Lecture 11: Estimating proportions
 MVE055 / MSG810 Mathematical statistics and discrete mathematics)

Moritz Schauer
Last updated September 30, 2020, 2020
GU \& Chalmers University of Technology

Estimating proportions

Estimating proportions

Example

Suppose we want to estimate the proportion p of people who own tablets in a certain city. 250 randomly selected people are surveyed, 98 of them reported owning tablets. An estimate for the population proportion is given by $\hat{p}=\frac{38}{250}=0.392$.

In general we want to study a particular trait in a population too large to sample completely. We ask about the proportion of the population with this trait.

Estimating a proportion

- We choose a random sample X_{1}, \ldots, X_{n} from the population.

$$
X_{i}= \begin{cases}1 & i \text { th member of the sample has the trait } \\ 0 & \text { otherwise }\end{cases}
$$

- The point estimator is based on the

$$
\hat{p}=\frac{\sum_{i=1}^{n} X_{i}}{n} \quad \text { (proportion in the sample) }
$$

Bernouli random variables

Why do we write $\hat{p}=\frac{\sum_{i=1}^{n} X_{i}}{n}$ as sum of random variables.
$\mathrm{P}\left(X_{i}=1\right)=p, \mathrm{P}\left(X_{i}=0\right)=1-p . X_{i}$ are Bernoulli random variables with parameter p !

We know a lot about them. E.g.

$$
\mathrm{E}\left[X_{i}\right]=0 \cdot(1-p)+1 \cdot p=p
$$

\hat{p} is the some of Bernoulli random variables, hence $\operatorname{Bin}(n, p)$ distributed. So ...

Unbiasedness

Unbiasedness

The expectation of \hat{p} :

$$
\begin{gathered}
\mathrm{E}[\hat{p}]=\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right]=\frac{1}{n} \underbrace{(p+p+\cdots+p)}_{n \text { times }}=p \\
\mathrm{E}[\hat{p}]=p
\end{gathered}
$$

\hat{p} is an unbiased estimator for the proportion p.

Variance

The variance of \hat{p} tells us how good as estimator \hat{p} is.
$\operatorname{Var}\left(X_{i}\right)=\mathrm{E}\left[X_{i}^{2}\right]-\mathrm{E}\left[X_{i}\right]^{2}=p-p^{2}=p(1-p)$
$\Rightarrow \operatorname{Var}(\hat{p})=\frac{\sum \operatorname{Var}\left(X_{i}\right)}{n^{2}}=\frac{n p(1-p)}{n^{2}}=\frac{p(1-p)}{n}$

Standard error

The variance of \hat{p} :

$$
\operatorname{Var}(\hat{p})=\frac{p(1-p)}{n}
$$

The standard error is

$$
\mathrm{SE}=\sqrt{\operatorname{Var}(\hat{p})} \approx \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}
$$

How many more observations do I need to reduce the standard error by a factor 2? 4 times as much

Example (ctd.)

Recall $\hat{p}=\frac{38}{250}=0.392$.
The standard error the estimated proportion of people who own a tablet is

$$
\mathrm{SE}=\frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}=\frac{\sqrt{0.392(1-0.392)}}{\sqrt{250}}=\frac{0.392(0.608)}{250}
$$

Confidence interval on \hat{p}.

Normal approximation When we take n large enough, by the central limit theorem, \hat{p} is approximately normally distributed with mean p and variance $p(1-p) / n$.

Confidence interval

A $100(1-\alpha) \%$ confidence interval is defined by

$$
\left(\hat{p}-z_{\alpha / 2} \mathrm{SE}, \hat{p}+z_{\alpha / 2} \mathrm{SE}\right)
$$

where $\mathrm{SE}=\sqrt{\hat{p}(1-\hat{p}) / n}$ and $\mathrm{P}\left(-z_{\alpha / 2} \leq x \leq z_{\alpha / 2}\right)=1-\alpha / 2$.
E.g. for a $95 \% \mathrm{Cl} z_{\alpha / 2}=1.96$.

Example (ctd.)

A 95% C.I. on the proportion of people who own a tablet is given by $\left(\hat{p}-z_{\alpha / 2} \mathrm{SE}, \hat{p}+z_{\alpha / 2} \mathrm{SE}\right)$ where $\hat{p}=\frac{38}{250}, z_{\alpha / 2}=1.96$, $S E=\frac{0.392(0.608)}{250}$.

$$
\begin{aligned}
& \left(0.392-1.96 \sqrt{\left.\frac{0.392(0.608)}{250}, 0.392+1.96 \sqrt{\frac{0.392(0.608)}{250}}\right)}\right. \\
= & (0.3315,0.4525) .
\end{aligned}
$$

"We are 95% confident that proportion of people owning a tablet is somewhere in the interval $(0.3315,0.4525)$."

Hypothesis test for hypothesis about proportion

We can test hypotheses about the a population proportion:

$$
H_{0}: p=p_{0} \quad \text { and } \quad H_{1}: p \stackrel{\neq}{\neq} p_{0}
$$

Our test statistic is the z-value

$$
z=\frac{\hat{p}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right) / n}}
$$

where p_{0} is the null value, the value of p used in the null hypotheses.

The corresponding r.v. Z is approximately standard normal distributed for large n.

Minimum sample size

n is considered large enough if $n p_{0}>5$ and $n\left(1-p_{0}\right)>5$ (both).

Example

Example

Newborn babies are more likely to be boys than girls. A random sample found 13173 boys were born among 25468 newborn children. The sample proportion of boys was 0.5172 . Is this sample evidence that the birth of boys is more common than the birth of girls in the entire population? Let $\alpha=0.05$.

Test

$$
H_{0}: p=0.5 \quad \text { and } \quad H_{1}: p>0.5 .
$$

at significance level $\alpha=0.05$.
Since n is large, $z=\frac{\hat{p}-0.5}{\sqrt{0.5(0.5) / 25468}}$ is approximately normally distributed. The critical point is $z_{0.95}=1.645$ and $z=\frac{0.5172-0.5}{\sqrt{0.5(0.5) / 25468}}=5.49$ which is in the rejection region.
Therefore H_{0} is rejected and hence the sample gives evidence that the proportion of boys is higher than that of girls.

Rejection region for $\alpha=0.05$ (on the x-axis below the yellow area).

Comparing two proportions

Suppose we have two populations and we want to compare the proportions in the populations that have a certain trait. Denote the unknown proportions p_{1} and p_{2}.

Example

We are interested in comparing the proportion of researchers who use a certain computer program in their research in two different fields: pure mathematics and probability and statistics.
Populations: Researchers in the pure math field and researchers in the probability and statistics field. Trait of interest: Usage of the computer program.

Point estimator and SE for the difference between two proportions

Suppose that p_{1} is the true proportion of population 1 and p_{2} is that of population 2.

- From each population we take a random sample of sizes n_{1}, n_{2} such that the samples are independent from each other.
- For each sample we compute the point estimate: \hat{p}_{1} and \hat{p}_{2}.
- A point estimator for $p_{1}-p_{2}$ is $\hat{p}_{1}-\hat{p}_{2}$.
- For large samples, $\hat{p}_{1}-\hat{p}_{2}$ is approximately normal with mean $p_{1}-p_{2}$ and variance $p_{1}\left(1-p_{1}\right) / n_{1}+p_{2}\left(1-p_{2}\right) / p_{2}$ where and n_{1} and n_{2} are the sample sizes from population 1 and 2 respectively.

Confidence interval

Confidence interval

A $100(1-\alpha) \%$ C.I. on $p_{1}-p_{2}$ is given by $\left(\hat{p}-z_{\alpha / 2} \mathrm{SE}, \hat{p}+z_{\alpha / 2} \mathrm{SE}\right)=$

$$
\hat{p}_{1}-\hat{p}_{2} \pm z_{\alpha / 2} \sqrt{\hat{p}_{1}\left(1-\hat{p}_{1}\right) / n+\hat{p}_{2}\left(1-\hat{p}_{2}\right) / n_{2}}
$$

Example

We take a sample of size 375 from population 1 and 375 from population 2. The number of researchers that use a computer program we get from population 1 is 195 and that of researchers from population 2 is 232 .

Then $\hat{p}_{1}=\frac{195}{375}=0.52$ and $\hat{p}_{2}=\frac{232}{375}=0.619 \mathrm{~A}$ point estimate for the difference $p_{1}-p_{2}$ is $0.52-0.619=-0.099$. The standard deviation is

$$
\sqrt{0.52(0.48) / 375+0.619(0.381) / 375}=0.036
$$

Example (ctd.)

A 95% confidence interval for $p_{1}-p_{2}$ is

$$
\begin{gathered}
(0.52-0.619-1.96(0.036), 0.52-0.619+1.96(0.036)) \\
(-0.17,-0.028)
\end{gathered}
$$

Since the interval does not contain 0 and is negative-valued, we can say with 95% level of confidence that the proportion of researchers from population 2 is higher than that of population 1.

