Lecture 8: Samples and point estimates

MVE055 / MSG810 Mathematical statistics and discrete mathematics

Moritz Schauer Last updated September 20, 2021, 2021

GU & Chalmers University of Technology

Samples and point estimators

Example: (5.27, 4.07, 5.48, 3.38) are measurements of the weight of n = 4 randomly (independent) selected cats.

Definition: Sample

A sample (x_1, \ldots, x_n) of size n is made of n independent observations (realisations) of a random variable. Or – the same – of random variables X_1, \ldots, X_n where all X_i are independent and equally distributed (thus have the same distribution).

Example: (5.27, 4.07, 5.48, 3.38) are measurements of the weight of n = 4 randomly (independent) selected cats.

Example: (5.27, 4.07, 5.48, 3.38) are measurements of the weight of n = 4 randomly (independent) selected cats.

The weight of a cat is modelled as normal random variable X_1, X_2, X_3, X_4 each $N(\mu, (1.2)^2)$ -distributed with unknown parameter μ . Here $N(\mu, (1.2)^2)$ is a model for the population of *all cats.*

(5.27, 4.07, 5.48, 3.38) is a sample of X_1, X_2, X_3, X_4 .

(5.27, 5.27, 5.27, 5.27, 5.27) is perhaps not a sample

(lack of independence because some genius just weighted the same cat over and over).

Statistics

Like in the "cat"-example we can often say what kind of distribution is appropriate for X but we do not know the right parameters.

Like in the "cat"-example we can often say what kind of distribution is appropriate for X but we do not know the right parameters.

Many statistical problems can be reduced to the following question: Given the observations x_1, \ldots, x_n , what can we say about the parameters in the distribution of X_i (assuming each X_i is drawn independently from the same distribution)? Like in the "cat"-example we can often say what kind of distribution is appropriate for X but we do not know the right parameters.

Many statistical problems can be reduced to the following question: Given the observations x_1, \ldots, x_n , what can we say about the parameters in the distribution of X_i (assuming each X_i is drawn independently from the same distribution)?

Definition: i.i.d.

We write $X_1, X_2, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} D$ if X_1, X_2, \ldots, X_n are independently and identically distributed with distribution D.

$$\bar{X}^{(n)} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 is the sample mean.

$$\begin{split} \bar{X}^{(n)} &= \frac{1}{n} \sum_{i=1}^{n} X_i \text{ is the sample mean.} \\ \textbf{Example: Let } (5.27, 4.07, 5.48, 3.38) \text{ our sample.} \\ \bar{x}^{(4)} &= (5.27 + 4.07 + 5.48 + 3.38)/4 = \textbf{4.55} \text{ is a realisation} \\ \bar{X}^{(n)}. \end{split}$$

We model $\bar{X}^{(n)}$ itself as random variable with its own expectation, variance and realization etc.

$$\begin{split} \bar{X}^{(n)} &= \frac{1}{n} \sum_{i=1}^{n} X_i \text{ is the sample mean.} \\ \textbf{Example: Let } (5.27, 4.07, 5.48, 3.38) \text{ our sample.} \\ \bar{x}^{(4)} &= (5.27 + 4.07 + 5.48 + 3.38)/4 = \textbf{4.55} \text{ is a realisation} \\ \bar{X}^{(n)}. \end{split}$$

We model $\bar{X}^{(n)}$ itself as random variable with its own expectation, variance and realization etc. Now with $\mu = \mathsf{E}(X_1) = \mathsf{E}(X_2) = \dots$ and $\sigma^2 = \operatorname{Var}(X_1) = \operatorname{Var}(X_2) = \dots$

$$\mathsf{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}\mathsf{E}X_{i} \stackrel{(*)}{=}\mu$$

$$\begin{split} \bar{X}^{(n)} &= \frac{1}{n} \sum_{i=1}^{n} X_i \text{ is the sample mean.} \\ \textbf{Example: Let } (5.27, 4.07, 5.48, 3.38) \text{ our sample.} \\ \bar{x}^{(4)} &= (5.27 + 4.07 + 5.48 + 3.38)/4 = \textbf{4.55} \text{ is a realisation} \\ \bar{X}^{(n)}. \end{split}$$

We model $\bar{X}^{(n)}$ itself as random variable with its own expectation, variance and realization etc. Now with $\mu = \mathsf{E}(X_1) = \mathsf{E}(X_2) = \dots$ and $\sigma^2 = \operatorname{Var}(X_1) = \operatorname{Var}(X_2) = \dots$

$$\mathsf{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}\mathsf{E}X_{i} \stackrel{(*)}{=}\mu$$

$$\operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) \stackrel{i.i.d}{=} \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}(X_{i}) = \frac{\sigma^{2}}{n}$$

Ah! Smaller uncertainty, 4.55 is perhaps closer to μ than most the values in our sample which vary from μ by σ .

6

Expectation and variance of the sample average $\mathsf{E}\left(\bar{X}^{(n)}\right) = \mu \text{ and } \operatorname{Var}\left(\bar{X}^{(n)}\right) = \sigma^2/n.$

Quiz: How fast goes uncertainty down if n increases?

Expectation and variance of the sample average $\mathsf{E}\left(\bar{X}^{(n)}\right) = \mu \text{ and } \operatorname{Var}\left(\bar{X}^{(n)}\right) = \sigma^2/n.$

Quiz: How fast goes uncertainty down if n increases?

Standard error of the mean

$$\frac{\sigma}{\sqrt{n}}$$
 is called standard error of the mean.

Example: Take (5.27, 4.07, 5.48, 3.38) our sample. Model $X_1, \ldots X_n \stackrel{i.i.d}{\sim} N(\mu, \sigma^2)$ with n = 4 and $\sigma = 1.2$ and μ unknown.

Example: Take (5.27, 4.07, 5.48, 3.38) our sample. Model $X_1, \ldots X_n \stackrel{i.i.d}{\sim} N(\mu, \sigma^2)$ with n = 4 and $\sigma = 1.2$ and μ unknown.

 $\bar{x}^{(4)} = (5.27 + 4.07 + 5.48 + 3.38)/4 = 4.55$ is an estimate for μ

Example: Take (5.27, 4.07, 5.48, 3.38) our sample. Model $X_1, \ldots X_n \stackrel{i.i.d}{\sim} N(\mu, \sigma^2)$ with n = 4 and $\sigma = 1.2$ and μ unknown.

 $\bar{x}^{(4)} = (5.27 + 4.07 + 5.48 + 3.38)/4 = \textbf{4.55}$ is an estimate for μ

The standard error associated with $\bar{x}^{(4)}$ is $\sigma/\sqrt{n}=1.2/\sqrt{4}=$ 0.6.

Our estimate

 $\mu \approx 4.55 \pm 0.6$

Average of Gaussian distributed random variables.

Let X_1, \ldots, X_n an independent sample of a $N(\mu, \sigma^2)$ r.v. Then $\bar{X}^{(n)}$ is $N(\mu, \sigma^2/n)$ -distributed.

Estimation

An estimator for a parameter θ is a function $\hat{\theta}(X_1, \ldots, X_n)$ mapping the observations into the parameter space Θ .

Example: $\bar{X}^{(n)}$ is an estimator for $\mu = \mathsf{E}X_1 = \mathsf{E}X_2 = \dots$

Estimation

An estimator for a parameter θ is a function $\hat{\theta}(X_1, \ldots, X_n)$ mapping the observations into the parameter space Θ .

Example: $\overline{X}^{(n)}$ is an estimator for $\mu = \mathsf{E}X_1 = \mathsf{E}X_2 = \dots$

 $\hat{\theta}$ can refer both to a random variable and to actual observed values.

- $\hat{\theta}(X_1, \dots, X_n)$ is a random variable with a certain distribution (random in \rightarrow random out).
- $\hat{\theta}(x_1, \dots, x_n)$ is a number calculated from data. This is called the point estimate of the parameter.

Two important qualities of estimators:

• unbiased:
$$\mathsf{E}(\hat{\theta}(X_1,\ldots,X_n)) = \theta$$
.

Two important qualities of estimators:

- unbiased: $\mathsf{E}(\hat{\theta}(X_1,\ldots,X_n)) = \theta$.
- Small variance in large samples: $V(\hat{\theta}(X_1, \dots, X_n))$ small if n large.

If the expected value of the estimator is the true value (the estimator is unbiased), that means that the estimated values center on average around the true value if we make several repeated samples of size n.

• For a given sample, the value need not be close to the true value.

If the expected value of the estimator is the true value (the estimator is unbiased), that means that the estimated values center on average around the true value if we make several repeated samples of size n.

- For a given sample, the value need not be close to the true value.
- The standard deviation of an unbiased estimate gives an indication of how far it may be from the actual value.

If the expected value of the estimator is the true value (the estimator is unbiased), that means that the estimated values center on average around the true value if we make several repeated samples of size n.

- For a given sample, the value need not be close to the true value.
- The standard deviation of an unbiased estimate gives an indication of how far it may be from the actual value.
- Often the standard error of the estimate is reported, which is the standard deviation of the estimate.

Sample mean and sample variance

Consider an i.i.d sample (X_1, \ldots, X_n) and assume that $E(X_i) = \mu$ and $V(X_i) = \sigma^2$.

The sample mean $\hat{\mu} = \bar{X}^{(n)}$ is an unbiased estimator of μ , that is $E(\hat{\mu}) = \mu$. It has standard error $\sqrt{V(\hat{\mu})} = \frac{\sigma}{\sqrt{n}}$.

Sample mean and sample variance

Consider an i.i.d sample (X_1, \ldots, X_n) and assume that $E(X_i) = \mu$ and $V(X_i) = \sigma^2$.

The sample mean $\hat{\mu} = \bar{X}^{(n)}$ is an unbiased estimator of μ , that is $E(\hat{\mu}) = \mu$. It has standard error $\sqrt{V(\hat{\mu})} = \frac{\sigma}{\sqrt{n}}$.

An unbiased estimator for the variance σ^2 is the sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}.$$

Sample variance can also be computed as

$$S^{2} = \frac{n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n(n-1)}$$

Percentiles and quantiles

The p^{th} percentile P is the value of X such that p% or less of the observations are less than P and (100 - p)% or less are greater than P. p^{th} percentiles are p%-quantiles.

In particular, P_{25} is the 25^{th} percentile or the first quartile denoted also by $Q_1.P_{50}$ is the 50^{th} percentile or the second quartile Q_2 , which is also the median, and P_{75} is the 75^{th} percentile or the third quartile Q_3 .

Note that $Q_1 = \frac{n+1}{4}$ th ordered observation, $Q_2 = \frac{2(n+1)}{4} = \frac{n+1}{2}$ th ordered observation, and $Q_3 = \frac{3(n+1)}{4}$ th ordered observation.

Given the following set of data :

18, 1, 20, 15, 12, 15, 14, 7, 11, 9, 6, 4

Order the numbers from the lowest to the highest

1, 4, 6, 7, 9, 11, 12, 14, 15, 15, 18, 20

 $\bar{x}^{(12)} = \frac{1+4+\dots+18+20}{12} = 11.$ Median: $Me = \frac{11+12}{2} = 11.5.$ Given the following set of data :

18, 1, 20, 15, 12, 15, 14, 7, 11, 9, 6, 4

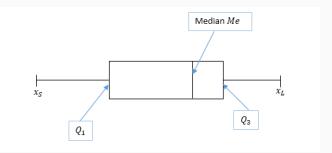
Variance

$$s^{2} = \frac{(20-11)^{2} + (18-11)^{2} + \dots + (-7)^{2} + (-10)^{2}}{12-1} \approx 33.3$$

Order the numbers from the lowest to the highest

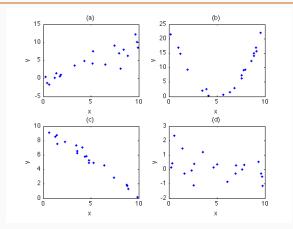
1, 4, 6, 7, 9, 11, 12, 14, 15, 15, 18, 20

 $Q_1 = 6.25, Q_3 = 15.$



Bivariate samples

Visualisation



Assume 2d measurements (x_i, y_i) . A scatter plot is a two-dimensional plot in which each (x_i, y_i) measurement is represented as a point in the *x*-*y*-plane.

The sample covariance is defined as,

$$c_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

and is an unbiased estimator of the covariance Cov(X, Y).

The sample covariance is defined as,

$$c_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

and is an unbiased estimator of the covariance Cov(X, Y).

The sample correlation coefficient is defined as

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} =$$

The sample covariance is defined as,

$$c_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

and is an unbiased estimator of the covariance Cov(X, Y).

The sample correlation coefficient is defined as

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{c_{xy}}{s_x s_y}$$

The sample covariance is defined as,

$$c_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

and is an unbiased estimator of the covariance Cov(X, Y).

The sample correlation coefficient is defined as

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{c_{xy}}{s_x s_y}$$

The sample covariance is defined as,

$$c_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

and is an unbiased estimator of the covariance Cov(X, Y).

The sample correlation coefficient is defined as

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{c_{xy}}{s_x s_y}$$

The sample correlation is an empirical measure of linear dependence.

The sample covariance is defined as,

$$c_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

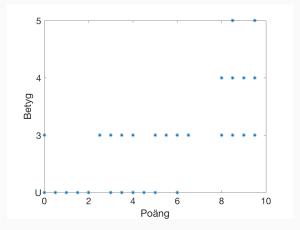
and is an unbiased estimator of the covariance Cov(X, Y).

The sample correlation coefficient is defined as

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{c_{xy}}{s_x s_y}$$

The sample correlation is an empirical measure of linear dependence.

Example: Course results 2017



Exam grade (Y) versus points in exam question 5 (X). Correlation: $r_{xy} = 0.7261$

Let $X \sim {\rm N}(\mu_X, \sigma_X^2)$ and $Y \sim {\rm N}(\mu_Y, \sigma_Y^2)$ with X and Y independent. Then

$$X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

Note: A normal random variable with mean μ and variance σ^2 has moment generating function $m(t) = \exp(t\mu + t^2\sigma^2/2)$. So if you tell me your moment generating function, I tell you if you are normally distributed and if, what your parameters are. We can prove the theorem by computing and identifying the m.g.f of X + Y (next slide) So we now $m_X(t) = \mathsf{E}\exp(tX) = \exp(t\mu_X + t^2\sigma_X^2/2)$ and $m_Y(t) = \mathsf{E}\exp(tY) = \exp(t\mu_Y + t^2\sigma_Y^2/2).$

We compute and identify m_{X+Y}

$$m_{X+Y}(t) = \mathsf{E}\exp(t(X+Y)) = \mathsf{E}\left(\exp(tX)\exp(tY)\right)$$

$$\stackrel{indep}{=} \mathsf{E}\left(\exp(tX)\right) \mathsf{E}\left(\exp(tY)\right)$$

$$= m_X(t)m_Y(t) = \exp(t\mu_X + t^2\sigma_X^2/2)\exp(t\mu_Y + t^2\sigma_Y^2/2)$$

$$= \exp(t(\mu_X + \mu_Y) + t^2(\sigma_X^2 + \sigma_Y^2)/2)$$

which is m.g.f of $N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$ so X + Y must be $N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$ distributed.