Lecture 3: Bayes theorem and discrete distributions

MVE055 / MSG810 Mathematical statistics and discrete mathematics)

Moritz Schauer
Last updated September 7, 2020, 2020
GU \& Chalmers University of Technology

3 group assignment

- Skip list. Deadline Oct 7. On Canvas.
- Statistical research problem. Deadline Oct 16.
- Win Stone-Paper-Scissors with Markov chains. Deadline Oct. 25. Suggested programming languange: Julia

Conditional distribution

If we know some event B occurs, the probability of A given the new information B can be calculated as follows:

Conditional probability

Assume that $\mathrm{P}(B)>0$. The conditional probability of A given B is defined as

$$
\begin{equation*}
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)} \tag{0.1}
\end{equation*}
$$

Multiplication rule for probabilities

For events A and B it holds

$$
\mathrm{P}(A \cap B)=\mathrm{P}(B \mid A) \mathrm{P}(A)=\mathrm{P}(A \mid B) \mathrm{P}(B)
$$

The multiplication rule is useful to calculate probabilities of multiple events affecting each other.

Bayes formula

Bayes formula

For events A and B

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(B \mid A) \mathrm{P}(A)}{\mathrm{P}(B)}
$$

Often it is useful to rewrite the denominator $\mathrm{P}(B)$

$$
\mathrm{P}(B)=\mathrm{P}(B \mid A) \mathrm{P}(A)+\mathrm{P}\left(B \mid A^{c}\right) \mathrm{P}\left(A^{c}\right)
$$

Independent events

Two events A and B are independent if knowing whether B occured does not change the probability of A

$$
\mathrm{P}(A \mid B)=\mathrm{P}(A) .
$$

Independent events
Two events A and B are independent if $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$.

Example with the bugs

Drawing a random bug out of the aquarium, with (g)reen and (r)ed bugs on (I) and and (w)ater.

Frequency table and probability table

Random variables

Random variables

A random variable is a numeric quantity whose value depends on the outcome of a random event.

A random variable X is a real valued function that takes elements from Ω as argument.

We denote random variables with capital letters, often X, Y or Z.

Discrete random variables

Discrete random variables

A discrete random variables only takes a finite or countable number of values.

Integer valued random variables are automatically discrete. For now we only consider integer valued random variables.

Probability mass function

Probability mass function

For a integer valued random variable X we define the probability mass function $f(k)$ (or $f_{X}(k)$) by $f(k)=\mathrm{P}(X=k)$.

Probability mass function

Flip two coins... count the number of heads. Call it X.

$$
f(0)=\frac{1}{4}, f(1)=\frac{1}{2} \text { and } f(2)=\frac{1}{4}
$$

Probability mass function

Not all functions are probability mass functions. Because they describe probability distributions, some conditions must hold.
$f(k)$ is a probability mass function if and only if

- $f(k) \geq 0$ for all k.
- $\sum_{k=-\infty}^{\infty} f(k)=1$.

Distribution function

Distribution function

Assume X is a discrete random variable. Its distribution function is given by

$$
F(x)=\mathrm{P}(X \leq x)=\sum_{k \leq x} f_{X}(k)
$$

Flip two coins... count the number of heads. Call it X.
$f(0)=\frac{1}{4}, f(1)=\frac{1}{2}$ and $f(2)=\frac{1}{4}$

$$
F(0)=\frac{1}{4}, \quad F(1)=\frac{1}{4}+\frac{1}{2}, \quad F(1)=1
$$

Flip two coins... count the number of heads. $f(0)=\frac{1}{4}, f(1)=\frac{1}{2}$ and $f(2)=\frac{1}{4}$
What is $P(X>0)$?

$$
P(X>0)=f(1)+f(2)=\frac{3}{4}
$$

Rule

$$
\mathrm{P}(m \leq X \leq n)=\sum_{k=m}^{n} f(k)
$$

for any integers m and n.

Distribution function

What is the probability to throw k times heads in a row with a fair coin?

$$
f(0)=\frac{1}{2}, \quad f(1)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}, \quad f(2)=\frac{1}{8}, \quad f(k)=\left(\frac{1}{2}\right)^{k+1}
$$

$$
P(X>0)=f(1)+f(2)+f(3)+\ldots=1-P(X=0)=1-f(0)
$$

Distribution function

For $F(x)$ it holds

- $F(x)$ is increasing
- $F(x) \rightarrow 1$ for $x \rightarrow \infty$.
- $F(x) \rightarrow 0$ for $x \rightarrow-\infty$.

Distribution function

Also

- $\mathrm{P}(a<X \leq b)=F(b)-F(a)$.
- $\mathrm{P}(X>a)=1-F(a)$.
- For discrete $f(m)=F(m)-F(m-1)$.

Expected value

We are often interested in the "average" outcome of a random variable.

Expected value

The expected value of a random variable is defined as

$$
\mathrm{E}(X)= \begin{cases}\sum_{k=-\infty}^{\infty} k f(k) & \text { if } X \text { is discrete } \\ \int_{-\infty}^{\infty} x f(x) \mathrm{d} x & \text { if } X \text { is continuous. }\end{cases}
$$

Recall: the average using fractions

Data set: grades of 24 students

$$
5,5,6,5,6,6,6,5,5,7,6,7,5,5,5,6,6,6,5,6,5,7,6,7
$$

Table:

grade	$x_{1}=7$	$x_{2}=6$	$x_{3}=5$
fraction of students	$p_{1}=4 / 24$	$p_{2}=10 / 24$	$p_{3}=10 / 24$

Average One can write the average in different forms

$$
\begin{gathered}
\text { Average }=\frac{5+5+6+\cdots+5+7+6+7}{24} \\
=\frac{7 \cdot 4+6 \cdot 10+5 \cdot 10}{24}=7 \cdot \frac{4}{24}+6 \cdot \frac{10}{24}+5 \cdot \frac{10}{24}=\sum_{i=1}^{3} x_{i} \cdot p_{i}
\end{gathered}
$$

Expected value

The expected value of a discrete random variable X can also be written as

$$
\begin{gathered}
\mu=\mathrm{E}(X)=\sum_{i=1}^{k} x_{i} \cdot \underbrace{\mathrm{P}\left(X=x_{i}\right)}_{f\left(x_{i}\right)} \\
=x_{1} \cdot \mathrm{P}\left(X=x_{1}\right)+x_{2} P\left(X=x_{2}\right)+\cdots+x_{k} \cdot \mathrm{P}\left(X=x_{k}\right)
\end{gathered}
$$

Here x_{i} are the possible outcomes and $P\left(X=x_{i}\right)$ are the probabilities of each outcome.

Expected value

Flip two coins... count the number of heads.

$$
\begin{aligned}
& f(0)=\frac{1}{4}, f(1)=\frac{1}{2} \text { and } f(2)=\frac{1}{4} \\
& E[X]=0 \cdot \frac{1}{4}+1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}=1
\end{aligned}
$$

Rules for computing expected values

For the expected value,

- $\mathrm{E}(a)=a$.
- $\mathrm{E}(a X)=a \mathrm{E}(X)$.
- $\mathrm{E}(a X+b)=a \mathrm{E}(X)+b$.
- $\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)$.

Here X and Y are two random variables and a and b are constants.

Transformations

If we transform the random variables by a function h we have:

Theorem

$$
\mathrm{E}(h(X))=\sum_{k=-\infty}^{\infty} h(k) f(k)
$$

Common distributions

Bernoulli distribution

The Bernoulli distribution describes a random experiment that can either succeed (with probability p) or fail (with probability $1-p$.) Suppose we make a random experiment which succeeds with probability p and set

$$
X= \begin{cases}1, & \text { if the experiment succeeds } \\ 0, & \text { in case of failure. }\end{cases}
$$

We have $f(1)=p$ and $f(0)=1-p$. Sometimes useful to write as $f(k)=p^{k}(1-p)^{1-k}$ for $k \in\{0,1\}$.

Bernoulli distribution

A random variable X is Bernoulli distributed if it has probability mass function $f(k)=p^{k}(1-p)^{1-k}$, where $k=0,1$. We write $X \sim \operatorname{Ber}(p)$.

The binomial distribution

The binomial distribution describes the probability of having exactly k successes in n independent Bernoulli trials with probability of success p.

If X is Binomial with parameters n and p we write:

$$
X \sim \operatorname{Bin}(n, p)
$$

The binomial distribution

$$
n=10
$$

$$
p=0.1
$$

The binomial distribution

The binomial distribution describes the probability of having exactly k successes in n independent Bernoulli trials with probability of success p.

If X is Binomial with parameters n and p we write:

$$
X \sim \operatorname{Bin}(n, p)
$$

Binomial distribution

A random variable X is Binomial distributed with parameters n, p if

$$
\mathrm{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Sum of binomial distributed random variables

Sum of binomial distributed random variables.
If $X_{1} \sim \operatorname{Bin}(n, p)$ and $X_{2} \sim \operatorname{Bin}(m, p)$ are independent, then $X_{1}+X_{2} \sim \operatorname{Bin}(m+n, p)$.

Geometric distribution

The experiment consists of a series of independent Bernoulli trials with probability of success equal to p.

The random variable X denotes the number of trials needed to get the first success.
p is called the parameter of X.

The geometric distribution

The geometric distribution describes the probability distribution of the number of failures k before the first success, for a single event succeeding with probability p.

The geometric distribution

Geometric distribution

A random variable X is geometrically distributed with parameters p if

$$
\mathrm{P}(X=k)=(1-p)^{k-1} p, \quad k=1,2, \ldots
$$

We write $X \sim \operatorname{Geom}(p)$.

