Lecture 5: More distributions

MVE055 / MSG810
Mathematical statistics and discrete mathematics

Moritz Schauer
Last updated September 8, 2021, 2021
GU \& Chalmers University of Technology

We have seen

- Probability mass functions $f P(X=k)=(k)$.

We have seen

- Probability mass functions $f P(X=k)=(k)$.
- Bernoulli - Bernoulli $(p): X \in\{0,1\}$

We have seen

- Probability mass functions $f P(X=k)=(k)$.
- Bernoulli - Bernoulli $(p): X \in\{0,1\}$
- Binomial - $\operatorname{Bin}(n, p): X \in\{0,1, \ldots, n\}$

We have seen

- Probability mass functions $f P(X=k)=(k)$.
- Bernoulli - $\operatorname{Bernoulli}(p): X \in\{0,1\}$
- Binomial - $\operatorname{Bin}(n, p): X \in\{0,1, \ldots, n\}$
- Geometric $-\operatorname{Geom}(p): X \in\{1,2,3,4, \ldots\}$

We have seen

- Probability mass functions $f P(X=k)=(k)$.
- Bernoulli - $\operatorname{Bernoulli}(p): X \in\{0,1\}$
- Binomial - $\operatorname{Bin}(n, p): X \in\{0,1, \ldots, n\}$
- Geometric $-\operatorname{Geom}(p): X \in\{1,2,3,4, \ldots\}$
- Normal - $\mathrm{N}\left(\mu, \sigma^{2}\right): X \in(-\infty, \infty)$

What was the mean and the variance of $X \sim \operatorname{Bin}(n, p)$?
$\mathrm{E}(X)=\square . \quad \operatorname{Var}(X)=$

What was the mean and the variance of $X \sim \operatorname{Bin}(n, p)$?
$\mathrm{E}(X)=n p . \quad \operatorname{Var}(X)=$

What was the mean and the variance of $X \sim \operatorname{Bin}(n, p)$?
$\mathrm{E}(X)=n p . \quad \operatorname{Var}(X)=\square$.

What was the mean and the variance of $X \sim \operatorname{Bin}(n, p)$?

$$
\mathrm{E}(X)=n p . \quad \operatorname{Var}(X)=n p(1-p)
$$

What was the mean and the variance of $X \sim \operatorname{Bin}(n, p)$?

$$
\mathrm{E}(X)=n p . \quad \operatorname{Var}(X)=n p(1-p)
$$

What was the mean and the variance of $X \sim \operatorname{Bin}(n, p)$?
$\mathrm{E}(X)=n p . \quad \operatorname{Var}(X)=n p(1-p)$.
Normal approximation of Binomial distribution
If $X \sim \operatorname{Bin}(n, p), X$ is approximately normally distributed with mean $n p$ and variance $n p(1-p)$,

$$
X \stackrel{\text { approx. }}{\sim} \mathrm{N}(n p, n p(1-p)),
$$

if both $n p>5$ and $n(1-p)>5$.

Normal approximation

$$
n=10
$$

$$
p=0.1
$$

$p=0.5$

Discrete distributions today

- Poisson distribution - Poisson (μ) : model the number of events that occur in a time interval, in a region or in some volume.

Discrete distributions today

- Poisson distribution - Poisson (μ) : model the number of events that occur in a time interval, in a region or in some volume.
- Negative binomial distribution - $\mathrm{nBin}(r, p)$: The number of trials X in a sequence of independent $\operatorname{Bernoulli}(p)$ trials before r successes occur

Discrete distributions today

- Poisson distribution - Poisson (μ) : model the number of events that occur in a time interval, in a region or in some volume.
- Negative binomial distribution $-\mathrm{nBin}(r, p)$: The number of trials X in a sequence of independent $\operatorname{Bernoulli}(p)$ trials before r successes occur
- Hypergeometric distribution $-\operatorname{Hyp}(N, n, r)$: Draw sample of n objects without replacement out of N. The random variable X is the number of marked objects.

Poisson distribution

The Poisson distribution is often used to model the number of events that occur in a time interval, in a region or in some volume. (Named after Simeon Denis Poisson, 1781-1840.)

Poisson distribution

The Poisson distribution is often used to model the number of events that occur in a time interval, in a region or in some volume. (Named after Simeon Denis Poisson, 1781-1840.)

Some examples where this distribution fits well are

- The number of particles emitted per minute (hour, day) of a radioactive material.
- Call connections routed via a cell tower (GSM base station).

Poisson distribution

$$
X \sim \operatorname{Poisson}(\mu)
$$

A random variable X has Poisson distribution with parameter μ if

$$
\mathrm{P}(X=k)=\frac{\mathrm{e}^{-\mu} \mu^{k}}{k!}, \quad k \in\{0,1,2, \ldots\} .
$$

Poisson distribution

$$
X \sim \operatorname{Poisson}(\mu)
$$

A random variable X has Poisson distribution with parameter μ if

$$
\mathrm{P}(X=k)=\frac{\mathrm{e}^{-\mu} \mu^{k}}{k!}, \quad k \in\{0,1,2, \ldots\} .
$$

Sum of Poisson distributed random variables.
If $X_{1} \sim \operatorname{Poisson}\left(\mu_{1}\right)$ and $X_{2} \sim \operatorname{Poisson}\left(\mu_{2}\right)$ are independent, then $X_{1}+X_{2} \sim \operatorname{Poisson}\left(\mu_{1}+\mu_{2}\right)$.

Poisson distribution

Number of chewing gums on a tile is approximately Poisson.

Example

Let X be the number of typos on a printed page with a mean of 3 typos per page. Assume the typos occur independently of each other.

1. What is the probability that a randomly selected page has at least one typo on it?

2. What is the probability that three randomly selected pages have more than eight typos on it?

Example

Let X be the number of typos on a printed page with a mean of 3 typos per page. Assume the typos occur independently of each other.

1. What is the probability that a randomly selected page has at least one typo on it?
$\mathrm{P}(X \geqslant 1)=1-\mathrm{P}(X=0)=1-f(0)=1-e^{-3}$
2. What is the probability that three randomly selected pages have more than eight typos on it?

Example

Let X be the number of typos on a printed page with a mean of 3 typos per page. Assume the typos occur independently of each other.

1. What is the probability that a randomly selected page has at least one typo on it?
$\mathrm{P}(X \geqslant 1)=1-\mathrm{P}(X=0)=1-f(0)=1-e^{-3}$
2. What is the probability that three randomly selected pages have more than eight typos on it?

Example

Let X be the number of typos on a printed page with a mean of 3 typos per page. Assume the typos occur independently of each other.

1. What is the probability that a randomly selected page has at least one typo on it?
$\mathrm{P}(X \geqslant 1)=1-\mathrm{P}(X=0)=1-f(0)=1-e^{-3}$
2. What is the probability that three randomly selected pages have more than eight typos on it?

In this case $\lambda=9$ since we have in average 9 typos on three printed pages.

Example

Let X be the number of typos on a printed page with a mean of 3 typos per page. Assume the typos occur independently of each other.

1. What is the probability that a randomly selected page has at least one typo on it?
$\mathrm{P}(X \geqslant 1)=1-\mathrm{P}(X=0)=1-f(0)=1-e^{-3}$
2. What is the probability that three randomly selected pages have more than eight typos on it?

In this case $\lambda=9$ since we have in average 9 typos on three printed pages.
$\mathrm{P}(X>8)=1-\mathrm{P}(X \leqslant 8) \approx 1-0.456$ by table II page 692

Poisson distribution as limit of a Binomial distribution

The Poisson distribution appears as limit of the Binomial distribution if n becomes large and p goes to 0 :

Theorem

Let $n \rightarrow \infty, p \rightarrow 0$, and also $n p \rightarrow \mu$. Then for fix $k \geqslant 0$

$$
\begin{equation*}
\binom{n}{k} p^{k}(1-p)^{n-k} \rightarrow \frac{\mu^{k} e^{-\mu}}{k!} \tag{0.1}
\end{equation*}
$$

Poisson distribution as limit of a Binomial distribution

The Poisson distribution appears as limit of the Binomial distribution if n becomes large and p goes to 0 :

Theorem

Let $n \rightarrow \infty, p \rightarrow 0$, and also $n p \rightarrow \mu$. Then for fix $k \geqslant 0$

$$
\begin{equation*}
\binom{n}{k} p^{k}(1-p)^{n-k} \rightarrow \frac{\mu^{k} e^{-\mu}}{k!} \tag{0.1}
\end{equation*}
$$

Connection to the previous example:

- There is a large number n of atoms in the material and the probability that an atom decays in a unit of time p is very small.

Negative binomial distribution

The number of trials X in a sequence of independent $\operatorname{Bernoulli}(p)$ trials before r successes occur has the negative binomial distribution.

Negative binomial distribution

$$
X \sim \operatorname{nBin}(r, p)
$$

The random variable X has a negative binomial distribution with parameter r and p if

$$
\mathrm{P}(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}, \quad k=r, r+1 \ldots
$$

Negative binomial distribution

$$
X \sim \mathrm{nBin}(r, p)
$$

The random variable X has a negative binomial distribution with parameter r and p if

$$
\mathrm{P}(X=k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}, \quad k=r, r+1 \ldots
$$

Motivation: Probability of r successes in k trials: $(1-p)^{k-r} p^{r}$. The last attempt succeeds. The binomial coefficient gives the number of ways we assign the remaining $r-1$ successes to the remaining $k-1$ trials.

Hypergeometric distribution

- Suppose we have N objects of which r are "marked".
- Draw sample of n objects without replacement. The random variable X is the number of marked objects. Then X has hypergeometric distribution with parameters N, n, r.

Hypergeometric distribution

$$
X \sim \operatorname{Hyp}(N, n, r)
$$

The random variable X has hypergeometric distribution with parameters N, n and r if

$$
\mathrm{P}(X=k)=\frac{\binom{r}{k}\binom{N-r}{n-k}}{\binom{N}{n}} \quad \max (0, n+r-N) \leqslant k \leqslant \min (n, r)
$$

Hypergeometric distribution

$$
X \sim \operatorname{Hyp}(N, n, r)
$$

The random variable X has hypergeometric distribution with parameters N, n and r if

$$
\mathrm{P}(X=k)=\frac{\binom{r}{k}\binom{N-r}{n-k}}{\binom{N}{n}} \quad \max (0, n+r-N) \leqslant k \leqslant \min (n, r)
$$

If $n=1$ then $\operatorname{Hyp}(N, 1, r)=\operatorname{Bernoulli}(r / N)$. If N and r are large compared to n we have $\operatorname{Hyp}(N, n, r) \approx \operatorname{Bin}(n, r / N)$.

Continuous distributions today (all positive)

- Exponential distribution $-\operatorname{Exp}(\lambda)$: Time between calls/visitors/people knocking on your door. (Poisson: How many ticks. Exponential: time between ticks.)

Continuous distributions today (all positive)

- Exponential distribution $-\operatorname{Exp}(\lambda)$: Time between calls/visitors/people knocking on your door. (Poisson: How many ticks. Exponential: time between ticks.)
- Gamma distribution - $\Gamma(\alpha, \beta)$: Flexible distribution for positive random variables.

Continuous distributions today (all positive)

- Exponential distribution $-\operatorname{Exp}(\lambda)$: Time between calls/visitors/people knocking on your door. (Poisson: How many ticks. Exponential: time between ticks.)
- Gamma distribution - $\Gamma(\alpha, \beta)$: Flexible distribution for positive random variables.
- χ^{2}-distribution $-\chi^{2}(n)$: Distribution for sum of squares of n independent $N(0,1)$ random variables.

Exponential distribution

$$
X \sim \operatorname{Exp}(\lambda)
$$

The density function of an exponential distribution with rate λ or is given by

$$
f(x)=\lambda \mathrm{e}^{-\lambda x}, \quad x \geqslant 0
$$

or equivalently $f(x)=\frac{1}{\beta} e^{-x / \beta}$ where $\beta=\frac{1}{\lambda}$ is the scale.

$$
\mathrm{E}[X]=\beta \text { and } \operatorname{Var}(X)=\beta^{2}
$$

The cumulative distribution function is given by

$$
F(x)=1-e^{-\lambda x}
$$

Exponential distribution

Assume objects arrive after exponentially distributed interarrival times.
λ - how many arrivals per time unit.
β - expected waiting time

Gamma distribution

$$
X \sim \operatorname{Gamma}(\alpha, \beta)
$$

A random variable X with density function

$$
f(x)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta}, \quad x>0
$$

for $\beta>0$ and $\alpha>0$ has a Gamma distribution with parameters shape α and scale β, or .
$\mathrm{E}[X]=\alpha \beta$ and $\operatorname{Var}(X)=\alpha \beta^{2}$.
If X follows a Gamma distribution with parameters α and β, then the m.g.f is given by $m_{X}(t)=(1-\beta t)^{-\alpha}$.

χ^{2}-distribution

$$
X \sim \chi^{2}(n)
$$

The Gamma distribution with parameters $\beta=2$ and $\alpha=\frac{n}{2}$ is called χ^{2}-distribution with n degrees of freedom.
$\mathrm{E}[X]=n$ and $\operatorname{Var}(X)=2 n$.

Sum of squares

If Z_{1}, \ldots, Z_{n} have standard normal distributions and are independent, then $Z_{1}^{2}+\cdots+Z_{n}^{2}$ follow a χ^{2}-distribution with n degrees of freedom.

Let X be a random variable

- The $k^{\text {th }}$ moment for X is defined by $\mathrm{E}\left(X^{k}\right)$.

Let X be a random variable

- The $k^{\text {th }}$ moment for X is defined by $\mathrm{E}\left(X^{k}\right)$.
- The moment generating function for X is defined by

$$
m_{X}(t)=\mathrm{E}\left(\mathrm{e}^{t X}\right)
$$

Moment generating function (m.g.f.)

Let X be a random variable

- The $k^{\text {th }}$ moment for X is defined by $\mathrm{E}\left(X^{k}\right)$.
- The moment generating function for X is defined by

$$
m_{X}(t)=\mathrm{E}\left(\mathrm{e}^{t X}\right)
$$

- Let $m_{X}(t)$ be the m.g.f for X. Then

$$
\left.\frac{\mathrm{d}^{k} m_{X}(t)}{\mathrm{d} t^{k}}\right|_{t=0}=\mathrm{E}\left(X^{k}\right)
$$

Let $Z \sim \mathrm{~N}(0,1)$. Compute the mgf.

Let $Z \sim \mathrm{~N}(0,1)$. Compute the mgf. Use $h(x)=\mathrm{e}^{t x}$ and transform:

Let $Z \sim \mathrm{~N}(0,1)$. Compute the mgf. Use $h(x)=\mathrm{e}^{t x}$ and transform:

$$
m_{X}(t)=\mathrm{E}\left[e^{t X}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \underbrace{\mathrm{e}^{t x}}_{h(x)} \mathrm{e}^{-\frac{1}{2} x^{2}} \mathrm{~d} x
$$

Let $Z \sim \mathrm{~N}(0,1)$. Compute the mgf. Use $h(x)=\mathrm{e}^{t x}$ and transform:

$$
\begin{gathered}
m_{X}(t)=\mathrm{E}\left[e^{t X}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \underbrace{\mathrm{e}^{t x}}_{h(x)} \mathrm{e}^{-\frac{1}{2} x^{2}} \mathrm{~d} x \\
=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\frac{1}{2}(x-t)^{2}} \mathrm{e}^{\frac{1}{2} t^{2}} \mathrm{~d} x=\mathrm{e}^{\frac{1}{2} t^{2}}
\end{gathered}
$$

