Lecture 4: Continuous distributions
 MVE055 / MSG810 Mathematical statistics and discrete mathematics)

Moritz Schauer
Last updated September 7, 2020, 2020
GU \& Chalmers University of Technology

Continuous distributions

Continuous distributions

Continuous random variables

A continuous random variable can assume all values in one or several intervals of real numbers, and the probability of assuming a particular value is zero.

A continuous random variable X is described by its probability density function (pdf) $f(x)$

$$
\begin{gathered}
\mathrm{P}(a \leq X \leq b)=\int_{a}^{b} f(x) \mathrm{d} x \\
P(X=x)=0
\end{gathered}
$$

and

$$
\mathrm{P}(a \leq X \leq b)=\mathrm{P}(a<X \leq b)=\mathrm{P}(a \leq X<b)=\mathrm{P}(a<X<b)
$$

Continuous distributions

Probability density function (pdf)

A function is a probability density function (pdf) if and only if

$$
f(x) \geq 0 \quad \text { and } \quad \int_{-\infty}^{\infty} f(x) \mathrm{d} x=1 .
$$

Example

Show that the function

$$
f(x)= \begin{cases}\frac{1}{b-a} & \text { if } a<x<b \\ 0 & \text { otherwise }\end{cases}
$$

is a pdf.

$$
\begin{gathered}
f(x) \geq 0 \\
\int_{-\infty}^{+\infty} f(t) d t=\int_{-\infty}^{a} 0 \mathrm{~d} t+\int_{a}^{b} \frac{1}{b-a} d t+\int_{b}^{\infty} 0 \mathrm{~d} t \\
= \\
\int_{a}^{b} \frac{1}{b-a} \mathrm{~d} t=\frac{b-a}{b-a}=1 \quad
\end{gathered}
$$

Continuous distributions

Cumulative distribution function

The cumulative distribution function F of a continuous distribution is

$$
F(x)=\mathrm{P}(X \leq x)=\int_{\infty}^{x} f(t) \mathrm{d} t
$$

$$
\mathrm{P}(a \leq X \leq b)=F(b)-F(a)
$$

Example

Find cumulative distribution function for X with pdf
$f(x)= \begin{cases}\frac{1}{b-a} & \text { if } a<x<b \\ 0 & \text { otherwise }\end{cases}$

$$
F(x)=\int_{-\infty}^{x} f(t) \mathrm{d} t= \begin{cases}0 & x \leq a \\ \frac{x-a}{b-a} & x \in[a, b] \\ 1 & x \geq b\end{cases}
$$

Expected value

The expected value is an "average" outcome of a random variable.

Expected value

The expected value of a random variable is defined as

$$
\mathrm{E}(X)= \begin{cases}\int_{-\infty}^{\infty} x f(x) \mathrm{d} x & \text { if } X \text { is continuous, } \\ \sum_{k=-\infty}^{\infty} k f(k) & \text { if } X \text { is discrete. }\end{cases}
$$

Rules for computing expected values

For the expected value,

- $\mathrm{E}(a)=a$.
- $\mathrm{E}(a X)=a \mathrm{E}(X)$.
- $\mathrm{E}(a X+b)=a \mathrm{E}(X)+b$.
- $\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)$.

Here X and Y are two random variables and a and b are constants.

Uniform distribution

Uniform distribution

The continuous distribution with pdf

$$
f(x)=\left\{\begin{array}{ll}
\frac{1}{b-a} & \text { if } a<x<b \\
0 & \text { otherwise }
\end{array} .\right.
$$

is called the uniform distribution. Facts: $\mathrm{E} X=(a+b) / 2$.

$$
\mathrm{E} X=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x=\frac{1}{b-a} \int_{a}^{b} t \mathrm{~d} t=\frac{\frac{1}{2} b^{2}-\frac{1}{2} a^{2}}{a-b}=(a+b) / 2
$$

Transformations

If we transform the random variables by a function h we have:

Theorem

$$
\mathrm{E}(h(X))= \begin{cases}\sum_{k=-\infty}^{\infty} h(k) f(k), & \text { if } X \text { is discrete, } \\ \ldots \\ \int_{-\infty}^{\infty} h(x) f(x) \mathrm{d} x, & \text { if } X \text { is continuous. }\end{cases}
$$

Variance

Variance and standard deviation

Variance

The variance of a random variable is defined as

$$
\mathrm{V}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]
$$

where $\mu=\mathrm{E}[X]$ is the expected value of X.
In words, this is the expected squared deviation of the mean. The variance can be calculated by

$$
\mathrm{V}(X)= \begin{cases}\sum_{k=-\infty}^{\infty}(k-\mu)^{2} f(k), & \text { for discrete } X \\ \int_{-\infty}^{\infty}(x-\mu)^{2} f(x) \mathrm{d} x, & \text { for continuous } X\end{cases}
$$

Sometimes it is easiest to compute $\mathrm{V}(X)=\mathrm{E}\left(X^{2}\right)-\mu^{2}$.
The standard deviation of a random variable X is defined as $\sigma=\sqrt{\mathrm{V}(X)}$.

Rules for computing variance

For the variance

- $\mathrm{V}(a)=0$.
- $\mathrm{V}(a X)=a^{2} \mathrm{~V}(X)$.
- $\mathrm{V}(a X+b)=a^{2} \mathrm{~V}(X)$.
- $\mathrm{V}(X+Y)=\mathrm{V}(X)+\mathrm{V}(Y)$, if X and Y are independent.

Here X and Y are two random variables and a and b are constants.

Normal distributions

Normal distribution

Density and distribution function of $Z \sim \mathrm{~N}(0,1)$ and $\mathrm{N}(4,1)$

pdf's for some other possible parameters

Normal distribution

Normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$

A continuous X is normally distributed, $\mathrm{N}\left(\mu, \sigma^{2}\right)$, with parameters $\mu \in \mathbb{R}$ and $\sigma>0$, if it has pdf

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right)
$$

The distribution function is

$$
F(x)=\int_{-\infty}^{x}=\ldots \text { has no nice solution }
$$

Parameters

If $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ then $\mathrm{E}(X)=\mu$ and $\mathrm{V}(X)=\sigma^{2}$.

Normal distribution pdf

Standard normal distribution

Standard normal distribution

A continuous random variable Z is standard normally distributed if $Z \sim \mathrm{~N}(0,1) . \mathrm{E}[Z]=0$ and $\operatorname{Var}(Z)=1^{2}$.
We denote pdf and cdf by $\varphi(x)$ and $\Phi(x)$

Normalisation

Theorem

If $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ then $a X+b \sim \mathrm{~N}\left(a \mu+b, a^{2} \sigma^{2}\right)$.

That means for $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ that

- $X=\mu+\sigma Z$ where $Z \sim \mathrm{~N}(0,1)$.
- $Z=(X-\mu) / \sigma \sim \mathrm{N}(0,1)$.

We use this to sample random variables, and to compute probabilities:
$\mathrm{P}(X<x)=\mathrm{P}\left(\frac{X-\mu}{\sigma}<\frac{x-\mu}{\sigma}\right)=\mathrm{P}\left(Z<\frac{x-\mu}{\sigma}\right)=\Phi\left(\frac{x-\mu}{\sigma}\right)$.

Relict of the past: Normal distribution table

Table gives $\Phi(z)=\mathrm{P}(X \leq z)$ for $Z \sim \mathrm{~N}(0,1)$.
For negative values use that $\Phi(-z)=1-\Phi(z)$.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
$0.0:$.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
$0.1:$.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
$0.2:$.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
$0.3:$.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
$0.4:$.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
$0.5:$.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
$0.6:$.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
$0.7:$.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
$0.8:$.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
$0.9:$.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
$1.0:$.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
$1.1:$.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
$1.2:$.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
$1.3:$.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
$1.4:$.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
$1.5:$.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
$1.6:$.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
$1.7:$.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
$1.8:$.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
$1.9:$.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
$2.0:$.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
$2.1:$.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
$2.2:$.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
$2.3:$.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
$2.4:$.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
$2.5:$.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952

