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Review / overview

I Last time: The EM algorithm: Using Kullback-Leibler divergence to
find a maximal posterior estimate.

I This time: Variational Bayes: Using Kullback-Leibler divergence to
find an optimally fitting density to the posterior.

2 / 17



An extension of the KL notation

I Let us define

KL[q||p] = Eq

[
− log

p(z)

q(z)

]
= −

∫
q(z) log

p(z)

q(z)
dz

for any density q(z) and any function p(z) so that the integral
exists. (For standard KL p must be a density).

I Consequence: If p2(z) = Cp1(z) then for any q

KL[q||p2] = Eq

[
− log

Cp1(z)

q(z)

]
= − logC + KL[q||p1].

I For example, if
∫
p2(z) dz = C then for any q

KL[q||p2] ≥ − logC

because KL[q||p2/C ] ≥ 0, with minimum occurring when q ∝z p2.
I We still have

KL[q||p] = Eq[− log p(z)]− Hq[Z ]

where Hq[Z ] is the entropy of a random variable Z with density q .
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Example 1: Approximating the posterior

I In the identity

π(data, θ) = π(θ | data)π(data)

π(data) is a constant as a function of θ.

I Thus for a density q for θ,

KL[q||π(data, ·)] = − log π(data) + KL[q||π(· | data)].

I We may try to find a q minimizing KL[q||π(· | data)] by finding a q
minimizing KL[q||π(data, ·)]: This is part of the Variational Bayes
idea.
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Example 2: The EM algorithm

I Consider the identity

π(x , z | θ) = π(x | θ)π(z | x , θ).

Considering this as a function of z , π(x | θ) is a constant.

I For a density q for z we get

KL[q||π(x , · | θ)] = − log π(x | θ) + KL[q||π(· | x , θ)]

I The above equation is in the core of the proof of the EM algorithm:
I Set q(z) = π(z | x , θOLD) for some θOLD . (E step)
I Find a θNEW that minimizes the left-hand side. (M step)
I Then, moving from θOLD to θNEW , the left-hand side will decrease,

and KL(q||π(· | x , θ)] will increase. Thus − log π(x | θ) will decrease.
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Approximations using Variational Bayes

I Idea: Finding an approximation to the posterior π(θ | data) in some
family of densities Q that does not necessarily contain the posterior.

I More specifically find the q ∈ Q minimizing the Kullback Leibler
divergence from q to the posterior.

I Writing as above

KL[q||π(data, ·)] = − log π(data) + KL[q||π(· | data)].

we instead find the q̂ minimizing KL[q||π(data, ·)].

I As log π(data) ≥ −KL[q||π(data, ·)] the value −KL[q̂||π(data, ·)] is
called the evidence lower bound, or ELBO.

I Thus we want to maximize

L(q) = −KL[q||π(data, ·)] =

∫
q(θ) log

π(data, θ)

q(θ)
dθ

= Eq[log π(data, θ)] + Hq[θ]

where Hq[θ] is the entropy of a variable θ with density q.
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Splitting θ into components (or subvectors)

I Let us look for densities q that can be written as products

q(θ) =
n∏

i=1

qi (θi )

where θ = (θ1, θ2, . . . , θn) is split into (groups of) dimensions.
I For the entropy term we get that

Hq[θ] =
n∑

i=1

Hqi [θi ]

where θi are variables with densities qi .
I For any i ∈ 1, . . . , n the first term of L(q) may be rewritten

Eq[log π(data, θ)] = Eqi

[
Eqj ,j 6=i [log π(data, θ)]

]
I So if we fix all qj with j 6= i , the optimal qi maximizing L(q) is the

qi maximizing

Eqi

[
Eqj ,j 6=i [log π(data, θ)]

]
+ Hqi [θi ]

= −KL
[
qi || exp

(
Eqj ,j 6=i [log π(data, ·)]

)]
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First option: Solving simultaneous equations

I We have seen that KL
[
qi || exp

(
Eqj ,j 6=i [log π(data, ·)]

)]
is minimized

when
qi (θi ) ∝θi exp

(
Eqj ,j 6=i [log π(data, ·)]

)
I If we write out these n equations for i = 1, . . . , n, they become n

equations in the n unknowns q1, q2, . . . , qn.

I Sometimes it is possible to simultaneously solve these equations.

I NOTE: The solution we get is the optimal using the assumption that
the posterior splits as independent distributions over θ1, θ2, . . . , θn,
but making no other assumptions, e.g., about parametric classes.
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Variational Bayes: Toy example

I Consider the following example:

y1, . . . , yn ∼ Normal(µ, τ−1)

π(µ) ∝ 1

π(τ) ∝ 1/τ

I Using conjugacy, we get that the exact posterior is given by

τ | y1, . . . , yn ∼ Gamma

(
n − 1

2
,
n − 1

2
s2
)

µ | τ, y1, . . . , yn ∼ Normal
(
y , (nτ)−1

)
where s2 is the sample variance.

I As an illustration, we find the Variational Bayes approximate posterior.
Note:

π(y1, . . . , yn, µ, τ) ∝ 1

τ

n∏
i=1

1√
2π/τ

exp
(
−τ

2
(yi − µ)2

)
log π(y1, . . . , yn, µ, τ) = C +

(n
2
− 1
)

log τ − τ

2
(n − 1)s2 − nτ

2
(y − µ)2
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Variational Bayes: Toy example continued

I We use as approximation for the posterior the family of densities
q(µ, τ) = q1(µ)q2(τ), so that we assume µ and τ are independent,
but we do not make additional restrictions on q1 and q2.

I We get

exp (Eµ [log π(data, µ, τ)]])

∝τ exp
((n

2
− 1
)

log τ − τ

2
(n − 1)s2 − nτ

2
Eµ
[
(y − µ)2

])
I From this we see that

q2(τ) = Gamma

(
τ ;

n

2
,

1

2
(n − 1)s2 +

n

2
Eµ
[
(y − µ)2

])
I We get

exp (Eτ [log π(data, µ, τ)]]) ∝µ exp
(
−n

2
Eτ [τ ](y − µ)2

)
I From this we see that

q1(µ) = Normal
(
µ; y , (n Eτ [τ ])−1

)
.
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Variational Bayes: Toy example continued

I Taking expectations using these two densities leads to

Eτ [τ ] =
n/2

(n − 1)s2/2 + n/2 · Eµ [(y − µ)2]

Eµ
[
(y − µ)2

]
= (n Eτ [τ ])−1

I This is two equations with two unknowns; solving gives

Eτ [τ ] =
1

s2

Eµ
[
(y − µ)2

]
=

s2

n

I The final solution is

q2(τ) = Gamma
(
τ ;

n

2
,
n

2
s2
)

q1(µ) = Normal

(
µ; y ,

s2

n

)
I Presentation break for R illustration
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Second option: Iterative solution

I We would like to minimize

KL
[
qi || exp

(
Eqj ,j 6=i [log π(data, ·)]

)]
for i = 1, . . . , n.

I If a simultaneous solution cannot be found, we can start with a
reasonable solutions q1, q2, . . . , qn and then repeatedly cycle through
i = 1, . . . , n minimizing the KL divergence above for qi (keeping qj ,
j 6= i fixed).

I Generally this is done by assuming that qi is in some parametric
family for each i , so that one can optimize over the values of the
parameters.

I In this case, we assume that the posterior is approximated as
splitting in independent factors over the θi , we assume that the qi
are in particular parametric families, and we may get approximation
errors.

I However, the method may scale well in very high dimensions.

I The mean field variational Bayes approximation of the posterior.
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What if we minimize KL[π(data | ·)||q] instead of
KL[q||π(data | ·)]?

I We have

KL[π(· | data)||q] = −
∫
π(θ | data) log

q(θ)

π(θ | data)
dθ

=

∫
π(θ | data) log π(θ | data) dθ −

∫
π(θ | data) log q(θ) dθ

so we only need to find the q maximizing the last term.
I If we assume that q(θ) = q(θ | η) =

∏n
i=1 qi (θi | ηi ) we get that∫

π(θ | data) log q(θ | η) dθ =
n∑

i=1

∫
π(θ | data) log qi (θi | ηi ) dθ

=
n∑

i=1

∫
π(θi | data) log qi (θi | ηi ) dθi .

So we optimize by setting qi (θi | ηi ) equal to the marginal posterior
π(θi | data) for each i (or choose ηi to minimize the KL divergence).

I Less useful approximations in practice.
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From last time: The Baum-Welch algorithm (as EM
example)

We consider an HMM where all the xi have a finite state spaces

but where some of the parameters of the distributions π(X0),
π(Xi | Xi−1), and π(Yi | Xi ) are unknown. Objective: Given fixed values
for the yi , find maximum likelihood estimates for the parameters in the
model.

I Note: If assuming flat priors the problem becomes that of computing
the parameters maximizing the posterior, i.e., finding the MAP.

I Idea: Use the EM algorithm, with the values of the xi as the
augmented data.

I The E step of the EM algorithm is computed using (a small
generalization of) the Forward-Backward algorithm.
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The Baum-Welch algorithm: Simplified example

I For simplicity we assume each Xi can have values 1, . . . ,M, and we
assume X0 = 1. We assume there is one unknown parameter θ (with
flat prior) with

Pr(Xi = k | Xi−1 = j) =

 θ/2 |j − k | = 1 and 1 < j < M
θ |j − k | = 1 and j = 1 or j = M

1− θ j = k

I Assuming observed data is compatible with the model, the full
loglikelihood given θ becomes

log (π(x0, . . . , xT , y0, . . . , yT | θ))

= log π(x0) +
T∑
i=1

log π(xi | xi−1, θ) +
T∑
i=0

log π(yi | xi )

= C + c1 log θ + c2 log(1− θ)

where c1, c2 are counts of one-step transitions, and stays in the same
value, respectively, while C is a constant not involving θ.
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Example continued

I In the E step, we would like to compute the expectation of the full
loglikelihood under the distribution π(x0, . . . , xT | y0, . . . , yT , θold)
for some parameter θold .

I Thus we need to compute the expectations of the counts c1 and c2
under this distribution.

I Fixing θold , we can use the Forward-Backward algorithm to compute
the densities π(xi | y0, . . . , yi ) and π(yi+1, . . . , yT | xi ). Further we
have that

π(xi , xi+1 | y0, . . . , yT )

∝ π(yi+1, . . . , yT | xi , xi+1)π(xi , xi+1 | y0, . . . , yi )
∝ π(yi+2, . . . , yT | xi+1)π(yi+1 | xi+1)π(xi+1 | xi )π(xi | y0, . . . , yi )

making it possible to compute the joint posterior for xi and xi+1

from these densities.
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Example continued

The algorithm can now be summed up as

I Choose starting parameter θold .

I Run the Forward-Backward algorithm on the Markov model with
parameter θold to compute the numbers E[c1] and E[c2].

I Find the θ maximizing the expected loglikelihood

E[c1] log θ + E[c2] log(1− θ).

In fact, we get

θnew =
1

T
E[c1]

I Iterate until convergence.

I See implementation in R
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