Matematisk Statistik och Disktret Matematik, MVE055/MSG810, HT19 Föreläsning 8

Nancy Abdallah

Chalmers - Göteborgs Universitet
September 25, 2019

Interval Estimate - Confidence Intervals

- A point estimate to a parameter θ is usually not accurate. To be more accurate, we estimate θ using the method of interval estimation.
■ Confidence intervals (C.I) are used for interval estimation.
- A 100 $(1-\alpha) \%$ confidence interval for a parameter θ is an interval $\left[L_{1}, L_{2}\right]$ such that

$$
P\left(L_{1} \leq \theta \leq L_{2}\right)=1-\alpha
$$

Interval Estimate - Confidence Intervals

- A point estimate to a parameter θ is usually not accurate. To be more accurate, we estimate θ using the method of interval estimation.
■ Confidence intervals (C.I) are used for interval estimation.
- A 100 $(1-\alpha) \%$ confidence interval for a parameter θ is an interval $\left[L_{1}, L_{2}\right]$ such that

$$
P\left(L_{1} \leq \theta \leq L_{2}\right)=1-\alpha
$$

Example

Suppose a researcher, interested in obtaining an estimate of the average level of some enzyme in a certain human population, takes a sample of 10 individuals, determines the level of the enzyme in each, and computes a sample mean of $\bar{x}=22$. Suppose further it is known that the variable of interest is approximately normally distributed with a variance of 45 . Find a 95\% confidence interval on μ.

Example (Solution)

We need to find an interval $\left[L_{1} L_{2}\right]$ such that $P\left(L_{2} \leq \mu \leq L_{2}\right)=0.95$. Note first that since X is normally distributed with mean μ and variance $\sigma^{2}=45$, then \bar{X} is normally distributed with mean μ and variance σ^{2} / n, and therefore $\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$ is standard normal.
Find first z such that $P\left(-z \leq \frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \leq z\right)=0.95$. Using the table we get $z=1.96$.
$P(-1.96 \sigma / \sqrt{n} \leq \bar{X}-\mu \leq 1.96 \sigma / \sqrt{n})=0.95$, therefore
$P(\bar{X}-1.96 \sigma / \sqrt{n} \leq \mu \leq \bar{X}+1.96 \sigma / \sqrt{n})=0.95$.
Hence, $L_{1}=\bar{X}-1.96 \sigma / \sqrt{n}=17.84$ and
$L_{2}=\bar{X}+1.96 \sigma / \sqrt{n}=26.16$.

Confidence interval on μ from a normally distributed population with known σ^{2}

In general, a $100(1-\alpha)$ confidence interval is given by

$$
\bar{x} \pm z_{(\alpha / 2)} \frac{\sigma}{\sqrt{n}}
$$

where $z_{(\alpha / 2)}$ is the value of z for which $P\left(z \geq z_{(\alpha / 2)}\right)=\frac{\alpha}{2}$ (or equivalently $\left.P\left(z<z_{\alpha / 2}\right)=1-\alpha / 2\right)$ in the standard normal distribution.

Interpretation

■ Probabilistic Interpretation: In repeated sampling, from a normally distributed population with a known standard deviation, $100(1-\alpha)$ percent of all intervals of the form $\bar{x} \pm z_{(\alpha / 2} \frac{\sigma}{\sqrt{n}}$ will in the long run include the population mean μ.
■ Practical Interpretation: When sampling is from a normally distributed population with known standard deviation, we are $100(1-\alpha)$ percent confident that the single computed interval, $\bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$, contains the population mean μ.

Example

A physical therapist wished to estimate, with 99 percent confidence, the mean maximal strength of a particular muscle in a certain group of individuals. He is willing to assume that strength scores are approximately normally distributed with a variance of 144 . A sample of 15 subjects who participated in the experiment yield a mean of 84.3 .

Solution $\alpha=0.01$. We need to find $z_{\alpha / 2}$, i.e. z such that $P(z<$ $\left.z_{\alpha / 2}\right)=0.995$. Using the table, we get $z_{\alpha / 2}=2.58$. Therefore, a 99\% confidence interval is

$$
(84.3-(2.58) \sqrt{144 / 15}, 84.3+(2.58) \sqrt{144 / 155})
$$

which is

$$
(76.3,92.3)
$$

Sampling from non-normal distribution

Usually the distribution of the population is not normal or is not even known. How do we construct a confidence interval in this case?

Definition (The central limit theorem)

Let X_{1}, \ldots, X_{n} be a random sample of size n from a distribution with mean μ and variance σ^{2}. Then for large n, \bar{X} is approximately normal with mean μ and variance σ^{2} / n.

Remark n is considered large if $n \geq 25$.

Example

Punctuality of patients in keeping appointments is of interest to a research team. In a study of patient flow through the offices of general practitioners, it was found that a sample of 35 patients was 17.2 minutes late for appointments, on the average. Previous research had shown the standard deviation to be about 8 minutes. The population distribution was felt to be nonnormal.
1 Approximate the distribution of the sample mean \bar{X}. What are the parameters?
2 What is the 90 percent confidence interval for μ, the true mean amount of time late for appointments?

Example (Solution)

1 Since $n \geq 25$ then \bar{X} is approximately normally distributed with mean equals to the population mean μ (unknown) and standard deviation $\sigma / \sqrt{n}=8 / \sqrt{35}=1.3522$
2 We need to find first $z_{\alpha / 2}=z_{0.05}$. Using the table of standard normal distribution we get $z_{0.05=1.645}$. Hence, a 90% confidence interval is given by

$$
(17.2-1.645(1.3522), 17.2+1.645(1.3522))
$$

which is
(15.0, 19.4)

Distribution for population variance

Let X_{1}, \ldots, X_{n} be a random sample. Recall that $S^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}$ is an unbiased estimate for the variance σ^{2}.
Theorem
Suppose that X_{1}, \ldots, X_{n} are drawn from a normal distribution with mean μ and variance σ^{2}. The random variable

$$
(n-1) S^{2} / \sigma^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} / \sigma^{2}
$$

has a chi-squared distribution with n-1 degrees of freedom.

Confidence Interval for population variance

■ To find a $100(1-\alpha) \%$ C.I. for σ^{2}, we find first a $100(1-\alpha) \%$ C.I. for $(n-1) S^{2} / \sigma^{2}$.
A C.I. for $(n-1) S^{2} / \sigma^{2}$ is given by

$$
\left(\chi_{1-\alpha / 2^{\prime}}^{2} \chi_{\alpha / 2}^{2}\right)
$$

i.e. $P\left(\chi_{1-\alpha / 2}^{2} \leq(n-1) S^{2} / \sigma^{2} \leq \chi_{\alpha / 2}^{2}\right)=1-\alpha$

■ By using operation on inequalities, we obtain the C.I on σ^{2}. A $100(1-\alpha) \%$ C.I. for σ^{2} is then

$$
\left(\frac{(n-1) S^{2}}{\chi_{\alpha / 2}^{2}}, \frac{(n-1) S^{2}}{\chi_{1-\alpha / 2}^{2}}\right)
$$

Example

Given the following data

$$
9.7,12.3,11.2,5.1,24.8,14.8,17.7
$$

Find a 95\% confidence interval for the variance and for the standard deviation.

Solution The sample variance is $s^{2}=39.763$. The degrees of freedom are $n-1=6$ and $\alpha=0.05$. From the table, we get $\chi_{0.975}^{2}=1.237$ and $\chi_{0.025}^{2}=14.449$. Hence, our 95% C.I for σ^{2} is

$$
\left(\frac{6(39.763)}{14.449}, \frac{6(39.763)}{1.237}\right)=(16.512,192.868)
$$

and the 95% C.I. for σ is
$(4.063,13.888)$

Student T-distribution

- Let Z and X be independent random variables such that $Z \in N(0,1)$ and $X \in \chi_{\gamma}^{2}$. Then

$$
T=\frac{Z}{\sqrt{\chi^{2} / \gamma}}
$$

is said to have a Student T distribution with γ degrees of freedom.
■ Properties of T-distribution:

- The graph of the density function is a bell-shape symmetrical about the mean which is equal to 0 .
- It approaches the normal distribution as n increases.

Confidence interval of \bar{x} from a normally distributed population with unknown σ

Let X_{1}, \ldots, X_{n} be a random sample drawn from a normally distributed population with unknown μ and σ.
\square It is easy to show that $\frac{\bar{x}-\mu}{S / \sqrt{n}}$ follows a T distribution with $n-1$ degrees of freedom.

- To find a $100(1-\alpha) \%$ C.I., we use the same method as for the normal distribution, i.e.

$$
\bar{x} \pm t_{\alpha / 2} s / \sqrt{n}
$$

where \bar{x} is the mean of the sample, s its standard deviation, and $t_{\alpha / 2}$ is the value of t for which
$P\left(t<t_{\alpha / 2}\right)=1-\alpha / 2$.
■ The values of t can be found using table VI p.699-700.

Example

A set of data on the sulfur dioxide concentration (in micrograms per cubic meter) in a Bavarian forest has been collected. The sample contains 24 values, it mean is $53.92 \mu \mathrm{~g} / \mathrm{m}^{3}, 5$ the sample variance is 101.480 and the standard deviation is $10.07 \mu \mathrm{~g} / \mathrm{m}^{3}$. To obtain a 95% C.I. we find $t_{\alpha / 2}$ from the table. $t_{0.025}=2.069$. Hence, a 95% C.I. is given by

$$
(53.93-2.069(10.07) / \sqrt{24}, 53.93+2.069(10.07) / \sqrt{24})
$$

which is equal to

$$
(49.67,58.17)
$$

Summary - C.I. for the population mean

