Lecture 1 & 2

MVE055 / MSG810 Mathematical statistics and discrete mathematics)

Moritz Schauer Last updated August 31, 2020, 2020

GU & Chalmers University of Technology

Teachers

Moritz Schauer: Instructor Room: H3029

E-mail: smoritz@chalmers.se

Noa Onoszko: Teaching assistant

E-mail: onoszko@student.chalmers.se

Time table

Lecture	Monday	13-15
Exercise	Tuesday	10-12
Lecture	Wednesday	10-12
Exercise	Thursday	10-12

Course overview

https://chalmers.instructure.com/courses/7663

Examination consists of two parts.

Examination consists of two parts.

Exam:

 "För godkänd på kursen krävs godkänd på de tre grupparbetana samt godkänd på skriftlig tentamen. Betyget på kursen baseras på betyget på tentan. Tentan ger maximalt 30 poäng; för godkänd krävs åtminstone 12 poäng. För betyg 4 resp. 5 för Chalmers studenter krävs dessutom 18 resp. 24 poäng."

4

Examination consists of two parts.

Exam:

 "För godkänd på kursen krävs godkänd på de tre grupparbetana samt godkänd på skriftlig tentamen. Betyget på kursen baseras på betyget på tentan. Tentan ger maximalt 30 poäng; för godkänd krävs åtminstone 12 poäng. För betyg 4 resp. 5 för Chalmers studenter krävs dessutom 18 resp. 24 poäng."

Examination consists of two parts.

Exam:

 "För godkänd på kursen krävs godkänd på de tre grupparbetana samt godkänd på skriftlig tentamen. Betyget på kursen baseras på betyget på tentan. Tentan ger maximalt 30 poäng; för godkänd krävs åtminstone 12 poäng. För betyg 4 resp. 5 för Chalmers studenter krävs dessutom 18 resp. 24 poäng."

3 group assignments:

• Groups of up to four students.

Examination consists of two parts.

Exam:

 "För godkänd på kursen krävs godkänd på de tre grupparbetana samt godkänd på skriftlig tentamen. Betyget på kursen baseras på betyget på tentan. Tentan ger maximalt 30 poäng; för godkänd krävs åtminstone 12 poäng. För betyg 4 resp. 5 för Chalmers studenter krävs dessutom 18 resp. 24 poäng."

- Groups of up to four students.
- One student hands in for the group on canvas.

Examination consists of two parts.

Exam:

 "För godkänd på kursen krävs godkänd på de tre grupparbetana samt godkänd på skriftlig tentamen. Betyget på kursen baseras på betyget på tentan. Tentan ger maximalt 30 poäng; för godkänd krävs åtminstone 12 poäng. För betyg 4 resp. 5 för Chalmers studenter krävs dessutom 18 resp. 24 poäng."

- Groups of up to four students.
- One student hands in for the group on canvas.
- Required for passing but does not affect course grade.

Examination consists of two parts.

Exam:

 "För godkänd på kursen krävs godkänd på de tre grupparbetana samt godkänd på skriftlig tentamen. Betyget på kursen baseras på betyget på tentan. Tentan ger maximalt 30 poäng; för godkänd krävs åtminstone 12 poäng. För betyg 4 resp. 5 för Chalmers studenter krävs dessutom 18 resp. 24 poäng."

- Groups of up to four students.
- One student hands in for the group on canvas.
- Required for passing but does not affect course grade.
- More information will be provided before the first exercise class.

Course content

In **probability theory** we construct and analyse mathematical models for phenomena that exhibit uncertainty and variation

In **statistics** we observe data and we want to infer the probabilistic model or parameters of such a model: **inverse probability**.

Generating functions allow to solve recursive equations.

The law of large number describes what happens if you perform the same experiment a large number of times.

Regression to find linear relationships between inputs/explanatory variables and outputs/explained variables.

Example

Example:

What is the probability to throw 10 times heads in a row with a fair coin.

Example

Example:

What is the probability to throw 10 times heads in a row with a fair coin.

This is the 10th time you throw head in a row... is that coin fair!?

Descriptive statistics

Visual inspection of data

When analysing a data set, it is a good idea to first visualise it graphically. This can also give ideas about hypotheses to test or about the relationship between variables.

Visual inspection of data

When analysing a data set, it is a good idea to first visualise it graphically. This can also give ideas about hypotheses to test or about the relationship between variables.

Example:

Throwing a dice 20 times we obtained the following results:

$$1, 3, 3, 3, 1, 6, 6, 5, 1, 4, 6, 1, 4, 5, 1, 1, 2, 3, 6, 5.$$

7

Frequency table and histogram

If the observations take values in a small set, then we can summarise the data in a frequency table showing how many outcomes we have for each possible outcome.

Frequency table and histogram

If the observations take values in a small set, then we can summarise the data in a frequency table showing how many outcomes we have for each possible outcome.

For our results

$$1, 3, 3, 3, 1, 6, 6, 5, 1, 4, 6, 1, 4, 5, 1, 1, 2, 3, 6, 5,$$

we get

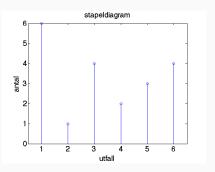
Outcome	1	2	3	4	5	6
Count	6	1	4	2	3	4
Proportion	0.30	0.05	0.20	0.10	0.15	0.20

Bar chart

Using the frequency table we can draw a bar chart. For each value we draw a bar whose height is proportional to the number of observations for that value.

Bar chart

Using the frequency table we can draw a bar chart. For each value we draw a bar whose height is proportional to the number of observations for that value.



Task: Summarise $1000\ \mathrm{real}\ \mathrm{numbers}\ \mathrm{which}\ \mathrm{are}\ \mathrm{the}\ \mathrm{outcome}\ \mathrm{of}$ some experiment,

 $12.15, 17.33, 0.96, 13.44, 11.27, 4.76, 8.26, 11.37, 24.31, 21.07, \dots$

Task: Summarise 1000 real numbers which are the outcome of some experiment,

$$12.15, 17.33, 0.96, 13.44, 11.27, 4.76, 8.26, 11.37, 24.31, 21.07, \dots$$

A bar chart doesn't make sense because the data does not fall into few "bins". We can use a histogram:

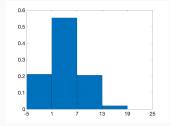
• Divide the data into a number of classes (intervals) and then calculate the number of observations in each class.

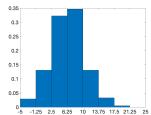
Task: Summarise 1000 real numbers which are the outcome of some experiment,

$$12.15, 17.33, 0.96, 13.44, 11.27, 4.76, 8.26, 11.37, 24.31, 21.07, \dots$$

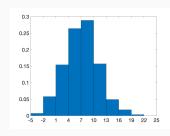
A bar chart doesn't make sense because the data does not fall into few "bins". We can use a histogram:

- Divide the data into a number of classes (intervals) and then calculate the number of observations in each class.
- Draw bars where the height is proportional to the number of observations in the class and the width equals the interval width.

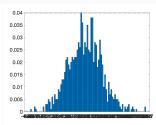




4 classes



7 classes

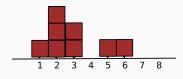


9 classes

200 classes

Sample statistics for location

Case	1	2	3	4	5	6	7	 8
Value								



Weights on a bar

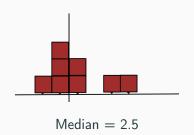
Sample median

To obtain the sample median,
 write the values in sorted order and take the middle one.

If there is an even number of values in the data set, take the average of the two middle most.

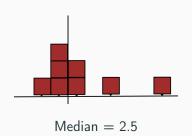
Median

			Med	lian				
Value	1	2	2	2	3	3	5	6



Median

			Med	dian				
Value	1	2	2	2	3	3	5	8



Sample mean

• The (sample) mean, denoted as \bar{x} , can be calculated as

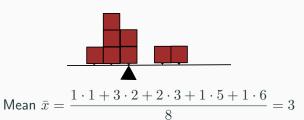
$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

where x_1, x_2, \dots, x_n are the **n** observed values.

In words: Sum the values of all cases in the data set and divide by the total number of values.

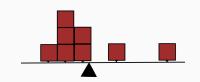
Sample mean

			Me	ean				
Value	1	2	2	2	3	3	5	6



Sample mean

			Me	an				
Value	1	2	2	2	3	3	5	8



$$\text{Mean } \bar{x} = \frac{1 \cdot 1 + 3 \cdot 2 + 2 \cdot 3 + 1 \cdot 5 + 1 \cdot 8}{8} = {3.25}$$

Sample statistics for variation/spread

Sample variance: The sample variance of a data set x_1, \ldots, x_n is given by

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} ((x_{1} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2})$$

Sample statistics for variation/spread

Sample variance: The sample variance of a data set x_1, \ldots, x_n is given by

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} ((x_{1} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2})$$

Sometimes convenient to use the formula

$$s^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2} \right) = \frac{1}{n-1} (x_{1}^{2} + \dots + x_{n}^{2} - n\bar{x}^{2})$$

Sample statistics for variation/spread

Sample variance: The sample variance of a data set x_1, \ldots, x_n is given by

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} ((x_{1} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2})$$

Sometimes convenient to use the formula

$$s^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2} \right) = \frac{1}{n-1} \left(x_{1}^{2} + \dots + x_{n}^{2} - n\bar{x}^{2} \right)$$

Standard deviation s: the square root $\sqrt{s^2}$ of the variance.

Example 1 (cont.)

For the dice throw example

$$1, 3, 3, 3, 1, 6, 6, 5, 1, 4, 6, 1, 4, 5, 1, 1, 2, 3, 6, 5\\$$

Example 1 (cont.)

For the dice throw example

$$1, 3, 3, 3, 1, 6, 6, 5, 1, 4, 6, 1, 4, 5, 1, 1, 2, 3, 6, 5$$

we obtain the mean

$$\bar{x} = (1+3+3+\ldots+3+6+5)/20 = 67/20 = 3.35$$

Sorting the values and taking the central one we obtain the median 3.

The variance is

Example 1 (cont.)

For the dice throw example

$$1, 3, 3, 3, 1, 6, 6, 5, 1, 4, 6, 1, 4, 5, 1, 1, 2, 3, 6, 5$$

we obtain the mean

$$\bar{x} = (1+3+3+\ldots+3+6+5)/20 = 67/20 = 3.35$$

Sorting the values and taking the central one we obtain the median 3.

The variance is

$$s^2 = ((1 - 3.35)^2 + (3 - 3.35)^2 + \dots + (5 - 3.35)^2)/19 = 3.8184$$

and the standard deviation is s = 1.9541.

Probability

In probability theory we consider experiments which have non-deterministic, variable or random outcomes.

In probability theory we consider experiments which have non-deterministic, variable or random outcomes. For example

1. Roll a die and count the eyes.

In probability theory we consider experiments which have non-deterministic, variable or random outcomes. For example

- 1. Roll a die and count the eyes.
- 2. Ask a person on the street which party they would vote for.

In probability theory we consider experiments which have non-deterministic, variable or random outcomes. For example

- 1. Roll a die and count the eyes.
- 2. Ask a person on the street which party they would vote for.
- 3. Throw a handful of coins and count the heads.

In probability theory we consider experiments which have non-deterministic, variable or random outcomes. For example

- 1. Roll a die and count the eyes.
- 2. Ask a person on the street which party they would vote for.
- 3. Throw a handful of coins and count the heads.
- 4. Examine a unit from a manufacturing process.

In probability theory we consider experiments which have non-deterministic, variable or random outcomes. For example

- 1. Roll a die and count the eyes.
- 2. Ask a person on the street which party they would vote for.
- 3. Throw a handful of coins and count the heads.
- 4. Examine a unit from a manufacturing process.

The result of the experiment is called outcome ω (utfall). The set of possible outcomes is called the sample space Ω (utfallsrummet).

•
$$\Omega = \{1,2,3,4,5,6\}.$$

- $\Omega = \{1,2,3,4,5,6\}.$
- $\Omega = \{V, S, MP, C, L, M, KD, S, Others, No answer\}.$

- $\Omega = \{1,2,3,4,5,6\}.$
- $\Omega = \{V, S, MP, C, L, M, KD, S, Others, No answer\}.$
- $\Omega = \{(\text{head, head}),(\text{head, tail}),(\text{tail, head}),(\text{tail, tail})\}$ (for 2 coins).

- $\Omega = \{1,2,3,4,5,6\}.$
- $\Omega = \{V, S, MP, C, L, M, KD, S, Others, No answer\}.$
- $\Omega = \{(\text{head, head}),(\text{head, tail}),(\text{tail, head}),(\text{tail, tail})\}$ (for 2 coins).
- $\Omega = \{ defect, intact \}.$

We group outcomes into events.

An event A is a set of outcomes, that is, a subset of the sample space $\Omega.$

We group outcomes into events.

An event A is a set of outcomes, that is, a subset of the sample space $\Omega.$

Example for events:

1. $A = \{1,3,5\}$, that is "my die shows an odd number".

We group outcomes into events.

An event A is a set of outcomes, that is, a subset of the sample space $\Omega.$

- 1. $A = \{1,3,5\}$, that is "my die shows an odd number".
- 2. $A = \{C, L, M, KD\}$, a "vote for the 'Alliansen' ".

We group outcomes into events.

An event A is a set of outcomes, that is, a subset of the sample space $\Omega.$

- 1. $A = \{1,3,5\}$, that is "my die shows an odd number".
- 2. $A = \{C, L, M, KD\}$, a "vote for the 'Alliansen' ".
- 3. $A = \{(head, head), (tail, tail)\},$ "both coins show the same face".

We group outcomes into events.

An event A is a set of outcomes, that is, a subset of the sample space $\Omega.$

- 1. $A = \{1,3,5\}$, that is "my die shows an odd number".
- 2. $A = \{C, L, M, KD\}$, a "vote for the 'Alliansen' ".
- 3. $A = \{(head, head), (tail, tail)\}, "both coins show the same face".$
- 4. $A = \{defect\}$, the "unit is broken".

We group outcomes into events.

An event A is a set of outcomes, that is, a subset of the sample space $\Omega.$

- 1. $A = \{1,3,5\}$, that is "my die shows an odd number".
- 2. $A = \{C, L, M, KD\}$, a "vote for the 'Alliansen' ".
- 3. $A = \{(head, head), (tail, tail)\}, "both coins show the same face".$
- 4. $A = \{defect\}$, the "unit is broken".

We group outcomes into events.

An event A is a set of outcomes, that is, a subset of the sample space $\Omega.$

Example for events:

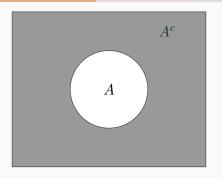
- 1. $A = \{1,3,5\}$, that is "my die shows an odd number".
- 2. $A = \{C, L, M, KD\}$, a "vote for the 'Alliansen' ".
- 3. $A = \{(head, head), (tail, tail)\}, "both coins show the same face".$
- 4. $A = \{defect\}$, the "unit is broken".

An event A occurs if any of the outcomes $\omega \in A$ occurs in the experiment.

Example

Complement

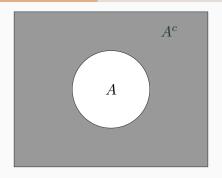
Complement



The complement of a $\cal A$ are all outcomes not in $\cal A$.

$$A^c = \Omega \setminus A.$$

Complement



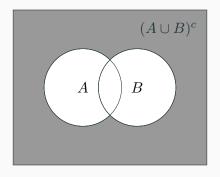
The complement of a A are all outcomes not in A.

$$A^c = \Omega \setminus A$$
.

In the example with the die: Here $A=\{1,3,5\}$. So if the die shows a 2, then $A^c=\{2,4,6\}$ happened.

Union

Union

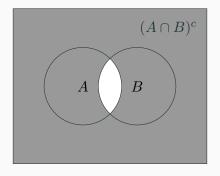


If we have events, A and B we can define $A \cup B$, the union of A and B .

• $A \cup B$ occurs if A or B occur (or both).

Intersection

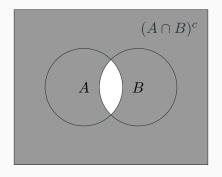
Intersection



The intersection $A \cap B$ are all elements both in A and B.

ullet So for $A\cap B$ to occur, both A and B need to occur.

Intersection



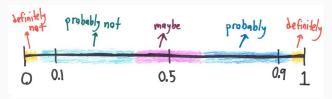
The intersection $A \cap B$ are all elements both in A and B.

ullet So for $A\cap B$ to occur, both A and B need to occur.

 $A \cap B = \emptyset$ means that A and B exclude each other.

Probabilities of events

 Probability is a numerical measure of how likely an event is to happen.



Probability is a proportion, a number between 0 and 1.
 Notation

$$P(\textit{something that can happen}) = \textit{a probability}.$$

E.g.

$$P(\mathsf{coin}\;\mathsf{heads}\text{-}\mathsf{up}) = \frac{1}{2}.$$

Classical interpretation

• What is probability?

Classical interpretation

- What is probability?
- A classical and useful view considers equally likely outcomes.
 Then

$$\mathsf{P}(A) = \frac{\mathsf{number\ of\ outcomes\ for\ which\ } A\ \mathsf{occurs}}{\mathsf{total\ number\ of\ outcomes}}$$

Classical interpretation

- What is probability?
- A classical and useful view considers equally likely outcomes.
 Then

$$\mathsf{P}(A) = \frac{\mathsf{number\ of\ outcomes\ for\ which\ } A\ \mathsf{occurs}}{\mathsf{total\ number\ of\ outcomes}}$$

Probability to throw an odd number with a fair die.

$$\mathsf{P}(A) = \frac{|\{1, 3, 5\}|}{|\{1, 2, 3, 4, 5, 6\}|} = \frac{3}{6} = \frac{1}{2}$$

Permutations and combinations

Permutations and combinations

Useful concepts to compute the number of possible outcomes.

Permutations and combinations

Useful concepts to compute the number of possible outcomes.

Permutation

A specific order of several items (one their possible orders.)

Combination

Selecting several items of without regard for their order (one of the possible ways to do this.)

Permutations and combinations

Useful concepts to compute the number of possible outcomes.

Permutation

A specific order of several items (one their possible orders.)

Combination

Selecting several items of without regard for their order (one of the possible ways to do this.)

Multiplication principle

If there are a ways to make a choice and there are b ways to make a second choice, then there are ab ways to make a combined choice.

Permutations and combinations

Useful concepts to compute the number of possible outcomes.

Permutation

A specific order of several items (one their possible orders.)

Combination

Selecting several items of without regard for their order (one of the possible ways to do this.)

Multiplication principle

If there are a ways to make a choice and there are b ways to make a second choice, then there are ab ways to make a combined choice.

Factorial

For $n \in \mathbb{N}$ define $n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$ and 0! = 1. n! is read "n-factorial".

Calculate the number of permutations

Calculate the number of selections

Theorem.)

The number of ways we can choose r objects out of a total of n distinct objects, taking into account the order, is given by

$${}_{n}P_{r} = \frac{n!}{(n-r)!}$$

Calculate the number of combinations

Theorem (number of combinations.)

The number of ways we can choose r objects out of a total of n distinct objects, ignoring their order, is given by

$$_{n}C_{r} = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Calculate the number of combinations

Theorem (number of combinations.)

The number of ways we can choose r objects out of a total of n distinct objects, ignoring their order, is given by

$$_{n}C_{r} = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

• ${}_{n}C_{r}$ is usually called binomial coefficient.

• Sometimes it is not reasonable to assume that all outcomes are equally likely.

- Sometimes it is not reasonable to assume that all outcomes are equally likely.
- The frequentist interpretation of probability: Suppose we repeat a random experiment many times under identical conditions. As the number of repetitions n grows, we observe that the proportion n_A/n of times that an event A occur converges to a number. This number is the probability of A, or as formula

$$\frac{n_A}{n} \to \mathsf{P}(A), \text{where } n \to \infty$$

- Sometimes it is not reasonable to assume that all outcomes are equally likely.
- The frequentist interpretation of probability: Suppose we repeat a random experiment many times under identical conditions. As the number of repetitions n grows, we observe that the proportion n_A/n of times that an event A occur converges to a number. This number is the probability of A, or as formula

$$\frac{n_A}{n} \to \mathsf{P}(A), \text{where } n \to \infty$$

- Sometimes it is not reasonable to assume that all outcomes are equally likely.
- The frequentist interpretation of probability: Suppose we repeat a random experiment many times under identical conditions. As the number of repetitions n grows, we observe that the proportion n_A/n of times that an event A occur converges to a number. This number is the probability of A, or as formula

$$\frac{n_A}{n} \to \mathsf{P}(A), \text{ where } n \to \infty$$

Example: With a fair die, we observe the proportion of times where $A=\{ \text{even number of eyes} \}$ occurs converge to $\frac{1}{2}.$

Outcome and sample space	
The outcome ω is the result of a random experiment, and the of all possible outcomes Ω is called the	set
of all possible outcomes as is called the	

Outcome and sample space

The outcome ω is the result of a random experiment, and the set of all possible outcomes Ω is called the sample space.

Outcome and sample space

The outcome ω is the result of a random experiment, and the set of all possible outcomes Ω is called the sample space.

Outcome and sample space

The outcome ω is the result of a random experiment, and the set of all possible outcomes Ω is called the sample space.

Events

An event is a collection (a set of) different outcomes. The event A, as a set of outcomes, is therefore a subset of the sample space Ω .

Outcome and sample space

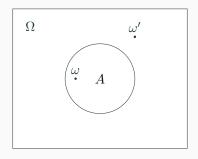
The outcome ω is the result of a random experiment, and the set of all possible outcomes Ω is called the sample space.

Events

An event is a collection (a set of) different outcomes. The event A, as a set of outcomes, is therefore a subset of the sample space Ω .

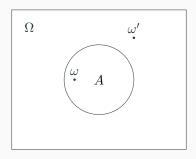
We like events because the probability of a single outcome might be too small or zero.

Event, outcome and sample space



Event A , outcome $\omega \in A$ and sample space Ω

Event, outcome and sample space



Event A, outcome $\omega \in A$ and sample space Ω

And some other outcome $\omega' \not\in A$.

For events A and B we have defined:

Complement, A^c

Set of all outcomes ω not contained in A.

For events A and B we have defined:

Complement, A^c

Set of all outcomes ω not contained in A. $A^c = \Omega \setminus A.$

For events A and B we have defined:

Complement, A^c

Set of all outcomes ω not contained in A. $A^c = \Omega \setminus A$.

Union, $A \cup B$

Set of all outcomes ω in $A \square B$.

For events A and B we have defined:

Complement, A^c

Set of all outcomes ω not contained in A. $A^c = \Omega \setminus A.$

Union, $A \cup B$

For events A and B we have defined:

Complement, A^c

Set of all outcomes ω not contained in A. $A^c = \Omega \setminus A.$

Union, $A \cup B$

For events A and B we have defined:

Complement, A^c

Set of all outcomes ω not contained in A. $A^c = \Omega \setminus A$.

Union, $A \cup B$

Set of all outcomes ω in A or B.

Intersection, $A \cap B$

Set of all outcomes ω in $A \square B$.

For events A and B we have defined:

Complement, A^c

Set of all outcomes ω not contained in A. $A^c = \Omega \setminus A$.

Union, $A \cup B$

Set of all outcomes ω in A or B.

Intersection, $A \cap B$

For events A and B we have defined:

Complement, A^c

Set of all outcomes ω not contained in A. $A^c = \Omega \setminus A$.

Union, $A \cup B$

Set of all outcomes ω in A or B.

Intersection, $A \cap B$

For events A and B we have defined:

Complement, A^c

Set of all outcomes ω not contained in A. $A^c = \Omega \setminus A$.

Union, $A \cup B$

Set of all outcomes ω in A or B.

Intersection, $A \cap B$

$$A^c$$
, $A \cup B$, $A \cap B$ are ______.

For events A and B we have defined:

Complement, A^c

Set of all outcomes ω not contained in A. $A^c = \Omega \setminus A.$

Union, $A \cup B$

Set of all outcomes ω in A or B.

Intersection, $A \cap B$

$$A^c$$
, $A \cup B$, $A \cap B$ are also events.

For events A and B we have defined:

Complement, A^c

Set of all outcomes ω not contained in A. $A^c = \Omega \setminus A.$

Union, $A \cup B$

Set of all outcomes ω in A or B.

Intersection, $A \cap B$

$$A^c$$
, $A \cup B$, $A \cap B$ are also events.

For events A and B we have defined:

Complement, A^c

Set of all outcomes ω not contained in A. $A^c = \Omega \setminus A$.

Union, $A \cup B$

Set of all outcomes ω in A or B.

Intersection, $A \cap B$

Set of all outcomes ω in A and B.

 A^c , $A \cup B$, $A \cap B$ are also events. \varnothing and Ω are also events, the impossible event and the sure event.

For events A and B we have defined:

Complement, A^c

Set of all outcomes ω not contained in A. $A^c = \Omega \setminus A$.

Union, $A \cup B$

Set of all outcomes ω in A or B.

Intersection, $A \cap B$

Set of all outcomes ω in A and B.

 A^c , $A \cup B$, $A \cap B$ are also events. \varnothing and Ω are also events, the impossible event and the sure event.

Mutually exclusive events

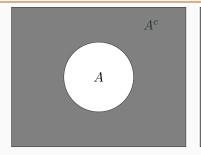
If $A \cap B = \emptyset$ then A and B are mutually exclusive events.

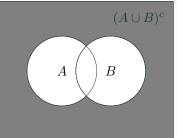
The n sets A_1, A_2, \ldots, A_n are called mutually exclusive if

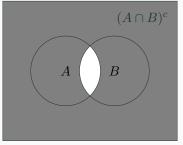
$$A_i \cap A_j = \emptyset$$
 for all $i, j, i \neq j$.

Example: The set $\{2,4,6\}$ and the set $\{1,3,5\}$ are disjoint.

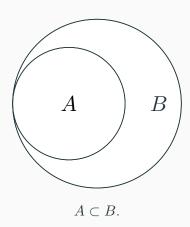
Venn diagram



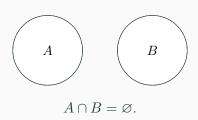




Set inclusion



Disjoint sets



The empty set \varnothing

Permutations and combinations

Permutation

A specific order of a number of objects.

Permutation

A specific order of a number of objects.

(1,3,2,5,6,4) is a permutation of the the numbers 1 to 6.

Permutation

A specific order of a number of objects.

(1,3,2,5,6,4) is a permutation of the the numbers 1 to 6.

Combination

A selection of objects without regard for their order.

Permutation

A specific order of a number of objects.

(1,3,2,5,6,4) is a permutation of the the numbers 1 to 6.

Combination

A selection of objects without regard for their order.

 $\{1,3,5\}$ is a combination of the of the numbers 1 to 6.

Note $(1,2) \neq (2,1)$ but $\{1,2\} = \{2,1\}.$

Multiplication principle

If there are a ways to make a choice and there are b ways to make a second choice, then there are ab ways to make a combined choice.

Multiplication principle

If there are a ways to make a choice and there are b ways to make a second choice, then there are ab ways to make a combined choice.

Factorial

For $n \in \mathbb{N}$ define $n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$ and 0! = 1. n! is read "n-factorial".

Multiplication principle

If there are a ways to make a choice and there are b ways to make a second choice, then there are ab ways to make a combined choice.

Factorial

For $n \in \mathbb{N}$ define $n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$ and 0! = 1. n! is read "n-factorial".

$$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$$

Multiplication principle

If there are a ways to make a choice and there are b ways to make a second choice, then there are ab ways to make a combined choice.

Factorial

For $n \in \mathbb{N}$ define $n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$ and 0! = 1. n! is read "n-factorial".

$$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$$

Calculate the number of permutations

Theorem (number of permutations.)

The number of ways we can choose r objects out of a total of n distinct objects, taking into account the order, is given by

$${}_{n}P_{r} = \frac{n!}{(n-r)!}$$

Calculate the number of combinations

Theorem (number of combinations.)

The number of ways we can choose r objects out of a total of n distinct objects, ignoring their order, is given by

$$_{n}C_{r} = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Calculate the number of combinations

Theorem (number of combinations.)

The number of ways we can choose r objects out of a total of n distinct objects, ignoring their order, is given by

$$_{n}C_{r} = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

• ${}_{n}C_{r}$ is usually called binomial coefficient.

Kolmogorov's axioms

Let $\boldsymbol{\Omega}$ be a sample space.

Kolmogorov's axioms

A probability measure P is function $A\mapsto \mathsf{P}(A)$ assigning each event $A\subset\Omega$ a probability,

Kolmogorov's axioms

Let Ω be a sample space.

Kolmogorov's axioms

A probability measure P is function $A\mapsto \mathsf{P}(A)$ assigning each event $A\subset\Omega$ a probability,a positive number such that

- 1. $0 \le P(A) \le 1$.
- 2. $P(\Omega) = 1$.
- 3. For pairwise disjoint events A_1, A_2, \ldots

$$\mathsf{P}\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\mathsf{P}(A_{i}).$$

Especially for disjoint/mutually exclusive events A and B,

$$P(A \cup B) = P(A) + P(B).$$

Properties of probability distributions

The axioms determine all further properties of probabilities...

Properties

For the probability measure P it holds that:

- 1. $P(\emptyset) = 0$.
- 2. $P(A^c) = 1 P(A)$.
- 3. $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

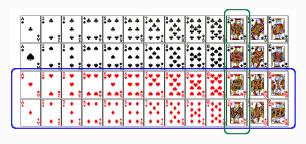
All these properties can be seen with the help of Venn diagrams.

Probability of the union of non-disjoint events

What is the probability of drawing a jack or a red card from a well shuffled full deck (52 cards)?

Probability of the union of non-disjoint events

What is the probability of drawing a jack or a red card from a well shuffled full deck (52 cards)?



$$\begin{split} P(\mathsf{jack} \; \mathsf{or} \; \mathsf{red}) &= P(\mathsf{jack}) + P(\mathsf{red}) - \frac{P(\mathsf{jack} \; \mathsf{and} \; \mathsf{red})}{1} \\ &= \frac{4}{52} + \frac{26}{52} - \frac{2}{52} = \frac{28}{52} \end{split}$$

General addition rule

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Throw a coin (1), (3)), and throw a 6 sided die. What is

$$P(1, =$$

Use multiplication rule and the classical approach.

Throw a coin (1), (3)), and throw a 6 sided die. What is

$$P(\mathbf{1},\mathbf{I}) = \frac{1}{12}$$

Use multiplication rule and the classical approach.

Throw a coin (1), (3)), and throw a 6 sided die. What is

$$P(\mathbf{1},\mathbf{I}) = \frac{1}{12}$$

Use multiplication rule and the classical approach.

Throw a coin (1), (3)), and throw a 6 sided die. What is

$$P(\mathbf{1},\mathbf{I}) = \frac{1}{12}$$

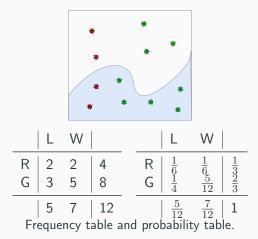
Use multiplication rule and the classical approach.

	•	•	•••	• •	•••	• • • •	
1	$\begin{array}{ c c }\hline \frac{1}{12}\\ \frac{1}{12}\\ \end{array}$	$\frac{\frac{1}{12}}{\frac{1}{12}}$	$\frac{\frac{1}{12}}{\frac{1}{12}}$	$\frac{\frac{1}{12}}{\frac{1}{12}}$	$\frac{\frac{1}{12}}{\frac{1}{12}}$	$\frac{\frac{1}{12}}{\frac{1}{12}}$	$\begin{array}{ c c }\hline\hline & \frac{1}{2}\\\hline & \frac{1}{2}\\\hline & \frac{1}{2}\\\hline \end{array}$
	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	1

The table also shows the marginal probablities.

Example with the bugs

Drawing a random bug out of the aquarium, with (g)reen and (r)ed bugs on (l)and and (w)ater.



Thinking statistics

Flawed reasoning

Students at an elementary school are given a questionnaire that they are required to return after their parents have completed it.

Thinking statistics

Flawed reasoning

Students at an elementary school are given a questionnaire that they are required to return after their parents have completed it.

One of the questions asked is, "Do you find that your work schedule makes it difficult for you to spend time with your kids after school" Of the parents who replied, 85% said "no".

Thinking statistics

Flawed reasoning

Students at an elementary school are given a questionnaire that they are required to return after their parents have completed it.

One of the questions asked is, "Do you find that your work schedule makes it difficult for you to spend time with your kids after school" Of the parents who replied, 85% said "no".

Based on these results, the school officials conclude that a great majority of the parents have no difficulty spending time with their kids after school.

What went wrong?

Conditional probability

The *conditional probability* of the event of interest A given condition B is calculated as

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Conditional probability

The *conditional probability* of the event of interest A given condition B is calculated as

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Multiplication rule

If A and B represent two events, then

$$P(A \cap B) = P(A|B) \cdot P(B)$$

Note that this formula is simply the conditional probability formula, rearranged.