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Conditional distribution

If we know some event B occurs, the probability of A given the
new information B can be calculated as follows:
Conditional probability

Assume that PpBq ą 0. The conditional probability of A given B
is defined as

PpA | Bq “
PpAXBq

PpBq
. (0.1)

Multiplication rule for probabilities
For events A and B it holds

PpAXBq “

PpB | AqPpAq “ PpA | BqPpBq.

The multiplication rule is useful to calculate probabilities of
multiple events affecting each other.
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Bayes formula

Bayes formula
For events A and B

PpA | Bq “
PpB | AqPpAq

PpBq

Often it is useful to rewrite the denominator PpBq

PpBq “ PpB | AqPpAq ` PpB | AcqPpAcq
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Base rate fallacy

3



Base rate fallacy

In the fourth wave (July 10 - August 16, 2021) about 2400 (or 0.825 %)
people 16 or older in Island have been diagnosed with Covid-19:

But (young) adults in Iceland’s population are highly vaccinated

Ppdiagn | vaccq “
Ppvacc | diagnqPpdiagnq

Ppvaccq
“

0.773 ¨ 0.00825

0.864
“ 0.00738
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Base rate fallacy

Ppdiagn | vaccq “
0.773 ¨ 0.00825

0.864
“ 0.00738

Ppdiagn | not vaccq “
0.200 ¨ 0.00825

0.0783
“ 0.0211

Ppdiagn | part. vaccq “
0.0262 ¨ 0.00825

0.0570
“ 0.00379 psic!q

5



Base rate fallacy

Ppdiagn | vaccq “
0.773 ¨ 0.00825

0.864
“ 0.00738

Ppdiagn | not vaccq “
0.200 ¨ 0.00825

0.0783
“ 0.0211

Ppdiagn | part. vaccq “
0.0262 ¨ 0.00825

0.0570
“ 0.00379 psic!q

5



Independent events

Two events A and B are independent if knowing whether B
occured does not change the probability of A

PpA | Bq “ PpAq.

Independent events
Two events A and B are independent if PpAXBq “ PpAqPpBq.

Simple example: Throw a 6-sided die. Are A “ t5, 6u and
B “ t1, 3, 5u dependent?

PpAqPpBq “
2

6

3

6
“

1

6
, PpAXBq “ Ppt5uq “

1

6
.

If I tell you A happened, that does not change probabilities of B:
PpB | Aq “ PpBq “ 3

6 .

6



Independent events

Two events A and B are independent if knowing whether B
occured does not change the probability of A

PpA | Bq “ PpAq.

Independent events
Two events A and B are independent if PpAXBq “ PpAqPpBq.

Simple example: Throw a 6-sided die. Are A “ t5, 6u and
B “ t1, 3, 5u dependent?

PpAqPpBq “
2

6

3

6
“

1

6
, PpAXBq “ Ppt5uq “

1

6
.

If I tell you A happened, that does not change probabilities of B:
PpB | Aq “ PpBq “ 3

6 .

6



Independent events

Two events A and B are independent if knowing whether B
occured does not change the probability of A

PpA | Bq “ PpAq.

Independent events
Two events A and B are independent if PpAXBq “ PpAqPpBq.

Simple example: Throw a 6-sided die. Are A “ t5, 6u and
B “ t1, 3, 5u dependent?

PpAqPpBq “
2

6

3

6
“

1

6
, PpAXBq “ Ppt5uq “

1

6
.

If I tell you A happened, that does not change probabilities of B:
PpB | Aq “ PpBq “ 3

6 .

6



Random variables

Random variables
A random variable is a numeric quantity whose value depends on
the outcome of a random experiment.

Example: X is the number of eyes on a 6-sided die.

We denote random variables with capital letters, often X or
Y .

Example:
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Pair of dice

Throw a pair of dice, count the total number of eyes, call that
random variable X. Consider the event that X “ 7.

Event? What are the actual ω making our event and sample space?
You could take

A “ t , , , , , u, Ω “ t , . . . , u

PpX “ 7q “ PpAq “
|A|

|Ω|
“

6

36

Value k 2 3 4 5 6 7 8 9 10 11 12

Probability
PpX“kq

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36
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Pair of dice

The following holds for k P t2, . . . , 12u:

PpX “ kq “
6´ |k ´ 7|

36

Check:

Value k 2 3 4 5 6 7 8 9 10 11 12 other
Probability
PpX“kq

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36 0
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Discrete random variables

Discrete random variables
A random variable is called discrete if it is integer-valued
or otherwise has only a finite or countable number of values.

Example: Y “ X{2 is discrete (but can take non-integers such as
Y “ 5.5 as values.)
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Probability mass function

Probability mass function
Define the probability mass function f of a discrete random
variable X by

fpkq “ PpX “ kq.

Also fpyq “ 0 for all real y such that P pX “ yq “ 0, okay?

Sometimes we write fX to talk about X’s own probability mass
function.

11
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Sum of two dice

fpkq “

#

6´|k´7|
36 if k P t2, 3, . . . , 12u

0 otherwise

is the probability mass function for the random variable which
counts the sum of two dice.
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Two coins

Flip two coins... count the number of heads. Call it X.

fp0q “ 1
4 , fp1q “

1
2 and fp2q “ 1

4

fpxq “ 0 otherwise if x R t0, 1, 2u.

13
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Flip two coins... count the number of heads. fXp0q “ 1
4 ,

fXp1q “
1
2 and fXp2q “ 1

4 .

What is PpX P t1, 2uq = Pp1 ď X ď 2q?

Pp1 ď X ď 2q “ fXp1q ` fXp2q “
3

4

Let Y “ X{2. What is PpY ą 0q?

PpY ą 0q “ Pp1 ď X ď 2q “ fXp1q ` fXp2q “
3

4

Rule
For integer valued X

Ppm ď X ď nq “
n
ÿ

k“m

fpkq

for any integers m and n.
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Probability mass function

Not all functions are probability mass functions. Because they
describe probability distributions, some conditions must hold.

fpkq is a probability mass function if and only if

• fpkq ě 0 for all k.

•
ř

all k
fpkq “ 1.

If somebody gives you a probability mass function, there is a
random variable for it.
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Distribution function

Distribution function
Assume X is a discrete random variable. Its distribution function
is given by

F pxq “ PpX ď xq “
ÿ

kďx

fXpkq,

Flip two coins... count the number of heads. Call it X.
fp0q “ 1

4 , fp1q “
1
2 and fp2q “ 1

4 . Find F .

F p0q “ fp0q “ 1
4

F p1q “ fp0q ` fp1q “ 1
4 `

1
2

F p2q “ fp0q ` fp1q ` fp2q “ 1
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Distribution function

What is the probability to throw k times heads in a row with a fair
coin?

fp0q “
1

2
, fp1q “

1

2
¨

1

2
“

1

4
, fp2q “

1

8
, fpkq “

ˆ

1

2

˙k`1

P pX ą 0q “ fp1q ` fp2q ` fp3q ` ... “

1´ P pX “ 0q “ 1´ fp0q
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Distribution function

For F pxq it holds

• F pxq is increasing

• F pxq Ñ 1 for xÑ8.

• F pxq Ñ 0 for xÑ ´8.

18



Distribution function

Also

• Ppa ă X ď bq “ F pbq ´ F paq.

• PpX ą aq “ 1´ F paq.

• For integer valued random variables:
fpmq “ F pmq ´ F pm´ 1q.

19



Expected value

We are often interested in the “average” outcome of a random
variable.

Expected value
The expected value of a random variable is defined as

EpXq “
ÿ

all k

kfXpkq if X is discrete,

20



Recall: the average using fractions

Data set: grades of 24 students

5, 5, 6, 5, 6, 6, 6, 5, 5, 7, 6, 7, 5, 5, 5, 6, 6, 6, 5, 6, 5, 7, 6, 7

Table:
grade x1 “ 7 x2 “ 6 x3 “ 5
fraction of students p1 “ 4{24 p2 “ 10{24 p3 “ 10{24

Average One can write the average in different forms

Average “
5` 5` 6` ¨ ¨ ¨ ` 5` 7` 6` 7

24

“
7 ¨ 4` 6 ¨ 10` 5 ¨ 10

24
“ 7 ¨

4

24
` 6 ¨

10

24
` 5 ¨

10

24
“

3
ÿ

i“1

xi ¨ pi

21
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Expected value

The expected value of a discrete random variable X with finitely
many outcomes can also be written as

µ “ EpXq “
ÿ

all k

xk ¨ PpX “ xkq
l jh n

fpxkq

“ x1 ¨ PpX “ x1q ` x2 PpX “ x2q ` ¨ ¨ ¨ ` xn ¨ PpX “ xnq

Here xi are the n possible outcomes and P pX “ xiq are the
probabilities of each outcome.

22
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Expected value

Flip two coins... count the number of heads.

fp0q “ 1
4 , fp1q “

1
2 and fp2q “ 1

4

EpXq “

0 ¨ 14 ` 1 ¨ 12 ` 2 ¨ 14 “ 1
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Rules for computing expected values

For the expected value,

• Epaq “ a.

• EpaXq “ aEpXq.

• EpaX ` bq “ aEpXq ` b.

• EpX ` Y q “ EpXq ` EpY q.

Here X and Y are any two random variables and a and b are
constants.

24



Transformations

If we transform the random variables by a function h we
have:

Theorem ♥

EphpXqq “
ÿ

all k

hpkqfpkq

Coin example (with hpxq “ x{2):

EpX{2q “
0

2
¨ fXp0q `

1

2
¨ fXp1q `

2

2
¨ fXp2q “

1
2

“ pEpXqq{2

25
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Common distributions



Bernoulli distribution

The Bernoulli distribution describes a random experiment that can
either succeed (with probability p) or fail (with probability 1´ p.)
Suppose we make a random experiment which succeeds with
probability p and set

X “

#

1, if the experiment succeeds
0, in case of failure.

We have fp1q “ p and fp0q “ 1´ p.

Sometimes useful to write as fpkq “ pkp1´ pq1´k for
k P t0, 1u.

26
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The binomial distribution

Bernoulli distribution
A random variable X is Bernoulli distributed if it has probability
mass function fp1q “ p and fp0q “ 1´ p and “ 0 otherwise. We
write X „ Berppq.

Examples?

27



The binomial distribution

The binomial distribution describes the probability of having exactly
k successes in n independent Bernoulli trials with probability of
success p.

If X is Binomial with parameters n and p we write:

X „ Binpn, pq

Ha, the sum of two coins with sides 0 and 1 is Binp2, 0.5q
distributed.

28
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The binomial distribution

n “ 10
0 1 2 3 4 5 6 7 8 9 10

0.0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

n “ 50
0 3 6 9 13 17 21 25 29 33 37 41 45 49

0.00

0.05

0.10

0.15

0 3 6 9 13 17 21 25 29 33 37 41 45 49
0.00

0.02

0.04

0.06

0.08

0.10

p “ 0.1 p “ 0.5
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The binomial distribution

The binomial distribution describes the probability of having exactly
k successes in n independent Bernoulli trials with probability of
success p.

If X is Binomial with parameters n and p we write:

X „ Binpn, pq

Binomial distribution
A random variable X is Binomial distributed with parameters n, p
if

PpX “ kq “

ˆ

n

k

˙

pkp1´ pqn´k
ˆ

n

k

˙

“
n!

k!pn´ kq!
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Sum of binomial distributed random variables

Sum of binomial distributed random variables.
If X1 „ Binpn, pq and X2 „ Binpm, pq are independent, then
X1 `X2 „ Binpm` n, pq.

(“Dropping m items, couting the broken ones, dropping n more
items, counting the additional broken ones is the same as dropping
m` n items...”)
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Geometric distribution

The experiment consists of a series of independent Bernoulli trials
with probability of success equal to p.

The random variable X denotes the number of trials needed to get
the first success.

p is called the parameter of X.
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The geometric distribution

The geometric distribution describes the probability distribution of
the number of trials needed k to get the first success, for a single
event succeeding with probability p. (k ´ 1 failures and 1
success.)

p “ 0.5 p “ 0.2
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The geometric distribution

Geometric distribution
A random variable X is geometrically distributed with parameters
p if

PpX “ kq “ p1´ pqk´1p, k “ 1, 2, . . .

We write X „ Geomppq.
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