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Theorem 1. Given a Bayesian Network and disjoint sets of nodes X, Y, and Z. Perform the
following steps:

1. Remove all links from nodes in Z to their children.

2. Repeatedly, remove all nodes not in X, Y, or Z that do not have any children.

Then X and Y are d-separated given Z in the initial network if and only if, in the new network,
there are no trails from X to Y.

We first prove a sequence of lemmas:

Lemma 1. Step 1 above does not change whether X and Y are d-sepatated given Z.

Proof. It is enough to prove this for a single node in z1 in Z and a link to a single one of its
children; let us call this link L. Let’s assume there exists an active trail from X to Y in the
network where L is deleted. Then the same trail will exist in the initial network, at it is easy to
see that it will also be active there.

Let us instead assume there is an active trail from X to Y in the initial network. Such a trail
cannot include the link L, as it would otherwise have been blocked by z1. Thus the trail will also
exist in the network where L is removed. It will also be active in the reduced network: Outside
of v-structures, it cannot be blocked, or it would have been blocked already in the full network.
In a v-structure, we know that in the intial network there is a path from the v-structure node to
a node in Z. However, if this path is disrupted by removing L, there will already be a path from
the v-structure node to z1. So the trail is active in the reduced network.

In other words, an active trail from X and Y exists in the full network if and only if an active
trail from X to Y exists in the reduced network, and the lemma is proved. �

Lemma 2. Step 2 above does not change whether X and Y are d-separated given Z.

Proof. It is enough to prove this when a single childless v node is removed. Assume there is
an active trail from X to Y in the reduced network. Then this trail will exist also in the original
network, and it is easy to see that it must be active.

If we instead assume there is an active trail from X to Y in the reduced network, then this
trail cannot contain v: Otherwise it would have been blocked by v. Thus the trail exists also in
the reduced network, and it is easy to see that it must be active there.
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In other words, and active trail from X to Y exists in the full network if and only if an active
trail from X to Y exists in the reduced network, and the lemma is proved. �

Lemma 3. A network where the two steps in the theorem have been performed has the following
properties:

1. All nodes not in X, Y, or Z have a descendant in either X, Y, or Z.

2. Nodes in Z have no descendants.

Proof. Assume that a node v not in X, Y , or Z does not have any descendants in X, Y , or Z. If v
has no descendants, it would have been removed in Step 2, so that is impossible. Furthermore,
let w denote the descendant with the maximum number of generations separating v and w. Then
w has no descendants and is not in X, Y , or Z. This, too, violates the assumption that Step 2 has
been performed.

The second condition follows directly. �

Lemma 4. Assume a Bayesian Network fulfills the conditions of the lemma above. If it contains
any trails from X to Y it will also contain an active trail from X to Y.

Proof. Generally, a trail can be blocked either outside v-structures, or in a v-structure. In a
network fulfilling condtion 2 above, no trail can be blocked outside a v-structure, as that would
require some node in Z to have a descendant.

Now assume that the network contains an inactive trail blocked at n v-structures. We prove
that there then exists a trail blocked at n − 1 v-structures: Take a trail blocked at n v-structures
and let v be a node at one of these v-structures. Then v has no descendants in Z, so according to
the first condition above, it must have a descendant in either X or Y . If it has a descendant in X,
we see that we may construct a new trail from X to Y , using this descendancy, where v is not in a
v-structure. The same is the case if v has a descendant in Y . Thus we may construct a trail with
n − 1 blocking v-structures.

By recursion we may now construct a trail that is blocked at no v-structures, and which is
thus not blocked at all: It is an active trail. �

We can now put together a proof of the theorem: Assume X and Y are d-separated given Z.
Using Lemma 1 and 2, we get that X and Y would also be d-separated in the network obtained by
performing steps 1 and 2 of the theorem. According to Lemma 3, the reduced network has the
properties listed in that Lemma. Now assumed the reduced network contained any trail from X to
Y . Then according to Lemma 4 it would also contain an active trail, contradicting the assumption
that X and Y are d-separated in this network. Thus no trail from X to Y exists.

Conversely, assume there is no trail from X to Y in the reduced network. Then surely there is
no active trail, so X and Y are d-separated in the reduced network. Thus according to Lemmas 1
and 2 they are d-separated in the original network.


