
d-separation

I A “trail” in a DAG is an undirected path in the graph.

I Assume X , Y , Z are sets of variables. An “active trail” from X to
Y given Z is one where, for every v-structure xi−1 → xi ← xi+1 in
the trail, xi or a decendant is in Z , and no other node in the trail is
in Z . (Illustration).

I We say X and Y are d-separated given Z if there is no active trail
between any x ∈ X and y ∈ Y given Z .

I Theorem: If X and Y are d-separated given Z in a Bayesian network
representation of a stochastic model, then X

∐
Y | Z .

I Theorem: If X and Y are not d-separated given Z in a DAG, then
there exists a stochastic model where X and Y are not conditionally
independent given Z that has the DAG as a Bayesian network.

I See Koller & Friedman: “Probabilistic Graphical Models” for more
details.
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A way to check d-separation

I Note: The dependency between X and Y given Z is not changed if
you remove from a network a child that is not i X , Y , or Z and has
no children on its own.

I Doing this repeatedly will lead to a network where all nodes that do
not have children are either in X , Y , or Z .

I In this network, you still have to check in the same way whether
each trail is active. But there may be fewer trails to check. (FIXED
2021-10-18)

I Examples
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Overview

I How to find a suitable stochastic model

I Bayesian model selection

I A connection between Bayesian Learning and Machine Learning

I An example of a paper using Bayesian modelling
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The Bayesian paradigm

I Start with data Ydata and what you want to predict Ypred , and

1. describe a joint stochastic model π(Ydata,Ypred),
2. compute the conditional distribution π(Ypred | Ydata).

I The entire course has focused on step 2. What about step 1?

I Below, we describe some advice on finding models.

I We then discuss Bayesian model selection, one way to select
between alternative possible models.
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Advice on statistical modelling

I Always start with data and a clear question.

I Always plot and explore your data, so you understand it as best you
can.

I Understand the known science of what is going on as best as you
can, to make a realistic model.

I In complicated models:

1. Start with a Bayesian Network for variables needed to describe a
model. Use causality as a guide!

2. Then choose either fixed distributions, or distributions with uncertain
parameters, to relate the variables.

I Elicitation for constructing informative priors. (Example: Use of
beta.select in LearnBayes package).

I Break for examples
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Bayesian model selection

I Assume you are considering n different models connecting your data
Yd with your prediction Yp.

I Let λ have possible values 1, . . . , n and let π(Yp,Yd | λ = i) indicate
model i .

I If you specify a prior belief in each model, you can use a combined
weighted model

π(Yp,Yd) =
n∑

i=1

π(λ = i)π(Yp,Yd | λ = i)

with weights wi = π(λ = i).
I We get

π(Yp | Yd) =
π(Yp,Yd)

π(Yd)
=

∑n
i=1 π(λ = i)π(Yd | λi )π(Yp | Yd , λi )∑n

j=1 π(Yd | λ = j)

=
n∑

i=1

(
π(λ = i)π(Yd | λ = i)∑n
j=1 π(λ = j)π(Yd | λ = j)

)
π(Yp | Yd , λ = i)
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Bayesian model selection

I The prediction π(Yp | Yd) using the weighted model uses a
weighting of the predictions π(Yp | Yd , λ = i) from each individual
model, where the weights are updated from wi = π(λ = i) to

w ′i =
π(λ = i)π(Yd | λ = i)∑n
j=1 π(λ = j)π(Yd | λ = j)

.

I The value π(Yd | λ = i) is the probability of observing the data Yd

given model i .

I Except the notation, formulas are exactly the same as when using
mixtures of conjugate priors (see Lecture 3).

I If one posterior weight w ′i is close to 1, we may approximate by
discarding all models but model i . The procedure becomes a model
selection procedure.

I Note: When n = 2 we get that
w ′2/w

′
1 = w2/w1 · π(Yd | λ = 2)/π(Yd | λ = 1).

I To use the formulas in practice, we need to be able to compute
π(Yd | λ = i) for all models i .
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Bayesian model selection

I Note: The ideas above cannot be used (directly) to compare a model
i with an improper prior: Then π(Yd | y = i) cannot be computed.

I Note: An improper prior should not be interpreted as a limit of a
sequence of proper priors.

I Note: How to determine if models are good apriori? (How to
determine prior weights wi?)

I May use simulation from the prior model and compare with what is
“expected”.

I Examples
I Simulate from the prior of a stochastic model for tree growth.
I Simulate from the prior of a stochastic model for geological faults.
I Simulate from the prior of a stochastic model for image noise.
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Example of Bayesian model selection

I The data consists of counts ci , i = 1, . . . , n, with S =
∑n

i=1 ci .

I Model 1: (i = 1, . . . , n)

λ ∼ Gamma(1, 1)

ci | λ ∼ Poisson(λ)

I Model 2: (i = 1, . . . , n)

p ∼ Uniform(0, 1)

λ0, λ1 ∼ Gamma(1, 1)

π(ci | p, λ0, λ1) = p Poisson(ci ;λ1) + (1− p) Poisson(ci ;λ0)

I Break to compute log π(c |Model 1).

I Break to compute log π(c |Model 2).

I As π(c | Model 2)/π(c | Model 1) = exp(−2247.885 + 2270.421) =
6128386058, we see that the second model fits the data much
better. Overwhelms any reasonable value for w2/w1!
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Example: Continued

I Consider Model 3:

π(ci ) = p̂ Poisson(ci ; λ̂1) + (1− p̂) Poisson(ci ; λ̂0)

where (p̂, λ̂0, λ̂1) is the mode of the logpost function.

I We get, using R,

log π(c | Model 3) = logpost(p̂, λ̂0, λ̂1) = −2243.493

so

π(c | Model 3)/π(c | Model 2) = exp(−2243.493+2247.885) = 80.8

Should model 3 be preferred to model 2?

I NO: The prior probability for Model 3 is quite low, so w3/w2 should
cancel out the factor 80.8 above.

I Ignoring this leads to overfitting, a serious problem in non-Bayesian
statistics.
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Discussion: Finding a model

I In Bayesian model selection above, we start with a model: A
weighted mixture of models.

I The modelling question then becomes: How do we get this mixture
model in the first place?

I By definition: The initial modelling procedure cannot be based on a
model.

I My view:
I The initial models considered must be based on contextual

knowledge and previous experience.
I In practice, several possible models should be considered, and

compared, if possible, with Bayesian model choice.
I Many other paradigms for model selection exist: They are all

somehow related to the basic idea of Bayesian model selection:
Comparing likelihoods.
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Comparing Bayesian learning and machine learning (ML)

I Bayesian statistics and computation is an important part of ML
technology.

I However, the Bayesian paradigm (as used in this course) is generally
not used in ML.

I What happens if we apply the Bayesian paradigm to an ML task,
and compare approaches?

I For concreteness, we look at the basic problem of classifying digits
(0 - 9) from images, using the MNIST data set.

I Using the Bayesian paradigm, Ydata is the set of images and their
classifications, and Ypred is the classification of a new image. We
want to define a joint distribution on these, and then use
π(Ypred | Ydata).

I Using ML, you may for example choose a neural network ending
with a softmax layer used to give probabilities for the 10
classification outcomes. You also choose a particular stochastic
algorithm for training of that network, to obtain a single neural
network, which you then use for prediction.

I Is it possible to compare or connect the two approaches?
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Machine learning as Bayesian inference

I The neural network parameters should be identified with θ, the
chosen parameter of the Bayesian model.

I The likelihood defined by the data is the same in both approaches.
We also have conditional independence of the observations, and of
any new prediction, given the parameter θ.

I In Bayesian inference one would find a posterior for θ (i.e., a
posterior on the set of networks) and average over it for predictions.

I In ML one uses (most often) a single network for predictions.

I To make a comparison, we assume the Bayesian approach is to
sample a single θ̂ from the posterior.

I The Bayesian approach will sample θ̂ from a distribution whose
logdensity is

Loglikelihood(θ) + Prior(θ) (1)

where in ML Loglikelihood is the negative of the Loss and Prior

is the negative of a regularization term.

I By comparison, ML will use a similar Equation 1 and a stochastic
algorithm, but also test- and validation-data, to produce a NN θ̂.
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Some important questions (for me)

1. Given an NN, can we establish a clear correspondence

Prior(θ) functions↔ Stochastic ML algorithm producing θ̂

2. Is such a correspondence of practical use when developing new
algorithms / models?

I Note: Priors need to be more advanced than currently used
regularization terms.

I Note: Simulation in the posterior is not straight-forward in the
relevant high dimensions.
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Some work on these questions

I My PhD student Anton Johansson and I are investigating
connections like those above.

I We define geometric properties of θ which can then be used in a
Prior function.

I We also investigate how geometric properties vary and change when
running ML algorithms.

I Anton will present some results fairly soon.
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