>

>

A “trail” in a DAG is an undirected path in the graph.

Assume X, Y, Z are sets of variables. An “active trail” from X to
Y given Z is one where, for every v-structure x;_1 — X; <= Xj41 in

the trail, x; or a decendant is in Z, and no other node in the trail is
in Z. (lllustration).

We say X and Y are d-separated given Z if there is no active trail
between any x € X and y € Y given Z.

Theorem: If X and Y are d-separated given Z in a Bayesian network
representation of a stochastic model, then X[ Y | Z.

Theorem: If X and Y are not d-separated given Z in a DAG, then
there exists a stochastic model where X and Y are not conditionally
independent given Z that has the DAG as a Bayesian network.

See Koller & Friedman: "Probabilistic Graphical Models” for more
details.
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A way to check d-separation

» Note: The dependency between X and Y given Z is not changed if
you remove from a network a child that is not i X, Y, or Z and has
no children on its own.

» Doing this repeatedly will lead to a network where all nodes that do
not have children are either in X, Y, or Z.

» In this network, you still have to check in the same way whether

each trail is active. But there may be fewer trails to check. (FIXED
2021-10-18)

» Examples

2/16



MSA101/MVE187 2021 Lecture 15
Applying Bayesian statistics

Petter Mostad

Chalmers University

October 18, 2021

3/16



Overview

How to find a suitable stochastic model
Bayesian model selection

A connection between Bayesian Learning and Machine Learning

vV v v v

An example of a paper using Bayesian modelling
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The Bayesian paradigm

> Start with data Y., and what you want to predict Yjeq, and

1. describe a joint stochastic model 7( Yata; Yored),
2. compute the conditional distribution 7(Ypreqd | Ydata)-

» The entire course has focused on step 2. What about step 17
» Below, we describe some advice on finding models.

» We then discuss Bayesian model selection, one way to select
between alternative possible models.
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Advice on statistical modelling

> Always start with data and a clear question.

» Always plot and explore your data, so you understand it as best you
can.

» Understand the known science of what is going on as best as you
can, to make a realistic model.
» In complicated models:

1. Start with a Bayesian Network for variables needed to describe a
model. Use causality as a guide!

2. Then choose either fixed distributions, or distributions with uncertain
parameters, to relate the variables.

» Elicitation for constructing informative priors. (Example: Use of
beta.select in LearnBayes package).

» Break for examples
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Bayesian model selection

> Assume you are considering n different models connecting your data
Yq with your prediction Y.
> Let A have possible values 1,...,n and let 7(Y,, Yq | A = i) indicate
model /.
» If you specify a prior belief in each model, you can use a combined
weighted model
7(Yp, Ya) = > m(A = i)m(Yp, Ya | A= 1)

i=1
with weights w; = (A = ).
> We get

m(Yp, Ya) _ 27N = )a(Ya [ M)m(Yp | Ya,\)

(Yo | Yq) = (Yq) E};lﬂ-(ydl)‘:j)

R CE L\ ZIEE T A y
- §<Z7_17T()\—j)7r(\/d>\—j)> (Yo | Yo, A=1)

J
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Bayesian model selection

>

The prediction 7(Y), | Yq) using the weighted model uses a
weighting of the predictions 7(Y, | Y4, A = i) from each individual
model, where the weights are updated from w; = (A =) to

, T A=Nm(Ya | A=1)

YT O = )r(Ya [ A=)

The value 7(Yy | A = i) is the probability of observing the data Yy
given model J.

Except the notation, formulas are exactly the same as when using
mixtures of conjugate priors (see Lecture 3).

If one posterior weight w/ is close to 1, we may approximate by
discarding all models but model i. The procedure becomes a model
selection procedure.

Note: When n = 2 we get that

Wé/W{ = W2/W1 . 7T(Yd ‘ A= 2)/7T(Yd | A= 1)

To use the formulas in practice, we need to be able to compute
7(Ya | A = 1) for all models i.
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Bayesian model selection

Note: The ideas above cannot be used (directly) to compare a model
i with an improper prior. Then w(Yy, | y = i) cannot be computed.

v

» Note: An improper prior should not be interpreted as a limit of a
sequence of proper priors.
> Note: How to determine if models are good apriori? (How to
determine prior weights w;?)
» May use simulation from the prior model and compare with what is
“expected” .
» Examples

> Simulate from the prior of a stochastic model for tree growth.
> Simulate from the prior of a stochastic model for geological faults.
» Simulate from the prior of a stochastic model for image noise.
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Example of Bayesian model selection

» The data consists of counts ¢;, i = 1,...,n, with § = 27:1 .
» Model 1: (i=1,...,n)

A~ Gamma(l,1)
¢ | A ~ Poisson(\)

> Model 2: (i=1,...,n)

p ~ Uniform(0,1)
Ao, A1~ Gamma(1,1)
m(ci | p, Ao, A1) = pPoisson(ci; A1) + (1 — p) Poisson(c;i; Ao)

» Break to compute log 7(c | Model 1).
» Break to compute log 7(c | Model 2).

» As 7(c | Model 2)/7(c | Model 1) = exp(—2247.885 + 2270.421) =
6128386058, we see that the second model fits the data much
better. Overwhelms any reasonable value for wy/w;!
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Example: Continued

» Consider Model 3:
7(c;) = pPoisson(ci; A1) + (1 — p) Poisson(c;; Xo)
where (p, Xo, ):1) is the mode of the logpost function.
» We get, using R,
log 7(c | Model 3) = logpost(p, Xo, \1) = —2243.493
so
7(c | Model 3)/m(c | Model 2) = exp(—2243.493+2247.885) = 80.8

Should model 3 be preferred to model 27

» NO: The prior probability for Model 3 is quite low, so ws/w, should
cancel out the factor 80.8 above.

> lIgnoring this leads to overfitting, a serious problem in non-Bayesian
statistics.
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Discussion: Finding a model

» In Bayesian model selection above, we start with a model: A
weighted mixture of models.

» The modelling question then becomes: How do we get this mixture
model in the first place?

» By definition: The initial modelling procedure cannot be based on a
model.
> My view:
> The initial models considered must be based on contextual
knowledge and previous experience.
> In practice, several possible models should be considered, and
compared, if possible, with Bayesian model choice.
> Many other paradigms for model selection exist: They are all
somehow related to the basic idea of Bayesian model selection:
Comparing likelihoods.
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Comparing Bayesian learning and machine learning (ML)

>

Bayesian statistics and computation is an important part of ML
technology.

However, the Bayesian paradigm (as used in this course) is generally
not used in ML.

What happens if we apply the Bayesian paradigm to an ML task,
and compare approaches?

For concreteness, we look at the basic problem of classifying digits
(0 - 9) from images, using the MNIST data set.

Using the Bayesian paradigm, Y., is the set of images and their
classifications, and Yjreq is the classification of a new image. We
want to define a joint distribution on these, and then use

7T( Ypred ‘ Ydata)-

Using ML, you may for example choose a neural network ending
with a softmax layer used to give probabilities for the 10
classification outcomes. You also choose a particular stochastic
algorithm for training of that network, to obtain a single neural
network, which you then use for prediction.

Is it possible to compare or connect the two approaches?
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Machine learning as Bayesian inference

» The neural network parameters should be identified with 8, the
chosen parameter of the Bayesian model.

» The likelihood defined by the data is the same in both approaches.
We also have conditional independence of the observations, and of
any new prediction, given the parameter 6.

» In Bayesian inference one would find a posterior for 6 (i.e., a
posterior on the set of networks) and average over it for predictions.

> In ML one uses (most often) a single network for predictions.

» To make a comparison, we assume the Bayesian approach is to
sample a single 0 from the posterior.

» The Bayesian approach will sample 6 from a distribution whose
logdensity is

Loglikelihood(#) + Prior(8) (1)
where in ML Loglikelihood is the negative of the Loss and Prior
is the negative of a regularization term.

» By comparison, ML will use a similar Equation 1 and a stochastic
algorithm, but also test- and validation-data, to produce a NN 0.
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Some important questions (for me)

1. Given an NN, can we establish a clear correspondence
Prior(#) functions <> Stochastic ML algorithm producing

2. Is such a correspondence of practical use when developing new
algorithms / models?

» Note: Priors need to be more advanced than currently used
regularization terms.

» Note: Simulation in the posterior is not straight-forward in the
relevant high dimensions.
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Some work on these questions

» My PhD student Anton Johansson and | are investigating
connections like those above.

» We define geometric properties of 6 which can then be used in a
Prior function.

» We also investigate how geometric properties vary and change when
running ML algorithms.

> Anton will present some results fairly soon.
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