi | xi )

= C +
M∑
j=1

I (x0 = j) log qj +
T∑
i=1

M∑
j=1

M∑
k=1

I (xi−1 = j)I (xi = k) log pjk
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The Baum-Welch algorithm: Example continued

I In the E step, we would like to compute the expectation of the full
loglikelihood under the distribution π(x0, . . . , xT | y0, . . . , yT , θold)
for some set of parameters θold .

I Thus we need to compute the expectations E [I (x0 = j)] and
E [I (xi−1 = j)I (xi = k)] under this distribution.

I Fixing θold , we can use the Forward-Backward algorithm to compute
the densities π(xi | y0, . . . , yi ) and π(yi+1, . . . , yT | xi ). Further we
have that

π(xi , xi+1 | y0, . . . , yT )

∝ π(yi+1, . . . , yT | xi , xi+1)π(xi , xi+1 | y0, . . . , yi )
∝ π(yi+2, . . . , yT | xi+1)π(yi+1 | xi+1)π(xi+1 | xi )π(xi | y0, . . . , yi )

making it possible to compute the joint posterior for xi and xi+1

from these densities.
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The Baum-Welch algorithm: Example continued

The algorithm can now be summed up as

I Choose starting parameters θold .

I Run the Forward-Backward algorithm on the Markov model with
parameters θold to compute the numbers E [I (x0 = j)] and
E [I (xi−1 = j)I (xi = k)].

I Find the θ maximizing the expected loglikelihood

M∑
j=1

E [I (x0 = j)] log qj +
T∑
i=1

M∑
j=1

M∑
k=1

E [I (xi−1 = j)I (xi = k)] log pjk

In fact, we get

q̂j = E [I (x0 = j)] and p̂jk =

∑T
i=1 E [I (xi−1 = j)I (xi = k)]∑M

k=1

∑T
i=1 E [I (xi−1 = j)I (xi = k)]

I Set θold = ((q̂1, . . . , q̂M), (p̂11, . . . , p̂MM)) and iterate until
convergence.

I See implementation in R
18 / 18


