Matematisk Statistik och Disktret Matematik, MVE055/MSG810, HT19

Föreläsning 8

Nancy Abdallah

Chalmers - Göteborgs Universitet

September 25, 2019

Interval Estimate - Confidence Intervals

- A point estimate to a parameter θ is usually not accurate. To be more accurate, we estimate θ using the method of interval estimation.
- Confidence intervals (C.I) are used for interval estimation.
- A $100(1-\alpha)\%$ confidence interval for a parameter θ is an interval $[L_1, L_2]$ such that

$$P(L_1 \leq \theta \leq L_2) = 1 - \alpha$$

How to construct a Confidence Interval?

Interval Estimate - Confidence Intervals

- A point estimate to a parameter θ is usually not accurate. To be more accurate, we estimate θ using the method of interval estimation.
- Confidence intervals (C.I) are used for interval estimation.
- A $100(1-\alpha)\%$ confidence interval for a parameter θ is an interval $[L_1, L_2]$ such that

$$P(L_1 \leq \theta \leq L_2) = 1 - \alpha$$

How to construct a Confidence Interval?

Suppose a researcher, interested in obtaining an estimate of the average level of some enzyme in a certain human population, takes a sample of 10 individuals, determines the level of the enzyme in each, and computes a sample mean of $\overline{x}=22$. Suppose further it is known that the variable of interest is approximately normally distributed with a variance of 45. Find a 95% confidence interval on μ .

Example (Solution)

We need to find an interval $[L_1L_2]$ such that $P(L_2 \le \mu \le L_2) = 0.95$. Note first that since X is normally distributed with mean μ and variance $\sigma^2 = 45$, then \overline{X} is normally distributed with mean μ and variance σ^2/n , and therefore $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ is standard normal.

Find first z such that $P(-z \le \frac{X-\mu}{\sigma/\sqrt{n}} \le z) = 0.95$. Using the table we get z = 1.96.

$$P(-1.96\sigma/\sqrt{n} \le \overline{X} - \mu \le 1.96\sigma/\sqrt{n}) = 0.95$$
, therefore $P(\overline{X} - 1.96\sigma/\sqrt{n} \le \mu \le \overline{X} + 1.96\sigma/\sqrt{n}) = 0.95$. Hence, $L_1 = \overline{X} - 1.96\sigma/\sqrt{n} = 17.84$ and

$$L_2 = \overline{X} + 1.96\sigma/\sqrt{n} = 26.16.$$

Confidence interval on μ from a normally distributed population with known σ^2

In general, a $100(1-\alpha)$ confidence interval is given by

$$\overline{x} \pm z_{(\alpha/2)} \frac{\sigma}{\sqrt{n}}$$

where $z_{(\alpha/2)}$ is the value of z for which $P(z \ge z_{(\alpha/2)}) = \frac{\alpha}{2}$ (or equivalently $P(z < z_{\alpha/2}) = 1 - \alpha/2$) in the standard normal distribution.

Interpretation

- **Probabilistic Interpretation:** In repeated sampling, from a normally distributed population with a known standard deviation, $100(1-\alpha)$ percent of all intervals of the form $\overline{x} \pm z_{(\alpha/2} \frac{\sigma}{\sqrt{n}}$ will in the long run include the population mean μ .
- **Practical Interpretation:** When sampling is from a normally distributed population with known standard deviation, we are $100(1-\alpha)$ percent confident that the single computed interval, $\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$, contains the population mean μ .

A physical therapist wished to estimate, with 99 percent confidence, the mean maximal strength of a particular muscle in a certain group of individuals. He is willing to assume that strength scores are approximately normally distributed with a variance of 144. A sample of 15 subjects who participated in the experiment yield a mean of 84.3.

Solution $\alpha = 0.01$. We need to find $z_{\alpha/2}$, i.e. z such that $P(z < z_{\alpha/2}) = 0.995$. Using the table, we get $z_{\alpha/2} = 2.58$. Therefore, a 99% confidence interval is

$$(84.3 - (2.58)\sqrt{144/15}, 84.3 + (2.58)\sqrt{144/155})$$

which is

(76.3, 92.3)

Sampling from non-normal distribution

Usually the distribution of the population is not normal or is not even known. How do we construct a confidence interval in this case?

Definition (The central limit theorem)

Let X_1, \ldots, X_n be a random sample of size n from a distribution with mean μ and variance σ^2 . Then for large n, \overline{X} is approximately normal with mean μ and variance σ^2/n .

Remark *n* is considered large if $n \ge 25$.

Punctuality of patients in keeping appointments is of interest to a research team. In a study of patient flow through the offices of general practitioners, it was found that a sample of 35 patients was 17.2 minutes late for appointments, on the average. Previous research had shown the standard deviation to be about 8 minutes. The population distribution was felt to be nonnormal.

- 1 Approximate the distribution of the sample mean \overline{X} . What are the parameters?
- 2 What is the 90 percent confidence interval for μ , the true mean amount of time late for appointments?

Example (Solution)

- Since $n \ge 25$ then \overline{X} is approximately normally distributed with mean equals to the population mean μ (unknown) and standard deviation $\sigma/\sqrt{n} = 8/\sqrt{35} = 1.3522$
- 2 We need to find first $z_{\alpha/2} = z_{0.05}$. Using the table of standard normal distribution we get $z_{0.05=1.645}$. Hence, a 90% confidence interval is given by

$$(17.2 - 1.645(1.3522), 17.2 + 1.645(1.3522))$$

which is

Distribution for population variance

Let X_1, \ldots, X_n be a random sample. Recall that $S^2 = \frac{\sum_{i=1}^{n} (X_i - X_i)^2}{n-1}$ is an unbiased estimate for the variance σ^2 .

Theorem

Suppose that X_1, \ldots, X_n are drawn from a normal distribution with mean μ and variance σ^2 . The random variable

$$(n-1)S^2/\sigma^2 = \sum_{i=1}^n (X_i - \overline{X})^2/\sigma^2$$

has a chi-squared distribution with n-1 degrees of freedom.

Confidence Interval for population variance

■ To find a $100(1-\alpha)\%$ C.I. for σ^2 , we find first a $100(1-\alpha)\%$ C.I. for $(n-1)S^2/\sigma^2$. A C.I. for $(n-1)S^2/\sigma^2$ is given by

$$(\chi^2_{1-\alpha/2},\chi^2_{\alpha/2})$$

i.e.
$$P(\chi_{1-\alpha/2}^2 \le (n-1)S^2/\sigma^2 \le \chi_{\alpha/2}^2) = 1-\alpha$$

By using operation on inequalities, we obtain the C.I on σ^2 . A 100(1 – α)% C.I. for σ^2 is then

$$\left(\frac{(n-1)S^2}{\chi_{\alpha/2}^2}, \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2}\right)$$

Given the following data

Find a 95% confidence interval for the variance and for the standard deviation.

Solution The sample variance is $s^2=39.763$. The degrees of freedom are n-1=6 and $\alpha=0.05$. From the table, we get $\chi^2_{0.975}=1.237$ and $\chi^2_{0.025}=14.449$. Hence, our 95% C.I for σ^2 is

$$\left(\frac{6(39.763)}{14.449}, \frac{6(39.763)}{1.237}\right) = (16.512, 192.868)$$

and the 95% C.I. for σ is

Student T-distribution

Let Z and X be independent random variables such that $Z \in N(0, 1)$ and $X \in \chi^2_{\gamma}$. Then

$$T = \frac{Z}{\sqrt{\chi^2/\gamma}}$$

is said to have a Student T distribution with γ degrees of freedom.

- Properties of T-distribution:
 - The graph of the density function is a bell-shape symmetrical about the mean which is equal to 0.
 - It approaches the normal distribution as n increases.

Confidence interval of \overline{x} from a normally distributed population with unknown σ

Let X_1, \ldots, X_n be a random sample drawn from a normally distributed population with unknown μ and σ .

- It is easy to show that $\frac{\overline{X}-\mu}{S/\sqrt{n}}$ follows a T distribution with n-1 degrees of freedom.
- To find a $100(1-\alpha)\%$ C.I., we use the same method as for the normal distribution, i.e.

$$\overline{x} \pm t_{\alpha/2} s / \sqrt{n}$$

where \overline{x} is the mean of the sample, s its standard deviation, and $t_{\alpha/2}$ is the value of t for which $P(t < t_{\alpha/2}) = 1 - \alpha/2$.

■ The values of *t* can be found using table VI p.699-700.

A set of data on the sulfur dioxide concentration (in micrograms per cubic meter) in a Bavarian forest has been collected. The sample contains 24 values, it mean is 53.92 $\mu g/m^3$,5 the sample variance is 101.480 and the standard deviation is 10.07 $\mu g/m^3$. To obtain a 95% C.I. we find $t_{\alpha/2}$ from the table. $t_{0.025} = 2.069$. Hence, a 95% C.I. is given by

$$(53.93 - 2.069(10.07)/\sqrt{24}, 53.93 + 2.069(10.07)/\sqrt{24})$$

which is equal to

(49.67, 58.17)

Summary - C.I. for the population mean

