MSA101/MVE187 2021 Lecture 14 Graphical models

Petter Mostad

Chalmers University

October 18, 2021

Overview

- Graphical models: A way to specify stochastic models.
- Bayesian networks for modelling and model visualization.
- Using the graph to infer conditional independencies.
- Markov networks.
- Example: Gaussian Markov Random Fields.
- ▶ Using the graph for posterior inference.

Graphical representations of conditional independencies

- ▶ In complex models with many variables, it is crucial to model how variables depend on each other.
- ▶ Idea: Represent dependencies in a graph.
 - Helpful for visualization.
 - May use graph theory in connection with computations.
- We will look at two examples of graphical models (illustrate):
 - Bayesian networks: Represent the probability density as a product of conditional densities:

$$\pi(x, y, z, v, w) = \pi(x \mid y, z) \cdot \pi(y \mid z) \cdot \pi(z \mid v, w) \cdot \pi(v) \cdot \pi(w)$$

Markov random fields: Represent the probability density as a product of factors:

$$\pi(x, y, z, v, w) = C \cdot f_1(x, y, z) \cdot f_2(y, z) \cdot f_3(z, v, w) \cdot f_4(v) \cdot f_5(w)$$

Bayesian networks

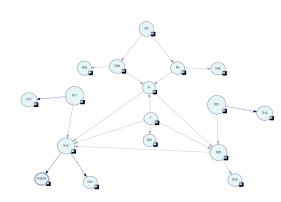
Any joint density can be written as a product over conditional densities (illustrate):

$$\pi(x_1,\ldots,x_n) = \pi(x_1)\pi(x_2 \mid x_1)\pi(x_3 \mid x_1,x_2)\ldots\pi(x_n \mid x_1,\ldots,x_{n-1})$$

- Given a specific model, we might be able to drop the conditioning on some of the variables in some factors. The representation then conveys the structure of the model. (Illustrate).
- ▶ Re-ordering the variables will often give a different representation!
- ▶ The graph with an arrow $x \to y$ for each of the conditionings $\pi(y \mid \dots x \dots)$ in the representation above is the Bayesian Network representation. x is "parent", y is "child".
- ▶ Note that, following the arrows, you can never get a cycle. Thus the graph is a *directed acyclic graph* (DAG).
- Conversely, given any DAG and conditional densities for each child given its parents, the product of these gives a joint probability density.

Bayesian networks for visualization

- To the right: An example of a specific graphical network.
- Hierarchical models are, by definition, specified as a series of conditional distributions. The graph represents essential model information. (Illustration).
- Visualizations may use "plates" to represent repeated components.
- Note: Get a sample from the unconditional joint density by "propagating" simulation through network.



Conditional independence

- If x and y become independent when we fix the value of z we say that x and y are conditionally independent given z. We write x ∐ y | z.
- Equivalent formulations (illustrate):
 - $\pi(x,y\mid z) = \pi(x\mid z)\pi(y\mid z)$
 - $\pi(x \mid y, z) = \pi(x \mid z)$
 - $\pi(y \mid x, z) = \pi(y \mid z)$
- ▶ We use the same definitions and notation when X, Y and Z are disjoint groups of variables.
- ► Example: When the data x_1, x_2, x_3 is *iid* given the parameter θ , we get for example $\{x_1, x_2\} \coprod x_3 \mid \theta$.

Reading off conditional independencies from a Bayesian network

- ► Some conditional independence statements can be "read off" the DAG of a Bayesian network. **Examples**
- ▶ Is there a general way to prove that two sets of variables are conditionally independent given a third set based only on the Bayesian network graph?
- ▶ Preliminary observation: Two children with a single common parent are conditionally independent given the parent.
- ▶ Preliminary observation: Two parents with a single common child are generally NOT conditionally independent given the child. **Example**
- ▶ Definition: A "v-structure" is a part of a network consisting of a child with two parents.

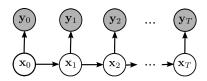
d-separation

- ▶ A "trail" in a DAG is an *undirected path* in the graph.
- Assume X, Y, Z are sets of variables. An "active trail" from X to Y given Z is one where, for every v-structure $x_{i-1} \rightarrow x_i \leftarrow x_{i+1}$ in the trail, x_i or a decendant is in Z, and no other node in the trail is in Z. (Illustration).
- ▶ We say X and Y are d-separated given Z if there is no active trail between any $x \in X$ and $y \in Y$ given Z.
- ▶ Theorem: If X and Y are d-separated given Z in a Bayesian network representation of a stochastic model, then $X \coprod Y \mid Z$.
- ▶ Theorem: If X and Y are not d-separated given Z in a DAG, then there exists a stochastic model where X and Y are not conditionally independent given Z that has the DAG as a Bayesian network.
- See Koller & Friedman: "Probabilistic Graphical Models" for more details.

A way to check d-separation

- ▶ Note: The dependency between X and Y given Z is not changed if you remove from a network a child that is not i X, Y, or Z and has no children on its own.
- ▶ Doing this repeatedly will lead to a network where all nodes that do not have children are either in *X*, *Y*, or *Z*.
- ▶ In this network, you still have to check in the same way whether each trail is active. But there may be fewer trails to check. (FIXED 2021-10-18)
- Examples

Example: Using d-separation to obtain equations for HMM inference



When deriving the Forward-Backward algorithm, we used, for example, that

$$\pi(x_i \mid y_0,\ldots,y_T) \propto_{x_i} \pi(y_{i+1},\ldots,y_T \mid x_i) \pi(x_i \mid y_0,\ldots,y_i)$$

This follows from Bayes formula and that

$$\pi(y_{i+1},\ldots,y_T \mid x_i,y_0,\ldots,y_i) = \pi(y_{i+1},\ldots,y_T \mid x_i).$$

This follows from the fact that

$$\{y_{i+1},\ldots,y_T\}\prod\{y_0,\ldots,y_i\}\mid x_i$$

The above can be proven using d-separation on the graph above.

Markov networks

► For many models, the probability (density) function may be written as a product of positive factors where each involves only a subset of the variables. Example:

$$\pi(x,y,z,v,w) = C \cdot f_1(x,y,z) \cdot f_2(y,z) \cdot f_3(z,v,w) \cdot f_4(v) \cdot f_5(w)$$

- Note: The f_i functions are not necessarily densities (i.e., do not necessarily integrate to 1).
- ▶ Assume the representation is maximally reduced, i.e., for any pair of variables *x*, *y* occurring in a factor, the factor cannot be written as a product of two factors where the first does not contain *x* and the second does not contain *y*.
- ► The corresponding Markov network contains an *undirected* edge between *x* and *y* for all nodes *x* and *y* occurring together in a factor.
- ► A Bayesian network may generally be converted into a Markov network using a process called *moralization*. **Illustration**

Conditional independence in Markov networks

- ► For a variable x, its *Markov blanket Z* is the set of variables directly connected to x in the Markov network representation.
- ▶ We then have $x \coprod Y \mid Z$ for any set Y of variables not containing x or Z. (**Discussion**).
- ▶ We define in the same way the Markov blanket of a set of variables *X*; the same conclusion about conditional independence holds.
- A way to specify a stochastic model on a set of variables is
 - to construct a graph connecting the variables in some way
 - to specify the conditional distribution of each variable given values of the variables it is connected to
 - to multiply all these conditional distributions together.
- ► Note:
 - This is different from a Bayesian Network in that we might specify dependencies that go in opposite directions!
 - ▶ This does not necessarily result in a *proper* distribution!

Simulation in Markov networks using Gibbs sampling

- ▶ With a Markov network representation of a posterior, we can set up a Gibbs sampling from the posterior by iteratively simulating from the conditional distribution of each node given its Markov blanket.
- **Explicitly:** Write down the joint density of all variables, and for each variable θ_i in sequence:
 - ightharpoonup Regard all other variables as constants, throw away all factors not depending on θ_i .
 - ▶ Interpret the remaining function of θ_i as a standard density, or use it in some more advanced simulation method.
- Note: You need to check that the joint density is proper.
- ▶ We may simulate from a posterior represented as a Bayesian network by converting it to a Markov network (using moralization) and then simulate as above.
- Widely used programs like BUGS (WinBugs, OpenBugs), Jags (Just Another Gibbs Sampler), and Stan offer "black box" implementations of Gibbs sampling on wide classes of Bayesian Networks.

Gaussian Markov random fields (GMRF)

▶ A density $\pi(x_1,...,x_n)$ can be considered a GMRF if it can be written as

$$\pi(x_1,\ldots,x_n)=\exp\left(-f(x_1,\ldots,x_n)\right)$$

where $f(x_1, \ldots, x_n)$ is a quadratic polynomial.

• We can then always re-write the density on $x=(x_1,\ldots,x_n)$ so that

$$\pi(x) = \exp\left(-\frac{1}{2}(x-\mu)^t P(x-\mu) + C\right).$$

where μ is a vector, P is a symmetric matrix, and C is a constant.

► The density is *proper* if and only if *P* is *positive definite*. In this case we can re-write the density as

$$\pi(x) = \frac{1}{|2\pi P^{-1}|} \exp\left(-\frac{1}{2}(x-\mu)^t P(x-\mu)\right),$$

so that $x \sim \text{Normal}(\mu, P^{-1})$.

In many cases it may be useful to consider the Markov network for the GMRF.

GMRF and precision matrices

- ▶ For a GMRF and two variables x_i and x_j , the following are equivalent:
 - 1. There is no line between x_i and x_i in the Markov network.
 - 2. In the term $a_{ij}x_ix_j$ in the quadratic polynomial f defining the density, we have $a_{ij}=0$.
 - 3. In the precision matrix P, the ij-th entry p_{ij} is zero.
- Thus, we can read off the Markov network directly from the precision matrix: Its non-zero terms correspond to edges in the Markov network.
- ▶ Example: If P is zero everywhere except along the main diagonal and the diagonals closest to it (i.e., $p_{ij} = 0$ unless $|i j| \le 1$) then the Markov network looks like the graph below (with number of nodes corresponding to number of variables).

Inference for graphical models (BNs or Markov networks)

- ► Two types of inference:
 - Given a network, and given observed values for some variables, how can we make predictions for (or simulate from) some remaining variables using the conditional distribution?
 - Given observations for some variables, how do we find a graphical model for these variables from the data?
- ► For the first question, we have seen that Gibbs sampling is a good general (approximative) solution.
- However, for some models, exact solutions (not using Markov chain approximations) are possible. In particular when variables have a finite number of possible values.
- Below, we look briefly at exact inference for graphical models. The algorithm is a generalization of the Forward-Backward algorithm for HMMs.
- ► The second goal above, learning networks from data, is often extremely difficult. Active area of research.

Exact posterior inference for graphical models

- ▶ We want to fix some variables (called *data*) and compute the posterior distribution of *some* other variables of interest.
- For a Markov network, fixing some variables produces directly another similar Markov network.
- ► A Bayesian Network may first be converted to a Markov network, using moralization.
- Then: A direct way to obtain the marginal distribution for the variables of interest in a Markov network is variable elimination:
 - Integrating (or summing) out variables in factors.
 - Multiplying together factors.
- ► Can lead to expression with an "explosion" in the number of terms in many cases, but the problem may be contained when variables have only a finite number of values.
- ▶ Any inference algorithm depends on the basic operations above, but they can be "scheduled" and organized in smart ways, using e.g. a "message passing" algorithms. See the "sum-product" algorithm in Bishop (not core course material).