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Review / overview

» Last time: The EM algorithm: Using Kullback-Leibler divergence to
find a maximal posterior estimate.

» This time: Variational Bayes: Using Kullback-Leibler divergence to
find an optimally fitting density to the posterior.
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An extension of the KL notation

> Let us define
p(z p(z)
KL[q||p] = E [—Iog] :—/qz log —= dz
elle] = Eq | ~log 2% (2)1og 20
for any density q(z) and any function p(z) so that the integral
exists. (For standard KL p must be a density).
» Consequence: If po(z) = Cpi(z) then for any ¢
Cpi(2)
q(2)

» For example, if [ po(z) dz = C then for any g

KLialna] = Eq [~ tog L] - —1og ¢ + Kilgloi]

KL[g||p2] > —log C

because KL[g||p2/C] > 0, with minimum occurring when g o pa.
> We still have

KL[ql|p] = Eq4[— log p(2)] — Hq[Z]

where H,[Z] is the entropy of a random variable Z with density g .

3/17



Example 1: Approximating the posterior

» In the identity
m(data, §) = w(0 | data)w(data)

m(data) is a constant as a function of 6.
» Thus for a density g for 6,

KL[g||w(data, -)] = — log w(data) + KL[g||= (- | data)].
» We may try to find a ¢ minimizing KL[g||7(- | data)] by finding a g

minimizing KL[g||7(data, -)]: This is part of the Variational Bayes
idea.
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Example 2: The EM algorithm

» Consider the identity
w(x,z|0) =n(x|0)r(z ]| x,0).

Considering this as a function of z, m(x | §) is a constant.

» For a density g for z we get
KL[g||7(x, - | 0)] = —logm(x | 0) + KL[q[|r(- | x,0)]

» The above equation is in the core of the proof of the EM algorithm:
> Set g(z) = 7(z | x,0°P) for some §°P. (E step)
> Find a 05" that minimizes the left-hand side. (M step)
> Then, moving from 6°P to OVEW  the left-hand side will decrease,
and KL(g||7(- | x, 0)] will increase. Thus — log 7(x | @) will decrease.

5/17



Approximations using Variational Bayes

» Idea: Finding an approximation to the posterior 7(# | data) in some
family of densities Q that does not necessarily contain the posterior.

» More specifically find the g € Q minimizing the Kullback Leibler
divergence from g to the posterior.

» Writing as above
KL[g||w(data, -)] = — log w(data) + KL[g||=(: | data)].

we instead find the § minimizing KL[g||7(data, -)].
» As logm(data) > — KL[g||w(data, -)] the value — KL[§]||w(data, -)] is
called the evidence lower bound, or ELBO.

» Thus we want to maximize

— KL[q||r(data, )] = /q(e) |0g7r(d:(t;),9)

= Eg[log w(data, 0)] + Hy[6]

do

L(q)

where Hg[f] is the entropy of a variable § with density q.
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Splitting ¢ into components (or subvectors)

» Let us look for densities g that can be written as products
n
q(0) = [ [ ai(0)
i=1

where 6 = (61,02, ...,0,) is split into (groups of) dimensions.
» For the entropy term we get that

Hql0] = Z Hq 6]

where 6; are variables with densities g;.
» For any i € 1,..., n the first term of £(g) may be rewritten

Eqllog m(data, 0)] = Eg, [Eq,.ji [log 7(data, 6)]]

> So if we fix all g; with j # i, the optimal g; maximizing £(q) is the
gi maximizing

Eq [Eq.ji [log m(data, 0)]] + Hq,[0/]
= —KL [qi]| exp (Eg i [log 7(data, -)]) ]
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First option: Solving simultaneous equations

> We have seen that KL [g;i|| exp (Eg, ji [log m(data,-)])] is minimized

when
qi(07) <o, exp (Eg; ji [log w(data, -)])
> If we write out these n equations for i = 1,..., n, they become n
equations in the n unknowns g1, g, ..., qn.

» Sometimes it is possible to simultaneously solve these equations.

» NOTE: The solution we get is the optimal using the assumption that
the posterior splits as independent distributions over 61,65, ...,6,,
but making no other assumptions, e.g., about parametric classes.

8/17



Variational Bayes: Toy example

» Consider the following example:

Vi, ooy Vo o~ Normal(,u,Tfl)

m(p) o 1
w(r) o« 1/t

> Using conjugacy, we get that the exact posterior is given by

-1 -1
TVt~ Gamma(L n 52)

2 72
wl T y,....¥a ~ Normal ()7, (m—)fl)

where s? is the sample variance.

» As an illustration, we find the Variational Bayes approximate posterior.
Note:

Tr(ylw"vym/j‘vT) S H

\/W xp (—5 (v — 1))
logm(y1y .-y Yny ity 7) = C+(5—1)|og7—%(n—1)s2—%(y—u)2
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Variational Bayes: Toy example continued

» We use as approximation for the posterior the family of densities
q(p, 7) = q1(1)g2(7), so that we assume p and 7 are independent,
but we do not make additional restrictions on g; and g».

> We get

exp (E, [log (data, i1, 7)]])
X, exp ((g — 1) log T — g(n —1)s* — an E. [y — y)z])

» From this we see that

q2(7) = Gamma <7’; ,%(" —1)s* + g Eu [(v - “)2})

NS

> We get

n _
exp (E, [log m(data, . 7)]]) o, exp (—3 E-[1](7 — 1)?)
» From this we see that

a1(n) = Normal (11;7, (nE,[r]) ") .
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Variational Bayes: Toy example continued

» Taking expectations using these two densities leads to

n/2
E [ —
N VY R M (e
- -1
E. [(y - M)Z] = (nE/[1])
» This is two equations with two unknowns; solving gives
1
ET[T] = sz
2
_ s
Eu [(y - N)2] = n
» The final solution is
nn
q(7) = Gamma <7'; > 552)
$2
qi(p) = Normal (u;y, n)

» Presentation break for R illustration
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Second option: lterative solution

» We would like to minimize

KL [gil exp (Eq; ji [log m(data, -)])]

fori=1,...,n.

» If a simultaneous solution cannot be found, we can start with a
reasonable solutions qi, g2, ..., g, and then repeatedly cycle through
i=1,...,n minimizing the KL divergence above for g; (keeping g;,
J # i fixed).

» Generally this is done by assuming that g; is in some parametric
family for each i/, so that one can optimize over the values of the
parameters.

> In this case, we assume that the posterior is approximated as
splitting in independent factors over the 6;, we assume that the g;
are in particular parametric families, and we may get approximation
errors.

» However, the method may scale well in very high dimensions.

» The mean field variational Bayes approximation of the posterior.
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What if we minimize KL[r(data | -)||q] instead of

KL[g||m(data | -)]?

» We have

KLr(-| data)|a] = — [ 7(0] data)log —2C0) o

= /77(0 | data) log 7(6 | data) d6 — /7‘(’(0 | data) log q(0) d6

so we only need to find the g maximizing the last term.
> If we assume that q(0) = q(6 | ) = T[], qi(6; | 1) we get that

/7r(9|data)|ogq(9|77)d9 - Z/w(9|data)logq;(9;|17,-)d9

= Z/ﬂ(ﬂ; | data) log q;(0; | n;) dO;.
i=1

So we optimize by setting ¢;(6; | ;) equal to the marginal posterior
m(0; | data) for each i (or choose 7; to minimize the KL divergence).
» Less useful approximations in practice.
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From last time: The Baum-Welch algorithm (as EM

example)

We consider an HMM where all the x; have a finite state spaces

but where some of the parameters of the distributions 7(Xp),
w(X;i | Xi—1), and 7w(Y; | X;) are unknown. Objective: Given fixed values
for the y;, find maximum likelihood estimates for the parameters in the
model.
» Note: If assuming flat priors the problem becomes that of computing
the parameters maximizing the posterior, i.e., finding the MAP.
» Idea: Use the EM algorithm, with the values of the x; as the
augmented data.
> The E step of the EM algorithm is computed using (a small

generalization of) the Forward-Backward algorithm.
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The Baum-Welch algorithm: Simplified example

» For simplicity we assume each X; can have values 1,..., M, and we
assume Xo = 1. We assume there is one unknown parameter 6 (with
flat prior) with

6/2 i—kl=1landl<j< M
PriXi=k| Xi_1=J) = 0 |j—kl=1landj=1lorj=M
1-6 j=k

» Assuming observed data is compatible with the model, the full
loglikelihood given 6 becomes

|Og(7T(X0,-~-7XT7.y07"'>yT | 9))

T T
= logm(x) + Z logm(x; | xi—1,0) + Z log7(y; | x;)
i=1 i=0

= C+Hocilogh+ colog(l—0)

where ¢, ¢ are counts of one-step transitions, and stays in the same
value, respectively, while C is a constant not involving 6.
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Example continued

> In the E step, we would like to compute the expectation of the full
loglikelihood under the distribution 7(xg, ..., xT | yo,...,yT,0°)
for some parameter §°.

» Thus we need to compute the expectations of the counts ¢; and ¢
under this distribution.

» Fixing 6°', we can use the Forward-Backward algorithm to compute
the densities 7(x; | yo,--.,¥:) and w(yi+1,...,y7 | x;). Further we

have that
7T(XI7XI+1 |}/o, cee ,YT)
o T(Yig1,- - Y7 | Xis Xip1)T(Xis Xie1 | Yo, -5 Vi)
o w(Yit2, - YT | Xig1)T(Vigr | Xip1) (X1 | Xi)7(xi | yo, -, ¥i)

making it possible to compute the joint posterior for x; and x;41
from these densities.
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Example continued

The algorithm can now be summed up as

>

>

Choose starting parameter §°/.

Run the Forward-Backward algorithm on the Markov model with
parameter 0° to compute the numbers E[c;] and E[c,].

Find the # maximizing the expected loglikelihood
E[ci]log @ + E[co] log(1 — 6).

In fact, we get
1
gnew — 7 E[Cl]

Iterate until convergence.

See implementation in R
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