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Time table (1st week)
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Course overview

https://chalmers.instructure.com/courses/15306
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Examination

“För godkänd på kursen krävs godkänd på de tre grupparbetana
samt godkänd på skriftlig tentamen. Betyget på kursen baseras på
betyget på tentan.”

Examination consists of two parts.

Exam:

• Exam takes place on campus. Will look similar to the last
exam.

3 group assignments:

• First assignment: “Skiplist”.
• Groups of up to four students.
• ë Find yourself a group on canvas "Assignment groups".
• One student hands in for the group on canvas.
• Required for passing but does not affect course grade.
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Course content

In probability theory we construct and analyse mathematical
models for phenomena that exhibit uncertainty and variation.
Highlight: Markov chains.

In statistics we observe data and we want to infer the probabilistic
model or parameters of such a model: inverse probability.

Generating functions allow to solve recursive equations.

The law of large number describes what happens if you perform
the same experiment a large number of times.

Regression to find linear relationships between inputs/explanatory
variables and outputs/explained variables.
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Example: Probability vs statistics

What is the probability to throw 10 times heads in a row with a fair
coin.

This is the 10th time you throw head in a row... is that coin
fair!?
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Describing data



Visual inspection

When analysing a data set, it is a good idea to first visualise it
graphically.

Example:
Throwing a dice 20 times we obtained the following results:

1, 3, 3, 3, 1, 6, 6, 5, 1, 4, 6, 1, 4, 5, 1, 1, 2, 3, 6, 5.
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Frequency table and histogram

Everything starts with data and tables.

If the observations take values in a small set, then we can
summarise the data in a frequency table showing how many
outcomes we have for each possible outcome.

For our results

1, 3, 3, 3, 1, 6, 6, 5, 1, 4, 6, 1, 4, 5, 1, 1, 2, 3, 6, 5

we get

Outcome 1 2 3 4 5 6

Count 6 1 4 2 3 4
Proportion 0.30 0.05 0.20 0.10 0.15 0.20
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Tricky denominators

New York City Health Department, 2021-08-08.
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Bar chart

Using the frequency table we can draw a bar chart. For each value
we draw a bar whose height is proportional to the number of
observations for that value.

using StatsBase, GLMakie
x = [1, 3, 3, 3, 1, 6, ..., 5, 1, 1, 2, 3, 6, 5,]
barplot(counts(x, 1:6))
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Histogram

Task: Summarise 1000 real numbers which are the outcome of
some experiment,

12.15, 17.33, 0.96, 13.44, 11.27, 4.76, 8.26, 11.37, 24.31, 21.07, . . .

A bar chart doesn’t make sense because the data does not have
only a few different values. We can use a histogram:

• Divide the data into a number of classes (intervals) and then
calculate the number of observations in each class.

• Draw bars where the height is proportional to the number of
observations in the class and the width equals the interval
width.
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Histogram

4 classes 7 classes

9 classes 200 classes
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Sample statistics for location

Case 1 2 3 4 5 6 7 8
Value 2 3 2 6 5 1 2 3

Weights on a bar
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Sample median

• To obtain the sample median,
write the values in sorted order and take the middle one.

If there is an even number of values in the data set, take the
average of the two middle most.
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Median

Median

Value 1 2 2 2 3 3 5 6

Median = 2.5

16



Median

Median

Value 1 2 2 2 3 3 5 8

Median = 2.5
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Sample mean

• The (sample) mean, denoted as x̄, can be calculated as

x̄ “
x1 ` x2 ` ¨ ¨ ¨ ` xn

n
“

1

n

n
ÿ

i“1

xi,

where x1, x2, ¨ ¨ ¨ , xn are the n observed values.

In words: Sum the values of all cases in the data set and divide
by the total number of values.

18



Sample mean

Mean

Value 1 2 2 2 3 3 5 6

Mean x̄ “
1¨1` 3¨2` 2¨3` 1¨5` 1¨6

8
“ 3
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Sample mean

Mean

Value 1 2 2 2 3 3 5 8

Mean x̄ “
1¨1` 3¨2` 2¨3` 1¨5` 1¨8

8
“ 3.25
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Sample statistics for variation/spread

Sample variance: The sample variance of a data set x1, . . . , xn is
given by

s2 “
1

n´ 1

n
ÿ

i“1

pxi ´ x̄q
2 “

1

n´ 1
ppx1 ´ x̄q

2 ` . . .` pxn ´ x̄q
2q

Sometimes convenient to use the formula

s2 “
1

n´ 1
p

n
ÿ

i“1

x2
i ´ nx̄

2q “
1

n´ 1
px2

1 ` . . .` x
2
n ´ nx̄

2q

Sample standard deviation s: the square root
?
s2 of the sample

variance.
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Example 1 (cont.)

For the dice throw example

1, 3, 3, 3, 1, 6, 6, 5, 1, 4, 6, 1, 4, 5, 1, 1, 2, 3, 6, 5

we obtain the mean

x̄ “ p1` 3` 3` . . .` 3` 6` 5q{20 “ 67{20 “ 3.35

Sorting the values and taking the central one we obtain the median
3.

The variance is

s2 “ pp1´ 3.35q2 ` p3´ 3.35q2 ` . . .` p5´ 3.35q2q{19 “ 3.8184

and the standard deviation is s “ 1.9541.
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Sample spaces



Outcomes

In probability theory we consider experiments which have
non-deterministic, variable or random outcomes. For example

1. Roll a die and count the eyes.

2. Ask a person on the street which party they would vote for.

3. Throw a handful of coins and count the heads.

4. Examine a unit from a manufacturing process.

5. Measure the round-trip time (ping) of a connection.

The result of the experiment is called outcome ω (utfall). The set
of possible outcomes is called the sample space Ω (utfallsrummet).
ë Sets Ω and elements ω.
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Sample spaces

• Ω “ t1,2,3,4,5,6u.

• Ω “ tV, S, MP, C, L, M, KD, S, Others, No answeru.

• Ω “ t(head, head),(head, tail),(tail, head),(tail, tail)u (for 2
coins).

• Ω “ tdefect, intactu.

• Ω “ r0,8q (seconds).
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Events

We group outcomes into events.

An event A is a set of outcomes, that is, a subset of the sample
space Ω.

Example for events:

1. A “ t1,3,5u, that is “my die shows an odd number”.

2. A “ tC, L, M, KDu, a “vote for the ‘Alliansen’ ”.

3. A “ t(head,head),(tail,tail)u, “both coins show the same face”.

4. A “ tdefectu, the “unit is broken”.

5. A “ tx : x ě 0.5u, round-trip-time larger than 0.5s.

An event A occurs if any of the outcomes ω P A occurs in the
experiment.
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Outcome and sample space

Outcome and sample space
The outcome ω is the result of a random experiment, and the set
of all possible outcomes Ω is called the sample space.

Events
An event is a collection (a set of) different outcomes. The event
A, as a set of outcomes, is therefore a subset of the sample space
Ω.

We like events because the probability of a single outcome might be
too small or zero.
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Event, outcome and sample space

A

Ω

ω

ω1

Event A, outcome ω P A and sample space Ω

And some other outcome ω1 R A.
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Overview: Intersection, union and complement

For events A and B we have defined:

Complement, Ac

Set of all outcomes ω not contained in A. Ac “ ΩzA.

Union, AYB
Set of all outcomes ω in A or B.

Intersection, AXB
Set of all outcomes ω in A and B.

Ac, AYB, AXB are also events. ∅ and Ω are also events, the
impossible event and the sure event.

Mutually exclusive events
If AXB “ ∅ then A and B are mutually exclusive events.
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Example: The set t2, 4, 6u and the set t1, 3, 5u are disjoint.
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Complement

A

Ac

The complement of a A are all outcomes not in A.

Ac “ ΩzA.

In the example with the die: Here A “ t1, 3, 5u. So if the die shows
a 2, then Ac “ t2, 4, 6u happened.
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Union

A B

pAYBqc

If we have events, A and B we can define AYB, the union of A
and B .

• AYB occurs if A or B occur (or both).
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Intersection

A B

pAXBqc

The intersection AXB are all elements both in A and B.

• So for AXB to occur, both A and B need to occur.

AXB “ ∅ means that A andB exclude each other.
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Set inclusion

A B

A Ă B.
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Disjoint sets

A B

AXB “ ∅.
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The empty set ∅

35



Permutations and combinations

Permutation
A specific order of a number of objects.

p1, 3, 2, 5, 6, 4q is a permutation of the numbers 1 to 6.

Combination
A selection of objects without regard for their order.

t1, 3, 5u is a combination of 3 the of the numbers 1 to 6.

Note p1, 2q ‰ p2, 1q but t1, 2u “ t2, 1u.
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Permutations and combinations

Multiplication principle
If there are a ways to make a choice and there are b ways to make
a second choice, then there are ab ways to make a combined
choice.

Factorial
For n P N define n! “ n ¨ pn´ 1q ¨ pn´ 2q ¨ ¨ ¨ ¨ 2 ¨ 1 and 0! “ 1.
n! is read “n-factorial”.

4! “ 4 ¨ 3 ¨ 2 ¨ 1 “ 24
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Calculate the number of combinations

Number of combinations
The number of ways we can choose r objects out of a total of n
distinct objects, ignoring their order, is given by

nCr “

ˆ

n
r

˙

“
n!

r!pn´ rq!

• nCr is usually called binomial coefficient.

Example: Draw five cards from a poker set of 52 cards.
2 598 960 combinations are possible:

ˆ

52

5

˙

“
52!

5!p52´ 5q!
“

52 ¨ 51 ¨ 50 ¨ 49 ¨ 48

5 ¨ 4 ¨ 3 ¨ 2 ¨ 1
“ 2 598 960

nPr “
n!

pn´rq!
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Probabilities



Probabilities of events

• Probability is a numerical measure of how likely an event is to
happen.

• Probability is a proportion, a number between 0 and 1.
Notation

Ppsomething that can happenq “ a probability.

E.g.

Ppcoin heads-upq “
1

2
.

Figure from https://mathwithbaddrawings.com/.
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Equally likely outcomes

What is probability? (How do we assign probability?)

• A classical and useful view considers equally likely outcomes.
Then

PpAq “
number of outcomes for which A occurs

total number of outcomes

• Probability to throw an odd number with a fair die.

PpAq “
|t1, 3, 5u|

|t1, 2, 3, 4, 5, 6u|
“

3

6
“

1

2
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Frequentist interpretation of probability

• Sometimes it is not reasonable to assume that all outcomes
are equally likely.

• The frequentist interpretation of probability: Suppose we
repeat a random experiment many times under identical
conditions. As the number of repetitions n grows, we observe
that the proportion nA{n of times that an event A occur
converges to a number. This number is the probability of A,
or as formula

nA
n
Ñ PpAq,where nÑ8

Example: With a fair die, we observe the proportion of times where
A “ teven number of eyesu occurs converge to 1

2 .
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Kolmogorov’s axioms

Let Ω be a sample space.

Kolmogorov’s axioms
A probability measure P is function A ÞÑ PpAq assigning each
event A Ă Ω a probability,a positive number such that

1. 0 ď PpAq ď 1.

2. PpΩq “ 1.

3. For pairwise disjoint events A1, A2, . . .

P

˜

8
ď

i“1

Ai

¸

“

8
ÿ

i“1

PpAiq.

Especially for disjoint/mutually exclusive events A and B,

PpAYBq “ PpAq ` PpBq. 42



Properties of probability distributions

The axioms determine all further properties of probabilities...

Properties
For the probability measure P it holds that:

1. Pp∅q “ 0.

2. PpAcq “ 1´ PpAq.

3. PpAYBq “ PpAq ` PpBq ´ PpAXBq.

All these properties can be seen with the help of Venn
diagrams.
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Probability of the union of non-disjoint events

What is the probability of drawing a jack or a red card from a well
shuffled full deck (52 cards)?

Ppjack or redq “ Ppjackq ` Ppredq ´ Ppjack and redq

“
4

52
`

26

52
´

2

52
“

28

52

Figure from http://www.milefoot.com/math/discrete/counting/cardfreq.htm.
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General addition rule

PpAYBq “ PpAq ` PpBq ´ PpAXBq
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Combined experiment

Throw a coin ( 1 , e ), and throw a 6 sided die. What is

Pp 1 , q “
1

12

Use multiplication rule and the classical approach.

1 1
12

1
12

1
12

1
12

1
12

1
12

1
2

e 1
12

1
12

1
12

1
12

1
12

1
12

1
2

1
6

1
6

1
6

1
6

1
6

1
6 1

The table also shows the marginal probablities.
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Example with the bugs

Drawing a random bug out of the aquarium, with (g)reen and (r)ed
bugs on (l)and and (w)ater.

R G

L 2 3 5
W 2 5 7

4 8 12

R G

L 1
6

1
4

5
12

W 1
6

5
12

7
12

1
3

2
3 1

Frequency table and probability table.
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Thinking statistics

Flawed reasoning
Students at an elementary school are given a questionnaire that
they are required to return after their parents have completed it.

One of the questions asked is, “Do you find that your work
schedule makes it difficult for you to spend time with your kids
after school” Of the parents who replied, 85% said “no”.

Based on these results, the school officials conclude that a great
majority of the parents have no difficulty spending time with their
kids after school.

What went wrong?

48



Conditional probability

Drawing a random bug out of the aquarium, with (g)reen and (r)ed
bugs on (l)and and (w)ater.

Ppis redq “ 1{3
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Conditional probability

Drawing a random bug out of the aquarium, with (g)reen and (r)ed
bugs on (l)and and (w)ater.

We catch a red bug. What is the probability it is “dry”: 50%-50%

Pplives on land | is redq “
Ppred and land

Ppis redq
“

2{12

4{12
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Conditional probability

The conditional probability of the event of interest A given
condition B is calculated as

PpA | Bq “
PpAXBq

PpBq

Multiplication rule
If A and B represent two events, then

P pAXBq “ P pA|Bq ¨ P pBq

Note that this formula is simply the conditional probability formula,
rearranged.
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Conditional distribution

If we know some event B occurs, the probability of A given the
new information B can be calculated as follows:
Conditional probability

Assume that PpBq ą 0. The conditional probability of A given B
is defined as

PpA | Bq “
PpAXBq

PpBq
. (3.1)

Multiplication rule for probabilities
For events A and B it holds

PpAXBq “ PpB | AqPpAq “ PpA | BqPpBq.

The multiplication rule is useful to calculate probabilities of
multiple events affecting each other.
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Bayes formula

Bayes formula
For events A and B

PpA | Bq “
PpB | AqPpAq

PpBq

Often it is useful to rewrite the denominator PpBq

PpBq “ PpB | AqPpAq ` PpB | AcqPpAcq
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Base rate fallacy
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Base rate fallacy

In the fourth wave (July 10 - August 16, 2021) about 2400 (or 0.825 %)
people 16 or older in Island have been diagnosed with Covid-19:

But (young) adults in Iceland’s population are highly vaccinated

Ppdiagn | vaccq “
Ppvacc | diagnqPpdiagnq

Ppvaccq
“

0.773 ¨ 0.00825

0.864
“ 0.00738

55



Base rate fallacy

Ppdiagn | vaccq “
0.773 ¨ 0.00825

0.864
“ 0.00738

Ppdiagn | not vaccq “
0.200 ¨ 0.00825

0.0783
“ 0.0211

Ppdiagn | part. vaccq “
0.0262 ¨ 0.00825

0.0570
“ 0.00379 psic!q
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Independent events

Two events A and B are independent if knowing whether B
occured does not change the probability of A

PpA | Bq “ PpAq.

Independent events
Two events A and B are independent if PpAXBq “ PpAqPpBq.

Simple example: Throw a 6-sided die. Are A “ t5, 6u and
B “ t1, 3, 5u dependent?

PpAqPpBq “
2

6

3

6
“

1

6
, PpAXBq “ Ppt5uq “

1

6
.

If I tell you A happened, that does not change probabilities of B:
PpB | Aq “ PpBq “ 3

6 .
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Random variables



Random variables

Random variables
A random variable is a numeric quantity whose value depends on
the outcome of a random experiment.

Example: X is the number of eyes on a 6-sided die.

We denote random variables with capital letters, often X or
Y .

Examples?
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Pair of dice

Throw a pair of dice, count the total number of eyes, call that
random variable X. Consider the event that X “ 7.

Event? What are the actual ω making our event and sample space?
You could take

A “ t , , , , , u, Ω “ t , . . . , u

PpX “ 7q “ PpAq “
|A|

|Ω|
“

6

36

Value k 2 3 4 5 6 7 8 9 10 11 12

Probability
PpX“kq

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36
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Pair of dice

The following holds for k P t2, . . . , 12u:

PpX “ kq “
6´ |k ´ 7|

36

Check:

Value k 2 3 4 5 6 7 8 9 10 11 12 other
Probability
PpX“kq

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36 0
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Discrete random variables

Discrete random variables
A random variable is called discrete if it is integer-valued
or otherwise has only a finite or countable number of values.

Example: Y “ X{2 is discrete (but can take non-integers such as
Y “ 5.5 as values.)
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Probability mass function

Probability mass function
Define the probability mass function f of a discrete random
variable X by

fpkq “ PpX “ kq.

Also fpyq “ 0 for all real y such that P pX “ yq “ 0, okay?

Sometimes we write fX to talk about X’s own probability mass
function.
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Sum of two dice

fpkq “

#

6´|k´7|
36 if k P t2, 3, . . . , 12u

0 otherwise

is the probability mass function for the random variable which
counts the sum of two dice.
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Two coins

Flip two coins... count the number of heads. Call it X.

fp0q “ 1
4 , fp1q “

1
2 and fp2q “ 1

4

fpxq “ 0 otherwise if x R t0, 1, 2u.
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Flip two coins... count the number of heads. fXp0q “ 1
4 ,

fXp1q “
1
2 and fXp2q “ 1

4 .

What is PpX P t1, 2uq = Pp1 ď X ď 2q?

Pp1 ď X ď 2q “ fXp1q ` fXp2q “
3

4

Let Y “ X{2. What is PpY ą 0q?

PpY ą 0q “ Pp1 ď X ď 2q “ fXp1q ` fXp2q “
3

4

Rule
For integer valued X

Ppm ď X ď nq “
n
ÿ

k“m

fpkq

for any integers m and n.
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Describing distributions



Probability mass function

Not all functions are probability mass functions. Because they
describe probability distributions, some conditions must hold.

fpkq is a probability mass function if and only if

• fpkq ě 0 for all k.

•
ř

all k
fpkq “ 1.

If somebody gives you a probability mass function, there is a
random variable for it.
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Distribution function

Distribution function
Assume X is a discrete random variable. Its distribution function
is given by

F pxq “ PpX ď xq “
ÿ

kďx

fXpkq,

Flip two coins... count the number of heads. Call it X.
fp0q “ 1

4 , fp1q “
1
2 and fp2q “ 1

4 . Find F .

F p0q “ fp0q “ 1
4

F p1q “ fp0q ` fp1q “ 1
4 `

1
2

F p2q “ fp0q ` fp1q ` fp2q “ 1
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Distribution function

What is the probability to throw k times heads in a row with a fair
coin?

fp0q “
1

2
, fp1q “

1

2
¨

1

2
“

1

4
, fp2q “

1

8
, fpkq “

ˆ

1

2

˙k`1

P pX ą 0q “ fp1q ` fp2q ` fp3q ` ... “ 1´ P pX “ 0q “ 1´ fp0q
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Distribution function

For F pxq it holds

• F pxq is increasing

• F pxq Ñ 1 for xÑ8.

• F pxq Ñ 0 for xÑ ´8.
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Distribution function

Also

• Ppa ă X ď bq “ F pbq ´ F paq.

• PpX ą aq “ 1´ F paq.

• For integer valued random variables:
fpmq “ F pmq ´ F pm´ 1q.
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Expected value

We are often interested in the “average” outcome of a random
variable.

Expected value
The expected value of a random variable is defined as

EpXq “
ÿ

all k

kfXpkq if X is discrete,
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Recall: the average using fractions

Data set: grades of 24 students

5, 5, 6, 5, 6, 6, 6, 5, 5, 7, 6, 7, 5, 5, 5, 6, 6, 6, 5, 6, 5, 7, 6, 7

Table:
grade x1 “ 7 x2 “ 6 x3 “ 5
fraction of students p1 “ 4{24 p2 “ 10{24 p3 “ 10{24

Average One can write the average in different forms

Average “
5` 5` 6` ¨ ¨ ¨ ` 5` 7` 6` 7

24

“
7 ¨ 4` 6 ¨ 10` 5 ¨ 10

24
“ 7 ¨

4

24
` 6 ¨

10

24
` 5 ¨

10

24
“

3
ÿ

i“1

xi ¨ pi
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Expected value

The expected value of a discrete random variable X with finitely
many outcomes can also be written as

µ “ EpXq “
ÿ

all k

xk ¨ PpX “ xkq
l jh n

fpxkq

“ x1 ¨ PpX “ x1q ` x2 PpX “ x2q ` ¨ ¨ ¨ ` xn ¨ PpX “ xnq

Here xi are the n possible outcomes and P pX “ xiq are the
probabilities of each outcome.
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Expected value

Flip two coins... count the number of heads.

fp0q “ 1
4 , fp1q “

1
2 and fp2q “ 1

4

EpXq “ 0 ¨ 1
4 ` 1 ¨ 1

2 ` 2 ¨ 1
4 “ 1
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Rules for computing expected values

For the expected value,

• Epaq “ a.

• EpaXq “ aEpXq.

• EpaX ` bq “ aEpXq ` b.

• EpX ` Y q “ EpXq ` EpY q.

Here X and Y are any two random variables and a and b are
constants.
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Transformations

If we transform the random variables by a function h we
have:

Theorem ♥

EphpXqq “
ÿ

all k

hpkqfpkq

Coin example (with hpxq “ x{2):

EpX{2q “
0

2
¨ fXp0q `

1

2
¨ fXp1q `

2

2
¨ fXp2q “

1
2

“ pEpXqq{2
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Common discrete distributions



Bernoulli distribution

The Bernoulli distribution describes a random experiment that can
either succeed (with probability p) or fail (with probability 1´ p.)
Suppose we make a random experiment which succeeds with
probability p and set

X “

#

1, if the experiment succeeds
0, in case of failure.

We have fp1q “ p and fp0q “ 1´ p.

Sometimes useful to write as fpkq “ pkp1´ pq1´k for
k P t0, 1u.

77



The binomial distribution

Bernoulli distribution
A random variable X is Bernoulli distributed if it has probability
mass function fp1q “ p and fp0q “ 1´ p and “ 0 otherwise. We
write X „ Berppq.

Examples?
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The binomial distribution

The binomial distribution describes the probability of having exactly
k successes in n independent Bernoulli trials with probability of
success p.

If X is binomial with parameters n and p we write:

X „ Binpn, pq

Ha, the sum of two coins with sides 0 and 1 is Binp2, 0.5q
distributed.
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The binomial distribution

n “ 10
0 1 2 3 4 5 6 7 8 9 10

0.0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15
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The binomial distribution

The binomial distribution describes the probability of having exactly
k successes in n independent Bernoulli trials with probability of
success p.

If X is binomial with parameters n and p we write:

X „ Binpn, pq

Binomial distribution
A random variable X is binomial distributed with parameters n, p
if

PpX “ kq “

ˆ

n

k

˙

pkp1´ pqn´k
ˆ

n

k

˙

“
n!

k!pn´ kq!
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Sum of binomial distributed random variables

Sum of binomial distributed random variables.
If X1 „ Binpn, pq and X2 „ Binpm, pq are independent, then
X1 `X2 „ Binpm` n, pq.

(“Dropping m items, couting the broken ones, dropping n more
items, counting the additional broken ones is the same as dropping
m` n items...”)
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Geometric distribution

The experiment consists of a series of independent Bernoulli trials
with probability of success equal to p.

The random variable X denotes the number of trials needed to get
the first success.

p is called the parameter of X.
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The geometric distribution

The geometric distribution describes the probability distribution of
the number of trials needed k to get the first success, for a single
event succeeding with probability p. (k ´ 1 failures and 1
success.)

p “ 0.5 p “ 0.2
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The geometric distribution

Geometric distribution
A random variable X is geometrically distributed with parameters
p if

PpX “ kq “ p1´ pqk´1p, k “ 1, 2, . . .

We write X „ Geomppq.
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Continuous distributions

Continuous random variables
A continuous random variable can assume all values in one or
several intervals of real numbers, and the probability of assuming
a particular value is zero.

A continuous random variable X is described by its probability
density function (pdf) fpxq

Ppa ď X ď bq “

ż b

a
fpxqdx.

P pX “ xq “ 0

and

Ppa ď X ď bq “ Ppa ă X ď bq “ Ppa ď X ă bq “ Ppa ă X ă bq
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Continuous distributions

Probability density function (pdf)
A function is a probability density function (pdf) if and only if

fpxq ě 0 and

8
ż

´8

fpxqdx “ 1.
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Example

Show that the function

fpxq “

"

1
b´a if a ă x ă b

0 otherwise

is a pdf.

fpxq ě 0 X.

ż `8

´8

fptqdt “

ż a

´8

0dt`

ż b

a

1

b´ a
dt`

ż 8

b
0dt

“

ż b

a

1

b´ a
dt “

b´ a

b´ a
“ 1 X.
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Continuous distributions

Cumulative distribution function
The cumulative distribution function F of a continuous
distribution is

F pxq “ PpX ď xq “

ż x

´8

fptqdt.

Ppa ď X ď bq “ F pbq ´ F paq
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Example

Find cumulative distribution function for X with pdf

fpxq “

"

1
b´a if a ă x ă b

0 otherwise

F pxq “

ż x

´8

fptqdt “

$

’

&

’

%

0 x ď a
x´a
b´a x P ra, bs

1 x ě b.
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Expected value

The expected value is an “average” outcome of a random
variable.

Expected value
The expected value of a random variable is defined as

EpXq “

$

’

&

’

%

8
ş

´8

xfpxqdx if X is continuous,
ř

all k
kfpkq if X is discrete.
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Rules for computing expected values

For the expected value,

• Epaq “ a.

• EpaXq “ aEpXq.

• EpaX ` bq “ aEpXq ` b.

• EpX ` Y q “ EpXq ` EpY q.

Here X and Y are two random variables and a and b are
constants.

The same rules: E is a linear operator on random variables.
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Uniform distribution

Uniform distribution
The continuous distribution with pdf

fpxq “

"

1
b´a if a ă x ă b

0 otherwise
.

is called the uniform distribution. Facts: EX “ pa` bq{2.

EX “

8
ż

´8

xfpxqdx “
1

b´ a

ż b

a
tdt “

1
2b

2 ´ 1
2a

2

a´ b
“ pa` bq{2
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Transformations

If we transform the random variables by a function h we
have:

Theorem

EphpXqq “

$

’

’

’

’

&

’

’

’

’

%

ř

all k
hpkqfpkq, if X is discrete,

...
8
ş

´8

hpxqfpxqdx, if X is continuous.
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Variance and standard deviation

Variance
The variance of a random variable is defined as

VpXq “ ErpX ´ µq2s,

where µ “ EpXq is the expected value of X.

In words, this is the expected squared deviation of the mean. The
variance can be calculated by

VpXq “

$

&

%

ř

all k
pk ´ µq2fpkq, for discrete X

ş8

´8
px´ µq2fpxqdx, for continuous X.

Sometimes it is easiest to compute VpXq “ EpX2q ´ µ2.

The standard deviation of a random variable X is defined as
σ “

a

VpXq. 95



Rules for computing variance

For the variance

• Vpaq “ 0.

• VpaXq “ a2VpXq.

• VpaX ` bq “ a2VpXq.

• VpX ` Y q “ VpXq ` VpY q, if X and Y are independent.

Here X and Y are two random variables and a and b are constants.
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Normal distribution

Density and distribution function of Z „ Np0, 1q and Np4, 1q
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pdf’s for some other possible parameters
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Normal distribution

Normal distribution Npµ, σ2q

A continuous X is normally distributed, Npµ, σ2q, with
parameters µ P R and σ ą 0, if it has pdf

fpxq “
1

?
2πσ

exp

ˆ

´
1

2σ2
px´ µq2

˙

The distribution function is

F pxq “

ż x

´8

“ . . . has no nice solution

Parameters

If X „ Npµ, σ2q then EpXq “ µ and VpXq “ σ2.
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Normal distribution pdf
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Standard normal distribution

Standard normal distribution
A continuous random variable Z is standard normally distributed
if Z „ Np0, 1q. ErZs “ 0 and VarpZq “ 12.

We denote pdf and cdf by ϕpxq and Φpxq
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Normalisation

Theorem

If X „ Npµ, σ2q then aX ` b „ Npaµ` b, a2σ2q.

That means for X „ Npµ, σ2q that

• X “ µ` σZ where Z „ Np0, 1q.

• Z “ pX ´ µq{σ „ Np0, 1q.

We use this to sample random variables, and to compute
probabilities:

PpX ă xq “ P

ˆ

X ´ µ

σ
ă
x´ µ

σ

˙

“ P

ˆ

Z ă
x´ µ

σ

˙

“ Φ

ˆ

x´ µ

σ

˙

.
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Rule

Example: IQ values are normalized such that (approximately)

IQ „ Np100, 152q

What is the probability that a random person scores 115 or more?
Approx. 13.6 + 2.1 + 0.1 = 15.8.
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Relict of the past: Normal distribution table

Table gives Φpzq “ PpX ď zq for Z „ Np0, 1q.
For negative values use that Φp´zq “ 1´ Φpzq.

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 : .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 : .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 : .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 : .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 : .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
0.5 : .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 : .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 : .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 : .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 : .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 : .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 : .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 : .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 : .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 : .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 : .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 : .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 : .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 : .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 : .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 : .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 : .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 : .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 : .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 : .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 : .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 104



High-school maturity exam in Poland

Histogram showing the distribution of
scores for the obligatory Polish
language test. “The dip and spike that
occurs at around 21 points just
happens to coincide with the cut-off
score for passing the exam"

http://freakonomics.com/2011/07/07/

another-case-of-teacher-cheating-or-is-it-just-altruism/
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Moment generating function (m.g.f.)

Let X be a random variable

• The kth moment for X is defined by ErXks.

• The moment generating function for X is defined by

mXptq “ EretXs.

• Let mXptq be the m.g.f for X. Then

dkmXptq

dtk

ˇ

ˇ

ˇ

ˇ

t“0

“ E
”

Xk
ı
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Moment generating function for standard normal distribution

Let Z „ Np0, 1q. Compute the mgf. Use hpxq “ etx and
transform:

mXptq “ E
“

etX
‰

“
1
?

2π

ż 8

´8

etx
ljhn

hpxq

e´
1
2
x2

dx

“
1
?

2π

ż 8

´8

e´
1
2
px´tq2e

1
2
t2dx “ e

1
2
t2
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We have seen

• Probability mass functions fP pX “ kq “ pkq.

• Bernoulli – Bernoullippq: X P t0, 1u

• Binomial – Binpn, pq: X P t0, 1, . . . , nu

• Geometric – Geomppq: X P t1, 2, 3, 4, . . . u

• Normal – Npµ, σ2q: X P p´8,8q
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What was the mean and the variance of X „ Binpn, pq?
EpXq “ np. VarpXq “ npp1´ pq.

Normal approximation of Binomial distribution
If X „ Binpn, pq, X is approximately normally distributed with
mean np and variance npp1´ pq,

X
approx.
„ Npnp, npp1´ pqq,

if both np ą 5 and np1´ pq ą 5.
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Normal approximation

n “ 10
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Discrete distributions today

• Poisson distribution – Poissonpµq: model the number of events
that occur in a time interval, in a region or in some volume.

• Negative binomial distribution – nBinpr, pq: The number of
trials X in a sequence of independent Bernoullippq trials
before r successes occur

• Hypergeometric distribution – HyppN,n, rq: Draw sample of
n objects without replacement out of N . The random variable
X is the number of marked objects.
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Poisson distribution

The Poisson distribution is often used to model the number of
events that occur in a time interval, in a region or in some volume.
(Named after Simeon Denis Poisson, 1781-1840.)

Some examples where this distribution fits well are

• The number of particles emitted per minute (hour, day) of a
radioactive material.

• Call connections routed via a cell tower (GSM base station).
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Poisson distribution

X „ Poissonpµq

A random variable X has Poisson distribution with parameter µ if

PpX “ kq “
e´µµk

k!
, k P t0, 1, 2, . . . u.

Sum of Poisson distributed random variables.
If X1 „ Poissonpµ1q and X2 „ Poissonpµ2q are independent,
then X1 `X2 „ Poissonpµ1 ` µ2q.
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Poisson distribution
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Number of chewing gums on a tile is approximately Poisson.
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Example

Let X be the number of typos on a printed page with a mean of 3
typos per page. Assume the typos occur independently of each
other.

1. What is the probability that a randomly selected page has at
least one typo on it?

PpX ě 1q “ 1´ PpX “ 0q “ 1´ fp0q “ 1´ e´3

2. What is the probability that three randomly selected pages have
more than eight typos on it?

In this case λ “ 9 since we have in average 9 typos on three printed
pages.

PpX ą 8q “ 1´ PpX ď 8q « 1´ 0.456 by table II page 692
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Poisson distribution as limit of a Binomial distribution

The Poisson distribution appears as limit of the Binomial
distribution if n becomes large and p goes to 0:

Theorem
Let nÑ8, pÑ 0, and also npÑ µ. Then for fix k ě 0

ˆ

n
k

˙

pkp1´ pqn´k Ñ
µke´µ

k!
(9.1)

Connection to the previous example:

• There is a large number n of atoms in the material and the
probability that an atom decays in a unit of time p is very
small.
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Negative binomial distribution

The number of trials X in a sequence of independent Bernoullippq
trials before r successes occur has the negative binomial
distribution.
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Negative binomial distribution

X „ nBinpr, pq

The random variable X has a negative binomial distribution with
parameter r and p if

PpX “ kq “

ˆ

k ´ 1
r ´ 1

˙

prp1´ pqk´r, k “ r, r ` 1 . . .

Motivation: Probability of r successes in k trials: p1´ pqk´rpr.
The last attempt succeeds. The binomial coefficient gives the
number of ways we assign the remaining r ´ 1 successes to the
remaining k ´ 1 trials.
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Hypergeometric distribution

• Suppose we have N objects of which r are “marked”.

• Draw sample of n objects without replacement. The random
variable X is the number of marked objects. Then X has
hypergeometric distribution with parameters N,n, r.
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Hypergeometric distribution

X „ HyppN,n, rq

The random variable X has hypergeometric distribution with
parameters N , n and r if

PpX “ kq “

`

r
k

˘`

N´r
n´k

˘

`

N
n

˘ maxp0, n` r ´Nq ď k ď minpn, rq

If n “ 1 then HyppN, 1, rq “ Bernoullipr{Nq. If N and r are large
compared to n we have HyppN,n, rq « Binpn, r{Nq.
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Continuous distributions today (all positive)

• Exponential distribution – Exppλq: Time between
calls/visitors/people knocking on your door. (Poisson: How
many ticks. Exponential: time between ticks.)

• Gamma distribution – Γpα, βq: Flexible distribution for
positive random variables.

• χ2-distribution – χ2pnq: Distribution for sum of squares of n
independent Np0, 1q random variables.
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Exponential distribution

X „ Exppλq

The density function of an exponential distribution with rate λ or
is given by

fpxq “ λe´λx, x ě 0

or equivalently fpxq “ 1
β e
´x{β where β “ 1

λ is the scale.

ErXs “ β and VarpXq “ β2

The cumulative distribution function is given by

F pxq “ 1´ e´λx.
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Exponential distribution

Assume objects arrive after exponentially distributed interarrival
times.

λ - how many arrivals per time unit.
β - expected waiting time
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Gamma distribution

X „ Gammapα, βq

A random variable X with density function

fpxq “
1

Γpαqβα
xα´1e´x{β, x ą 0

for β ą 0 and α ą 0 has a Gamma distribution with parameters
shape α and scale β, or .

ErXs “ αβ and VarpXq “ αβ2.

If X follows a Gamma distribution with parameters α and β, then
the m.g.f is given by mXptq “ p1´ βtq

´α.
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χ2-distribution

X „ χ2pnq

The Gamma distribution with parameters β “ 2 and α “ n
2 is

called χ2 -distribution with n degrees of freedom.

ErXs “ n and VarpXq “ 2n.

Sum of squares
If Z1, . . . , Zn have standard normal distributions and are
independent, then Z2

1 ` ¨ ¨ ¨ ` Z
2
n follow a χ2 -distribution with n

degrees of freedom.
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Moment generating function (m.g.f.)

Let X be a random variable

• The kth moment for X is defined by EpXkq.

• The moment generating function for X is defined by

mXptq “ EpetXq.

• Let mXptq be the m.g.f for X. Then

dkmXptq

dtk

ˇ

ˇ

ˇ

ˇ

t“0

“ E
´

Xk
¯
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Moment generating function for standard normal distribution

Let Z „ Np0, 1q. Compute the mgf. Use hpxq “ etx and
transform:

mXptq “ E
“

etX
‰

“
1
?

2π

ż 8

´8

etx
ljhn

hpxq

e´
1
2
x2

dx

“
1
?

2π

ż 8

´8

e´
1
2
px´tq2e

1
2
t2dx “ e

1
2
t2
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Bivariate distributions

Definition

Informal: A two-dimensional or bivariate random variable pX,Y q
produces a pair of random numbers.

For discrete random variables we have the joint density (probability
mass function)

fX,Y pi, jq “ PpX “ i, Y “ jq “ PpX “ i and Y “ jq.

Here fX,Y pi, jq ě 0 and
ř

all i,j
fX,Y pi, jq “ 1.
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Example

Let X and Y be the number of girls, respectively boys in a
randomly chosen Swedish family. The joint density function
fX,Y px, yq is given in the table below.

Y 0 1 2 3 4
X

0 0.38 0.16 0.04 0.01 0.01
1 0.17 0.08 0.02
2 0.05 0.02 0.01
3 0.02 0.01
4 0.02

ř

all x,y
fX,Y px, yq “ 1

PpX “ 0 and Y “ 1q “ fX,Y p0, 1q “ 0.16
PpX “ 2q “ fXY p2, 0q ` fX,Y p2, 1q ` fXY p2, 2q “ 0.08
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Expected values ♥

EphpX,Y qq “
ÿ

all i,j

hpi, jqfX,Y pi, jq.

For example:

EpX ` Y sq “
ÿ

all i,j

pi` jqfX,Y pi, jq

with hpi, jq “ i` j.
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Expected number of children

X and Y be the number of girls, respectively boys in a randomly
chosen Swedish family.

EpX ` Y q is the expected number of girls + boys = children. So
hpi, jq “ i` j.

Y 0 1 2 3 4
X

0 0.38 0.16 0.04 0.01 0.01
1 0.17 0.08 0.02
2 0.05 0.02 0.01
3 0.02 0.01
4 0.02

EpX ` Y q “ p0` 0q ¨ 0.38` p1` 0q ¨ 0.17` .... “ 1.08
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Marginal distributions
Given a pair of discrete random variables pX,Y q with joint
density fX,Y density for X and Y are given by

fXpiq “
ÿ

all j

fX,Y pi, jq

fY pjq “
ÿ

all i

fX,Y pi, jq.

and called marginal densities (marginal p.m.f.’s.)
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Y 0 1 2 3 4 fX
X

0 0.38 0.16 0.04 0.01 0.01 0.60
1 0.17 0.08 0.02 0.27
2 0.05 0.02 0.01 0.08
3 0.02 0.01 0.03
4 0.02 0.02

fY 0.64 0.27 0.07 0.01 0.01 1
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Continuous bivariate random variables

For a pair of continuous random variables: a function fX,Y px, yq
with properties

1. fX,Y px, yq ě 0,

2.
ż ż

fX,Y px, yqdxdy “ 1, and

3. Ppa ď X ď b and c ď Y ď dq “

b
ż

a

d
ż

c

fX,Y px, yqdxdy.
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Marginal distributions
For a bivariate continuous random variable pX,Y q, the probability
density functions for X and Y are given by

fXpxq “

ż

fX,Y px, yqdy

fY pyq “

ż

fX,Y px, yqdx
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Expected value
For a two-dimensional random variable pX,Y q, the expected
values of X and Y are given by

EpXq “

$

&

%

ř

all i, j
ifX,Y pi, jq, for X discrete,

ş ş

xfX,Y px, yqdxdy, for X continuos,

and

EpY q “

$

&

%

ř

all i, j
jfX,Y pi, jq, for Y discrete,

ş ş

yfX,Y px, yqdxdy, for Y continuous.
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Conditional distribution

The conditional distribution of X given Y “ y is defined by its
density

fX|Y“ypxq “
fX,Y px, yq

fY pyq
,

provided that fY pyq ą 0.

Independent random variables
Two random variables X and Y are called independent if their
bivariate density can be written as product of the marginal
densities:

fX,Y pu, vq “ fXpuqfY pvq.

There is no “samvariation”, knowing X does not explain Y , etc.
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Covariance

Covariance
Covariance between random variables X and Y is defined as
CovpX,Y q “ ErpX ´ µXqpY ´ µY qs, where µX “ EpXq and
µY “ EpY q.

• According to the definition,

CovpX,Y q “

$

&

%

ř

all i, j
pi´ µXqpj ´ µY qfX,Y pi, jq, discrete

ş ş

px´ µXqpy ´ µY qfX,Y px, yqdxdy, cont.

• Note that CovpX,Xq “ VpXq.

• If X and Y are independent, then CovpX,Y q “ 0 and
EpXY q “ EpXqEpY q.

• Unit??
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Rules for covariance

CovpX,Y q can be calculated as
CovpX,Y q “ EpXY q ´ EpXqEpY q.

For two random variables X and Y , and two numbers a and b we
have

VpaX ` bY q “ a2VpXq ` b2VpY q ` 2ab CovpX,Y q.

Examples:

Vp2Xq “ VpX `Xq “ VpXq ` VpXq ` 2 CovpX,Xq “ 4VpXq

VpX ` Y q “ VpXq ` VpY q when X and Y are independent

(“Fun” thing to do: look up the law of cosines.)
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Correlation and independence

Correlation
The correlation coefficient is defines as

ρpX,Y q “
CovpX,Y q
a

VpXqVpY q
.

• A measure of linear relationship (linjär samvariation) of X and Y .

• It holds ´1 ď ρ ď 1.

• X and Y are called uncorrelated if ρpX,Y q “ 0 (there is no “linjär
samvariation”) .

• Unit??
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Visualisation

Assume 2d measurements pxi, yiq. A scatter plot is a
two-dimensional plot in which each pxi, yiq measurement is
represented as a point in the x-y-plane.
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Descriptive statistic for bivariate data

The sample covariance is defined as,

cxy “
1

n´ 1

n
ÿ

i“1

pxi ´ x̄qpyi ´ ȳq

and sample correlation coefficient is defined as

rxy “

řn
i“1pxi ´ x̄qpyi ´ ȳq

a

řn
i“1pxi ´ x̄q

2
a

řn
i“1pyi ´ ȳq

2
“

cxy
sxsy

The sample correlation is a measure of linear dependence.

In the picture rxy “ 0.8067 i (a), rxy “ 0.2912 i (b),
rxy “ ´0.9884 i (c), och rxy “ 0.3640 i (d).
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We have the following relationship between dependence and
correlation:

• If X and Y are independent, then they are also uncorrelated.

• (Thus if X and Y are uncorrelated, they do not need to be
independent.)

This is natural because two random variables are independent if there is
no “samvariation” at all, while they are not correlated if there is no “ linjär
samvariation”.
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Correlation, dependence and causality

• Correlation does not say anything about causality!˚

• Sometimes correlation is present but can be explained by a
third variable which was not measured.

• Month with high ice cream sales tend to have more drowning
accidents. Time to ban ice cream? In this example, an
important variable which perhaps was not measured is the
sunshine. Such variables are sometimes called confounding
variables.
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https://twitter.com/dannagal/status/1244082688899919872,
October 20, 2021
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Causality

• Correlation can also be introduced by selection effects.

• Exam with two questions, one difficult, one easy. A student
achieves X out of 10 points on the easy question, Y out of 10
points on the difficult question (random).

• Say X and Y slightly positively correlated. But only students
with X ` Y ě 10 pass. Say I tell you the student has passed.

• Passing students performance on easy questions may now be
negatively correlated with performance on the difficult
question.
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Exam points
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Causality

• If we want to know/predict what will change if we perform an
action we need insight into causality.

• Will the number of drowning accidents change if we ban ice?

• There are many causal statements in the news!

• “Do not skip breakfast if you want to reduce the risk of
coronary heart disease”

• Be careful...

• Candidate for a confounding variable: stress.

• We need to understand the science to answer causal questions!
We will come back to this later.

152



Cherry picking

http://www.tylervigen.com/spurious-correlations
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Thinking statistics: Global warming

Two millennia of mean surface temperatures according to different
reconstructions from climate proxies with the instrumental
temperature record overlaid in red.

Stefan Rahmstorf: Paleoclimate: The End of the Holocene.

http://www.realclimate.org/index.php/archives/2013/09/paleoclimate-the-end-of-the-holocene/.

Web. 3 Feb. 2019.

154

http://www.realclimate.org/index.php/archives/2013/09/paleoclimate-the-end-of-the-holocene/


Markov chains

The weather in the land Oz is R (rainy), S (sunny) or C (cloudy).
Weather of the last 30 days:

RRRRRRCCSCCSRCSRRRRCRSCSCCRCRS...

What do you expect for the weather of tomorrow? There have been
no two nice days in a row and after sun we have 2 times rain, 3
times clouds.

R S C
R 4{7 1{7 2{7
S 2{5 0 3{5
C 3{10 4{10 3{10
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Markov chains

There, they never have two nice days in a row and if it was C
(cloudy) yesterday, there is a 0.25 probability of R (rain)
today.

For each day, the weather of the next day is random and we
represent the probabilities by a matrix

R S C
R 0.5 0.25 0.25
S 0.5 0 0.5
C 0.25 0.25 0.5

Each row contains the probability for next days weather depending
on current weather.
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Markov chain
A Markov chain consists of:

A set of states: ts1, . . . , snu.

A matrix of transition probabilities

P “

¨

˚

˝

p11 . . . p1n
...
pn1 . . . pnn

˛

‹

‚

containing the probability pij to move from state si to state sj

____
sv: övergångssannolikhet, övergångsmatrisen
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Markov property
The transition probability does only depend on the current state:

pij “ Ppnext state is sj | current state is si and the state before ....q
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Transition probabilities

Transition probabilities are conditional probabilities:

pij “ Ppnext state is sj | current state is siq

That means rows sum to 1:
ř

all j
pij “ 1.
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What is the weather in three days

The probability that the Markov chain, starting in states si , will
be in state sj after n steps is given by the ij’th entry of

Pn “ P ¨ . . . ¨P

(n-fold matrix product.)
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Example

Suppose we want to compute the probability that, given that it is
rainy today, the weather will be cloudy in two days.

R S C
R 0.5 0.25 0.25
S 0.5 0 0.5
C 0.25 0.25 0.5

p
p2q
13 “ p11p13 ` p12p23 ` p13p33

“ 0.5p0.25q ` 0.25p0.5q ` 0.25p0.5q “ 0.375

P2 “

¨

˝

0.4375 0.1875 0.375
0.375 0.25 0.375
0.375 0.1875 0.4375

˛

‚
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Probability vectors

A probability vector is a row vector that gives the probabilities of
being at each state at a certain step.

The probability vector which represents the initial state of a Markov
chain is starting vector and is denoted by up0q or simply u. The
probability vector at step k is denoted by upkq.

1 step
If uk is the probability vector at step k, then the vector

upk`1q “ upkqP

is the probability vector at step k ` 1.

n steps
If u is the starting vector of a Markov Chain, then the probability
vector at step n is given by

upnq “ uPn.
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Example

In the previous example, if the initial probability vector is u “
p1{3, 2{3, 0q, then the probability vector on day 2 will be

up2q “ uP2 “
`

1{3 2{3 0
˘

¨

˝

0.4375 0.1875 0.375
0.375 0.25 0.375
0.375 0.1875 0.4375

˛

‚

“
`

0.3958 0.2292 0.3750
˘

This means that on day 2, there is a 39.58% chance of rain,
22.92% chance that the weather will be nice and 37.5% chance
that it will be cloudy.
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Regular matrix

A Markov chain is said to be regular if there exists n such that all
the elements of the matrix Pn are nonzero. The Markov chain of
the previous example is regular since

P2 “

¨

˝

0.4375 0.1875 0.375
0.375 0.25 0.375
0.375 0.1875 0.4375

˛

‚

(all the values are strictly positive)
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Stationary distribution

If the Markov chain is regular then, Pn Ñ Q where

Q “

¨

˚

˚

˚

˝

q1 q2 . . . qn
q1 q2 . . . qn
...

...
. . .

...
q1 q2 . . . qn

˛

‹

‹

‹

‚

qj is the probability to be at state sj on the long run.

qP “ q
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Absorbing states

A state is said to be absorbing if it is impossible to leave it, that is
pii “ 1.

A Markov chain is called absorbing if it has at least one absorbing
state, and if from every state it is possible to go to an absorbing
state.

In an absorbing Markov chain, as state that is not absorbing is
called transient.

Example:
¨

˚

˚

˝

1 0 0 0
0 1

2
1
2 0

0 0 1 0
1
4

1
2 0 1

4

˛

‹

‹

‚
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The transition matrix of an absorbing Markov chain with r
absorbing states and t transient states can be written as

P “

ˆ

Q R
0 Ir

˙

where Ir is the identity matrix, 0 is the zero matrix (all elements
are zeros), Q is a tˆ t -matrix and R is a tˆ r nonzero matrix.

This form is called the canonical form. Pn “

ˆ

Qn ‹

0 Ir

˙

where ‹

is a tˆ r matrix. Qn gives the probability for being in each of the
transient states after n steps for each possible transien starting
state.

167



Samples and point estimators



Statistics

Example: p5.27, 4.07, 5.48, 3.38q are measurements of the weight
of n “ 4 randomly (independent) selected cats.

The weight of a cat is modelled as normal random variable
X1, X2, X3, X4 each Npµ, p1.2q2q-distributed with unknown
parameter µ. Here Npµ, p1.2q2q is a model for the population of all
cats.

p5.27, 4.07, 5.48, 3.38q is a sample of X1, X2, X3, X4.
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Definition: Sample
A sample px1, . . . , xnq of size n is made of n independent
observations (realisations) of a random variable. Or – the same –
of random variables X1, . . . , Xn where all Xi are independent and
equally distributed (thus have the same distribution).

169



Statistics

Example: p5.27, 4.07, 5.48, 3.38q are measurements of the weight
of n “ 4 randomly (independent) selected cats.

The weight of a cat is modelled as normal random variable
X1, X2, X3, X4 each Npµ, p1.2q2q-distributed with unknown
parameter µ. Here Npµ, p1.2q2q is a model for the population of all
cats.

p5.27, 4.07, 5.48, 3.38q is a sample of X1, X2, X3, X4.
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Definition: Anti-Example

p5.27, 5.27, 5.27, 5.27, 5.27q is perhaps not a sample

(lack of independence because some genius just weighted the same
cat over and over).
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Statistics

Like in the “cat“-example we can often say what kind of distribution
is appropriate for X but we do not know the right
parameters.

Many statistical problems can be reduced to the following question:
Given the observations x1, . . . , xn, what can we say about the
parameters in the distribution of Xi (assuming each Xi is drawn
independently from the same distribution)?

Definition: i.i.d.

We write X1, X2, . . . Xn
i.i.d.
„ D if X1, X2, . . . , Xn are

independently and identically distributed with distribution D.
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The sample mean as estimator

X̄pnq “ 1
n

n
ř

i“1
Xi is the sample mean.

Example: Let p5.27, 4.07, 5.48, 3.38q our sample.
x̄p4q “ p5.27` 4.07` 5.48` 3.38q{4 “ 4.55 is a realisation
X̄pnq.

We model X̄pnq itself as random variable with its own expectation,
variance and realization etc. Now with µ “ EpX1q “ EpX2q “ ...
and σ2 “ VarpX1q “ VarpX2q “ ...

E

˜

1

n

n
ÿ

i“1

Xi

¸

“
1

n

n
ÿ

i“1

EXi

p˚q

“ µ

Var

˜

1

n

n
ÿ

i“1

Xiq

¸

i.i.d
“

1

n2

n
ÿ

i“1

VarpXiq “
σ2

n

Ah! Smaller uncertainty, 4.55 is perhaps closer to µ than most the
values in our sample which vary from µ by σ. 173



The sample mean as random variable

Expectation and variance of the sample average

E
`

X̄pnq
˘

“ µ and Var
`

X̄pnq
˘

“ σ2{n.

Quiz: How fast goes uncertainty down if n increases?

Standard error of the mean
σ
?
n

is called standard error of the mean.
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Point estimate and standard error

Example: Take p5.27, 4.07, 5.48, 3.38q our sample. Model
X1, . . . Xn

i.i.d
„ Npµ, σ2q with n “ 4 and σ “ 1.2 and µ

unknown.

x̄p4q “ p5.27` 4.07` 5.48` 3.38q{4 “ 4.55 is an estimate for
µ

The standard error associated with x̄p4q is
σ{
?
n “ 1.2{

?
4 “ 0.6.

Our estimate
µ « 4.55˘ 0.6
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The sample mean as random variable: Gaussian case

Average of Gaussian distributed random variables.

Let X1, . . . , Xn an independent sample of a Npµ, σ2q r.v. Then
X̄pnq is Npµ, σ2{nq-distributed.
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Point estimators

Estimation

An estimator for a parameter θ is a function θ̂pX1, . . . , Xnq

mapping the observations into the parameter space Θ.

Example: X̄pnq is an estimator for µ “ EX1 “ EX2 “ ....

θ̂ can refer both to a random variable and to actual observed
values.

• θ̂pX1, . . . , Xnq is a random variable with a certain distribution
(random in Ñ random out).

• θ̂px1, . . . , xnq is a number calculated from data. This is called
the point estimate of the parameter.
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Properties of estimators

Two important qualities of estimators:

• unbiased: Epθ̂pX1, . . . , Xnqq “ θ.

• Small variance in large samples: Vpθ̂pX1, . . . , Xnqq small if n
large.
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If the expected value of the estimator is the true value (the
estimator is unbiased), that means that the estimated values center
on average around the true value if we make several repeated
samples of size n.

• For a given sample, the value need not be close to the true
value.

• The standard deviation of an unbiased estimate gives an
indication of how far it may be from the actual value.

• Often the standard error of the estimate is reported, which is
the standard deviation of the estimate.
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Important estimators

Sample mean and sample variance
Consider an i.i.d sample pX1, . . . , Xnq and assume that
EpXiq “ µ and VpXiq “ σ2.

The sample mean µ̂ “ X̄pnq is an unbiased estimator of µ, that
is Epµ̂q “ µ. It has standard error

a

V pµ̂q “ σ?
n
.

An unbiased estimator for the variance σ2 is the sample variance

S2 “
1

n´ 1

n
ÿ

i“1

pXi ´ X̄q
2.
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Sample variance can also be computed as

S2 “
n
řn
i“1X

2
i ´ p

řn
i“1Xiq

2

npn´ 1q
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Percentiles and quantiles

The pth percentile P is the value of X such that p% or less of the
observations are less than P and p100´ pq% or less are greater
than P . pth percentiles are p%-quantiles.

In particular, P25 is the 25th percentile or the first quartile denoted
also by Q1.P50 is the 50th percentile or the second quartile Q2,
which is also the median, and P75 is the 75th percentile or the
third quartile Q3.

Note that Q1 “
n`1

4 th ordered observation, Q2 “
2pn`1q

4 “ n`1
2

th ordered observation, and Q3 “
3pn`1q

4 th ordered
observation.
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Example

Given the following set of data :

18, 1, 20, 15, 12, 15, 14, 7, 11, 9, 6, 4

Order the numbers from the lowest to the highest

1, 4, 6, 7, 9, 11, 12, 14, 15, 15, 18, 20

x̄p12q “ 1`4`¨¨¨`18`20
12 “ 11.

Median: Me “ 11`12
2 “ 11.5.
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Example

Given the following set of data :

18, 1, 20, 15, 12, 15, 14, 7, 11, 9, 6, 4

Variance

s2 “
p20´ 11q2 ` p18´ 11q2 ` ¨ ¨ ¨ ` p´7q2 ` p´10q2

12´ 1
« 33.3

Order the numbers from the lowest to the highest

1, 4, 6, 7, 9, 11, 12, 14, 15, 15, 18, 20

Q1 “ 6.25, Q3 “ 15.
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Boxplot
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Bivariate samples



Visualisation

Assume 2d measurements pxi, yiq. A scatter plot is a
two-dimensional plot in which each pxi, yiq measurement is
represented as a point in the x-y-plane.
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Statistics for bivariate data

The sample covariance is defined as,

cxy “
1

n´ 1

n
ÿ

i“1

pxi ´ x̄qpyi ´ ȳq

and is an unbiased estimator of the covariance CovpX,Y q.

The sample correlation coefficient is defined as

rxy “

řn
i“1pxi ´ x̄qpyi ´ ȳq

a

řn
i“1pxi ´ x̄q

2
a

řn
i“1pyi ´ ȳq

2
“

cxy
sxsy

The sample correlation is an empirical measure of linear
dependence.
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Example: Course results 2017

Exam grade (Y ) versus points in exam question 5 (X).
Correlation: rxy “ 0.7261
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Sum of Gaussian r.v.

Let X „ NpµX , σ
2
Xq and Y „ NpµY , σ

2
Y q with X and Y

independent. Then

X ` Y „ NpµX ` µY , σ
2
X ` σ

2
Y q

Note: A normal random variable with mean µ and variance σ2 has
moment generating function mptq “ expptµ` t2σ2{2q. So if you tell me
your moment generating function, I tell you if you are normally
distributed and if, what your parameters are. We can prove the theorem
by computing and identifying the m.g.f of X ` Y (next slide)
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Proof with m.g.f.

So we now mXptq “ E expptXq “ expptµX ` t
2σ2
X{2q and

mY ptq “ E expptY q “ expptµY ` t
2σ2
Y {2q.

We compute and identify mX`Y

mX`Y ptq “ E expptpX ` Y qq “ E pexpptXq expptY qq

indep
“ E pexpptXqqE pexpptY qq

“ mXptqmY ptq “ expptµX ` t
2σ2
X{2q expptµY ` t

2σ2
Y {2q

“ expptpµX ` µY q ` t
2pσ2

X ` σ
2
Y q{2q

which is m.g.f of NpµX ` µY , σ
2
X ` σ

2
Y q so X ` Y must be

NpµX ` µY , σ
2
X ` σ

2
Y q distributed.
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Central limit theorem/CLT



Recall

If X „ Npµ, σ2q, then

Z “
X ´ µ

σ
„ Np0, 1q

If X1, . . . , Xn „ Npµ, σ2q independent, then

X̄pnq „ Npµ, σ2{nq.

then
X̄pnq ´ µ

σ{
?
n

„ Np0, 1q
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Normal approximation of Binomial distribution

If X1 . . . Xn „ Berppq. Then X “
ř

Xi „ Binpn, pq.

X is approximately normally distributed

X
approx.
„ Npnp, npp1´ pqq,

Thus again for X̄pnq “ 1
n

ř

Xi,

X̄pnq
approx.
„ Npp, pp1´ pq{nq,

or
X̄pnq ´ p

a

pp1´ pq{n

approx.
„ Np0, 1q
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Normal approximation

0 3 6 9 13 17 21 25 29 33 37 41 45 49
0.00

0.02

0.04

0.06

0.08

0.10

n “ 50 , p “ 0.5
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Central limit theorem

Central limit theorem (CLT)
If X1, . . . , Xn are independent and equally distributed random
variables with expected value µ and variance σ2 ă 8, then

P

˜

X̄pnq ´ µ

σ{
?
n

ď x

¸

Ñ F pxq, for nÑ8.

where F is the distribution function of Np0, 1q.

This means,

• X̄ “ n´1
řn
i“1Xi is approximatively Npµ, SE2q-distributed,

where SE “ σ{
?
n is the standard error

for large n.

How large is large? Depends on the distribution of the Xi’s.
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High-school maturity exam in Poland

Histogram showing the distribution of
scores for the obligatory Polish
language test. “The dip and spike that
occurs at around 21 points just
happens to coincide with the cut-off
score for passing the exam"

http://freakonomics.com/2011/07/07/

another-case-of-teacher-cheating-or-is-it-just-altruism/
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Normal probability plot



Normal probability plot

The standard normal distribution function (cdf) is

F pxq “
1
?

2π

ż x

´8

e´y
2{2dy

It is possible to transform the scaling on the y-axis so that F
becomes a straight line in the plot.
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Normal probability plot

Suppose we have the data x1, . . . , xn and want to see if a normal
distribution is a reasonable model for the data. We can use the
normal probability plot for this.

First we compute the empirical distribution function

F ˚pxq “
1

n

n
ÿ

i“1

Ipxi ď xq

l jh n

proportion of values smaller than x

We plot the points F ˚pxjq in the normal probability diagram, and if
the data is normally distributed, these points should lie along a
straight line.
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Normal probability plot

Example: left normally distributed data and and right
exponentially distributed data in normal probability diagram. In
Matlab: normplot.
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Confidence interval



Confidence interval

Confidence interval
If X1, . . . , Xn i.i.d random variables with distribution depending
on a parameter θ, with θ0 being the unknown value. A
100p1´ αq% confidence interval for θ with confidence level 1´ α
is an interval Iθ “ rA,Bs computed from the data such that

PpA ď θ0 ď Bq “ 1´ α.

199



Confidence interval for parameter µ of a normal distribution

Let X1, . . . , Xn be independent Npµ, σ2q.

Known variance σ2

Iµ “ pA,Bq “

ˆ

X̄pnq ´ 1.96
σ
?
n
, X̄pnq ` 1.96

σ
?
n

˙

is a confidence interval for µ with confidence level 95%.

Here 1.96 is the 0.975 “ p100´ 2.5q% quantile of Z „ Np0, 1q:

Pp´1.96 ă Z ă 1.96q “ 0.95.

Pp´1.96 ă
X̄pnq ´ µ

σ{
?
n

ă 1.96q “ 0.95.

PpA ď µ ď Bq “ 0.95
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20 confidence intervals for µ, that where each constructed from 20
different samples of 10 Np100, 16q-observations.
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• rA,Bs is a random interval, because A and B are random
variables (transformations of the random variables
X1, . . . , Xn).

• Interpretation. Let
x1 “ px11, . . . , xn1q,x2 “ px12, . . . , xn2q, . . . be repeated
measurements of X1, . . . , Xn. If we make the confidence
interval for θ based on every xi, then 100p1´ αq% of these
intervals cover the true value θ0.
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Table 2: Quantiles of the normal distribution

Table gives PpX ą λαq “ α for X „ Np0, 1q

α .1 .05 .025 .01 .005 .001 ... .00001

λα 1.2816 1.6449 1.9600 2.3263 2.5758 3.0902 ... 4.2649
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tpnq-distribution
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Table 3: Quantiles of the t-distribution

Table gives PpX ą tαpfqq “ α for X „ tpfq.
α .1 .05 .025 .01 .001

tαp1q 3.0777 6.3138 12.706 31.820 318.31
tαp2q 1.8856 2.9200 4.3027 6.9646 22.327
tαp3q 1.6377 2.3534 3.1824 4.5407 10.215
tαp4q 1.5332 2.1318 2.7764 3.7469 7.1732
tαp5q 1.4759 2.0150 2.5706 3.3649 5.8934
tαp6q 1.4398 1.9432 2.4469 3.1427 5.2076
tαp7q 1.4149 1.8946 2.3646 2.9980 4.7853
tαp8q 1.3968 1.8595 2.3060 2.8965 4.5008
tαp9q 1.3830 1.8331 2.2622 2.8214 4.2968
tαp10q 1.3722 1.8125 2.2281 2.7638 4.1437
tαp15q 1.3406 1.7531 2.1314 2.6025 3.7328
tαp20q 1.3253 1.7247 2.0860 2.5280 3.5518
tαp30q 1.3104 1.6973 2.0423 2.4573 3.3852
tαp40q 1.3031 1.6839 2.0211 2.4233 3.3069
tαp60q 1.2958 1.6706 2.0003 2.3901 3.2317
tαp8q 1.2816 1.6449 1.9600 2.3263 3.0902 205



Confidence interval for µ of a normal distribution

Let X1, . . . , Xn be independent Npµ, σ2q.

Known variance σ2

Iµ “

ˆ

X̄ ´ zα{2
σ
?
n
, X̄ ` zα{2

σ
?
n

˙

is a confidence interval for µ with confidence level 1´ α.

Unknown variance σ2

Iµ “

ˆ

X̄ ´ tα{2pn´ 1q
s
?
n
, X̄ ` tα{2pn´ 1q

s
?
n

˙

is a confidence interval for µ with confidence level 1´ α. Here s2

is the sample variance and tα{2pn´ 1q are the p1´ α{2q-quantiles
of the tpn´ 1q-distribution.
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Quiz

x1, . . . , xn are a sample of i.i.d observations with distribution
depending on a parameter θ.

Winnie computes a 95 % confidence interval for θ.

Piglet computes a 90 % confidence interval for θ using the same
data.

Which interval is smallest? Piglet’s 90 % confidence interval.
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Confidence interval for µ from central limit theorem

• By the CLT the sample mean X̄pnq is approximatively
Npµ, σ2{nq-distributed for large n.

• If we have a sample with known variance σ2,

Iµ “

ˆ

X̄ ´ zα{2
σ
?
n
, X̄ ` zα{2

σ
?
n

˙

is a confidence interval for the mean µ with confidence level
1´ α.

• If σ is not known we can estimate it by S. For the estimate to
be good, it is important that n is large and the distribution for
Xi is not too heavy tailed.

• Since n is big, we use tα{2pn´ 1q « zα{2, so if σ is unknown,
we use

Iµ “

ˆ

X̄ ´ zα{2
s
?
n
, X̄ ` zα{2

s
?
n

˙

.
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Confidence interval for σ2 for the normal distribution

Confidence interval for σ

If X1, . . . , Xn are independent Npµ, σ2q then a confidence interval
with confidence level 1´ α for σ is

Iσ “

˜
d

pn´ 1qs2

χ2
α{2pn´ 1q

,

d

pn´ 1qs2

χ2
1´α{2pn´ 1q

¸

.

Here χ2
α{2pn´ 1q are the p1´ α{2q-quantiles of the χ2pn´ 1q

distribution.

If Zi are independent Np0, 1q, it holds

n
ÿ

i“1

Z2
i

is χ2pnq-distributed
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χ2pnq-distribution
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Confidence interval for σ2 for the normal distribution

Confidence interval for σ

If X1, . . . , Xn are independent Npµ, σ2q then a confidence interval
with confidence level 1´ α for σ is

Iσ “

˜
d

pn´ 1qs2

χ2
α{2pn´ 1q

,

d

pn´ 1qs2

χ2
1´α{2pn´ 1q

¸

.

Important: In contrast to the confidence interval for the expected
value, the confidence interval for the variance is very sensitive to
deviations from the normal distribution.
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Summary

For a confidence interval

• for the expected value µ

• of the normal distribution: Slide: confidence interval for µ of a
normal distribution

• Known σ or large n: use confidence interval based on normal
quantiles.

• Small n and unknown σ: use quantiles based on t-distribution.

• of a general distribution

• Large n: use confidence interval based on normal quantiles
(valid approximation by CLT). Slide: Confidence interval for µ
from central limit theorem.

• for the variance σ2

• of the normal distribution: Slide: Confidence interval for σ2 for
the normal distribution.
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Hypothesis tests

An important problem in statistics is to test whether a theory or a
research hypothesis is right or wrong.

Examples of such problems include:

• Does a new drug have any effect? Mean effect ą 0

• Do smokers die sooner than non-smokers? Mean life time
difference ă 0

• Does the measuring device have a systematic error? Mean
measurement error ‰ 0
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Hypothesis tests

Answers the statistical analysis could give are

1. that the research hypothesis is supported by the data (and
possibly a quantification of the degree of support),

2. that the data doesn’t support the hypothesis,

3. a decision rule.
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Example

The length of a certain lumber from a national home building store
is supposed to be 2.5 m.

A builder wants to check whether the lumber cut by the lumber
mill has a mean length different smaller than 2.5 m.

A statistical formulation of this problem is that we want to test the
null hypothesis

H0 : mean length “ 2.5m

against the alternative/research hypothesis

H1 : mean length ă 2.5m

H1 is actionable knowledge. If H1 is true she needs to write an
angry letter.
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Example

• You have new laboratory equipment to measure the chlorine
content in water and want to check it. You mix water with
true chlorine content 60 (you can do that very precisely), and
take 6 measurements.

• Results of the measurement are x̄ “ 59.62 and s2 “ 4.6920.

• Assume that the measurements are samples of a random
variable X „ Npµ, σ2q.

• The question now is whether we can claim that the new
equipment has systematic measurement error, µ ‰ 60.
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Setup

A statistical formulation of this problem is that we want to test the
null hypothesis

H0 : µ “ 60

against the alternative hypothesis or research hypothesis

H1 : µ ‰ 60.

If the test we perform finds that there is a systematic error, H0 is
rejected in favour of H1.

Is H1 actionable knowledge?

Choosing the alternative H1

Choose H1 such if someone would tell you it is true, you can do
something useful with that knowledge!
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µ0´1.96 SE
58.1

x̄pnq

59.62

µ0`1.96 SE
61.9

µ0

60m

x

SE «
?

4.6920?
5
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Decisions

The outcome of a hypothesis test can be:

• Reject H0 (accept H1.)

• Action!

• Do not reject H0

• Could be lack of data, or H0 being correct. The question of
H0 or H1 is truly left open. Meh. Should still report it though.
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Decision errors

Decision
fail to reject H0 reject H0

H0 true X Type 1 Error
Truth

H1 true Type 2 Error X

• A Type 1 Error is rejecting the null hypothesis when H0 is true.
We want to avoid that, control the probability for this error.

• A Type 2 Error is failing to reject the null hypothesis when H1

is true.
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Burden of proof

If we again think of a hypothesis test as a criminal trial then it
makes sense to frame the verdict in terms of the null and
alternative hypotheses:

H0 : Defendant is innocent
H1 : Defendant is guilty

Which type of error is being committed in the following
circumstances?

• Declaring the defendant innocent when they are actually guilty

Type 2 error

• Declaring the defendant guilty when they are actually innocent

Type 1 error

Which error do you think is the worse error to make? 221



Statistical reasoning

Classical logic: If the null hypothesis is correct, then these data can
not occur.
These data have occurred.
Therefore, the null hypothesis is false.

Tweak the language, so that it becomes probabilistic... Statistical
reasoning:

If the null hypothesis is correct, then these data are highly unlikely.
These data have occurred.
Therefore, the null hypothesis is unlikely.

Definition
In statistical hypothesis testing, a result has statistical significance
when it is very unlikely to have occurred under the null
hypothesis. So significance corresponds to "statistical evidence
against the null".

The significance level α is the (tolerated) probability of making a
type I error:

Ppreject H0 | H0 is true q
pat mostq
“ α
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About failure to reject H0

If you want to take a decision in the case the test fails to reject H0,
you should compute the type II error probability first. This is
typically difficult.

Therefore we should avoid far reaching decisions if our tests fail to
reject H0.
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Tests from confidence intervals

Data (samples from a distribution with unknown parameter
µ).

Hypothesis about parameter. Here H0 : µ “ µ0 and
H1 : µ ‰ µ0.

Significance level α, e.g α “ 5%.

Decision rule: Compute a p1´ αqp“ 95%q-confidence interval
rA,Bs for the parameter µ. If the µ0 R rA,Bs, reject H0.

Type 1 error: This rule has type 1 error of 5 %, so this is a valid
test for level α “ 5 %.
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Tests with test statistics

Data (samples with unknown population parameter µ).

Hypothesis about parameter. Here H0 : µ “ µ0 and
H1 : µ

‰
ą
ă
µ0.

Significance level α, e.g α “ 5%.

Test statistic T : Typically, T comes from an estimator for our
parameter with known distribution under H0.

T “
X̄ ´ µ0

σ{
?
n

(example)

Decision rule: Reject H0 if the p-value is less than the significance
level α.
or: Reject H0 if the Tobs is in the critical region/rejection region
(see next slide).

Type I error: The type I error for this test is ď α. 225



Critical region
The critical region Cα of a test are those values of the test
statistic T for which H0 can be rejected while obeying significance
level α. Typically represented by one or two critical values.

We compute rejection region for the data. We reject H0 if Tobs is
in the rejection region.
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Example: critical region for mean of normal population

We want to use a quantity T that we know the distribution of
under H0, so that we can calculate the critical region.

In case of the normal distribution with known variance

pT “qZ “
X̄ ´ µ0

σ{
?
n

we know that Z under H0 is Np0, 1q-distributed and

Reject H0 at level α if |Z| ą zα{2.
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´|zα{2|
´1.96

Z |zα{2|
1.96

0
x

Rejection region for α “ 0.05.
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´|zα{2|
´1.96

Z |zα{2|
1.96

0
x

Rejection region for α “ 0.05 (on the x-axis below the yellow
area).

Rule: Reject H0 (yeah) if Z is in the rejection region.
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Example: p-value for mean of normal population

p-value
The p-value is the probability under the null hypothesis H0 to
obtain a test statistic T with more evidence for the alternative
(more “extreme”) than the one we observed, tobs.

230



Example: p-value for normal distribution (two-sided

Again we want to use a quantity T that we know the distribution of
under H0, so that we can calculate the p-value.

In case of the normal distribution with known variance

T “
X̄ ´ µ0

σ{
?
n

we know that T under H0 is Np0, 1q-distributed and

p “ Pp|T | ě |Tobs|q “ 2 ¨ PpT ě |Tobs|q “ 2p1´ Φp|Tobs|qq.

We compute p for the data. We reject H0 if p ď α

We compute rejection region for the data. We reject H0 if Tobs is
in the rejection region.
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0.025 Z 0.0250
x

Yellow area: p-value, dashed area: α “ 0.05.

Rule: Reject H0 if p ď α
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0.05

´|zα|
´1.68

Z 0
x

One-sided rejection region for α “ 0.05.

Rule: Reject H0 if Z is inside the rejection region.
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Example: p-value for normal distribution (one-sided)

Again we want to use a quantity T that we know the distribution of
under H0, so that we can calculate the p-value.

In case of the normal distribution with known variance

T “
X̄ ´ µ0

σ{
?
n

we know that T under H0 is Np0, 1q-distributed.

1.) Check if T is on the right side to give evidence in favour of H1.

2.) p “ PpT more extreme than Tobsq
on the right side

“

1´ Φp|Tobs|q.

We compute p for the data. We reject H0 if p ď α

We compute rejection region for the data. We reject H0 if Tobs is
in the orange rejection region.
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0.05 ´|zα|
´1.68

Z 0
x

Yellow area: p value, dashed area: α “ 0.05.

Rule: Reject H0 if p ď α.
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How many observations are needed?

A test detects a deviation of µ´ µ0 more easily if:

• If the significance level α is not very small.

• The number of observations n is large.

• The population variance relatively σ2 is small.
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Estimating proportions

Example
Suppose we want to estimate the proportion p of people who own
tablets in a certain city. 250 randomly selected people are
surveyed, 98 of them reported owning tablets. An estimate for the
population proportion is given by p̂ “ 98

250 “ 0.392.

In general we want to study a particular trait in a population too
large to sample completely. We ask about the proportion of the
population with this trait.
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Estimating a proportion

• We choose a random sample X1, ..., Xn from the population.

•

Xi “

#

1 ith member of the sample has the trait
0 otherwise

• The point estimator is based on the

p̂ “

n
ř

i“1
Xi

n
(proportion in the sample) .
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Bernouli random variables

Why do we write p̂ “
řn
i“1 Xi
n as sum of random variables.

PpXi “ 1q “ p, PpXi “ 0q “ 1´ p. Xi are Bernoulli random
variables with parameter p!

We know a lot about them. E.g.

EpXiq “ 0 ¨ p1´ pq ` 1 ¨ p “ p

np̂ is the sum of Bernoulli random variables, hence Binpn, pq
distributed. So ...
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Unbiasedness

Unbiasedness
The expectation of p̂:

Epp̂q “
1

n

n
ÿ

i“1

EpXiq “
1

n
pp` p` ¨ ¨ ¨ ` pq
l jh n

n times

“ p

Epp̂q “ p

p̂ is an unbiased estimator for the proportion p.
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Variance

The variance of p̂ tells us how good as estimator p̂ is.

Var pXiq “ E
`

X2
i

˘

´ E pXiq
2
“ p´ p2 “ pp1´ pq

ñ Varpp̂q “
ř

VarpXiq
n2 “

npp1´pq
n2 “

pp1´pq
n

Standard error
The variance of p̂:

Varpp̂q “
pp1´ pq

n

The standard error is

SE “
a

Varpp̂q «

a

p̂p1´ p̂q
?
n

How many more observations do I need to reduce the standard
error by a factor 2? 4 times as much 241



Example (ctd.)

Recall p̂ “ 98
250 “ 0.392.

The standard error the estimated proportion of people who own a
tablet is

SE “

a

p̂p1´ p̂q
?
n

“

a

0.392p1´ 0.392q
?

250
“

c

0.392p0.608q

250
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Confidence interval on p̂.

Normal approximation When we take n large enough, by the
central limit theorem, p̂ is approximately normally distributed with
mean p and variance pp1´ pq{n.

Confidence interval

A 100p1´ αq% confidence interval is defined by
`

p̂´ zα{2SE, p̂` zα{2SE
˘

where SE “
a

p̂p1´ p̂q{n and P
`

´zα{2 ď Z ď zα{2
˘

“ 1´α for
Z „ Np0, 1q

E.g. for a 95 % CI zα{2 “ 1.96.
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Example (ctd.)

A 95 % C.I. on the proportion of people who own a tablet is given
by

`

p̂´ zα{2SE, p̂` zα{2SE
˘

where p̂ “ 38
250 , zα{2 “ 1.96,

SE2 “
0.392p0.608q

250 .

˜

0.392´ 1.96

c

0.392p0.608q

250
, 0.392` 1.96

c

0.392p0.608q

250

¸

“ p0.3315, 0.4525q.

“We are 95% confident that proportion of people owning a tablet is
somewhere in the interval p0.3315, 0.4525q.”
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Hypothesis test for hypothesis about proportion

We can test hypotheses about the a population proportion:

H0 : p “ p0 and H1 : p
‰
ą
ă
p0

Our test statistic is the z-value

z “
p̂´ p0

a

p0 p1´ p0q {n

where p0 is the null value, the value of p used in the null
hypotheses.

The corresponding r.v. Z is approximately standard normal
distributed for large n.

Minimum sample size

n is considered large enough if np0 ą 5 and np1´ p0q ą 5 (both).
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Example

Example
Newborn babies are more likely to be boys than girls. A random
sample found 13 173 boys were born among 25 468 newborn
children. The sample proportion of boys was 0.5172. Is this
sample evidence that the birth of boys is more common than the
birth of girls in the entire population? Let α “ 0.05.

Test
H0 : p “ 0.5 and H1 : p ą 0.5.

at significance level α “ 0.05.

Since n is large, z “ p̂´0.5?
0.5p0.5q{25468

is approximately normally

distributed. The critical point is z0.95 “ 1.645 and
z “ 0.5172´0.5?

0.5p0.5q{25468
“ 5.49 which is in the rejection region.

Therefore H0 is rejected and hence the sample gives evidence that
the proportion of boys is higher than that of girls. 246



z
5.49

|zα|
1.645

0
x

Rejection region for α “ 0.05 (on the x-axis below the yellow
area).
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Comparing two proportions

Suppose we have two populations and we want to compare the
proportions in the populations that have a certain trait. Denote the
unknown proportions p1 and p2.

Example
We are interested in comparing the proportion of researchers who
use a certain computer program in their research in two different
fields: pure mathematics and probability and statistics.
Populations: Researchers in the pure math field and researchers
in the probability and statistics field. Trait of interest: Usage of
the computer program.
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Point estimator and SE for the difference between two pro-
portions

Suppose that p1 is the true proportion of population 1 and p2 is
that of population 2.

• From each population we take a random sample of sizes n1,
n2 such that the samples are independent from each other.

• For each sample we compute the point estimate: p̂1 and p̂2.

• A point estimator for p1 ´ p2 is p̂1 ´ p̂2.

• For large samples, p̂1 ´ p̂2 is approximately normal with mean
p1 ´ p2 and variance p1 p1´ p1q {n1 ` p2 p1´ p2q {p2 where
and n1 and n2 are the sample sizes from population 1 and 2
respectively.
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Confidence interval

Confidence interval

A 100p1´ αq% C.I. on p1 ´ p2 is given by
`

p̂´ zα{2SE, p̂` zα{2SE
˘

“

p̂1 ´ p̂2 ˘ zα{2
a

p̂1 p1´ p̂1q {n` p̂2 p1´ p̂2q {n2
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Example

We take a sample of size 375 from population 1 and 375 from
population 2. The number of researchers that use a computer
program we get from population 1 is 195 and that of researchers
from population 2 is 232.

Then p̂1 “
195
375 “ 0.52 and p̂2 “

232
375 “ 0.619 A point estimate for

the difference p1 ´ p2 is 0.52´ 0.619 “ ´0.099. The standard
deviation is

a

0.52p0.48q{375` 0.619p0.381q{375 “ 0.036
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Example (ctd.)

A 95% confidence interval for p1 ´ p2 is

p0.52´ 0.619´ 1.96p0.036q, 0.52´ 0.619` 1.96p0.036qq
p´0.17,´0.028q

Since the interval does not contain 0 and is negative-valued, we can
say with 95% level of confidence that the proportion of researchers
from population 2 is higher than that of population 1.
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Comparisons

A common situation is that you want to make comparisons between
different samples. Examples of when this may be of interest include

• We want to compare performances of two designs.

• We want to investigate the effect of a new drug.

Today we will examine two types of comparisons

• Independent samples (measurements of two populations)

• Paired samples (samples are pairs of related measurements)
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Paired samples



Paired samples:

A common situation is that the measurements are made in pairs.
For example when you take different measurements of the same
subjects, e.g. strength of the right arm and strength of the left
arm.

We set up a model which has n pairs of observations

X1, Y1, X2, Y2, . . . , Xn, Yn.

For each measurement, we form the difference, which is assumed to
be normally distributed:

Di “ Xi ´ Yi
iid
„ Npµdiff , σ

2q

Summary: We test whether H0 : µdiff “ 0 against an alternative.
This is done as usual for normally distributed measurements with
known or unknown variance.
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Independent samples



Independent samples

Assume we have two independent samples from different
populations:

• n1 observations X1, X2, . . . , Xn1 from Npµ1, σ
2
1q.

• Also n2 observations Y1, Y2, . . . , Yn2 from Npµ2, σ
2
2q.

Summary: Build test/CI for H : : µ1 ´ µ2. We’ll start with
estimator D̄ “ X̄ ´ Ȳ of µ1 ´ µ2.
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Paired or not

1. Compare pre-class (beginning of semester) and post-class (end
of semester) scores of students. Paired.

2. Assess gender-related salary gap by comparing salaries of 10
randomly sampled men and 12 women. Independent.

3. Compare artery thicknesses at the beginning of a study and
after 2 years of taking Vitamin E for the same group of
patients. Paired.

4. Measure the strength of the left arm vs right arm of each
subject. Paired.

5. Assess gender-related salary gap by comparing salaries of 10
randomly sampled men and 10 women. Still independent.
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Example for samples

You would like to know whether a new wheat variety yields a higher
harvest than the existing variety. You select six fields that differ in
fertility and climate, and divide each field into two parts in which
each variety is grown.

Field nr 1 2 3 4 5 6

Harvest sort 1, kg/ha 7529 8913 6534 6503 6896 8023
Harvest sort 2, kg/ha 7239 8726 6129 6351 6644 7711

Difference Di 290 187 405 152 252 312

We test H0 : µdiff “ 0 against H1 : µdiff ‰ 0 at level α “ 0.05. We
have D̄ “ 266.3 and sD “ 91 and look up t0.025p5q “ 2.57

Iµdiff
“ pD̄ ˘ t0.025p5q ¨ sD{

?
6q “ p171, 362q

As 0 R Iµdiff
we reject H0.
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Independent samples

Assume we have two independent samples

• n1 observations X1, X2, . . . , Xn1 from Npµ1, σ
2
1q.

• Also n2 observations Y1, Y2, . . . , Yn2 from Npµ2, σ
2
2q.

We want to test wether µ1 and µ2 differ (H0 : µ1 “ µ2).

Introduce µdiff “ µ1 ´ µ2 with estimator D̄ “ X̄ ´ Ȳ . Test

H0 : µdiff “ 0,

H1 : µdiff ‰ 0 por against H1 : µdiff ą 0, or ...q

But what is the standard error??
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3 cases

We distinguish between 3 cases:

Case 1: σ1 and σ2 are known.

Case 2: σ1 “ σ2 “ σ where σ is unknown.

Case 3: σ1 and σ2 are unknown and not necessarily the same.

If the case is not known, we may first have to test whether σ1 “ σ2

with the

Preliminary test:

H0 :
σ1

σ2
“ 1

H1 :
σ1

σ2
‰ 1
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Case 1: Known σ1 and σ2

If σ1 and σ2 are known it holds that

SE “ SEpX̄1 ´ X̄2q “

d

σ2
1

n1
`
σ2

2

n2
.

In a hypothesis test we use that under H0

Z “
X̄1 ´ X̄2

SE
„ Np0, 1q

with p-value p “ 2p1´ Φp|Zobs|qq.

A confidence interval for µdiff “ µ1 ´ µ2 is given by

Iµdiff
“

`

µ̂diff ˘ zα{2 SE
˘

“

¨

˝x̄1 ´ x̄2 ˘ zα{2

d

σ2
1

n1
`
σ2

2

n2

˛

‚
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Case 2: σ1 “ σ2 “ σ where σ unknown

Pooled estimate of variance

For 2 normally distributed samples Npµj , σ2q, j “ 1, 2 an unbiased
estimate of σ2 is

s2
p “

pn1 ´ 1qs2
1 ` pn2 ´ 1qs2

2

pn1 ´ 1q ` pn2 ´ 1q
. Step 1!

With

SE “

d

s2
p

ˆ

1

n1
`

1

n2

˙

Step 2!

one has under H0 that

T “
X̄1 ´ X̄2

SE
„ tpn1 ` n2 ´ 2q

Confidence interval: Iµdiff
“

`

x̄1 ´ x̄2 ˘ tα{2pn1 ` n2 ´ 2qSE
˘

. 261



Case 3: σ1 ‰ σ2 unknown

Theorem
For two normally distributed samples

T “
X̄1 ´ X̄2

a

s2
1{n1 ` s2

2{n2

is approximately tpdfq-distributed where

df “
ps2

1{n1 ` s
2
2{n2q

2

ps21{n1q2

n1´1 `
ps22{n2q2

n2´1

We can now create confidence intervals and perform hypothesis
tests in the same way as before:
Iµdiff

“

´

µ̂diff ˘ tα{2pfq
a

s2
1{n1 ` s2

2{n2

¯

.
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Example (Exercise 10.14)
To decide whether or not to purchase a new hand-held laser
scanner for use in inventorying stock, tests are conducted on the
scanner currently in use and on the new scanner. There data are
obtained on the number of 7-inch bar codes that can be scanned
per second:

new old
n1 “ 61 n2 “ 61
x̄1 “ 40 x̄2 “ 29
s2

1 “ 24.9 s2
2 “ 22.7

1. Find the pooled variance.

2. Find a 90% CI on µ1 ´ µ2.

3. Does the new laser appear to read more bar codes per second
on the average?
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1. Find the pooled variance.

sp2 “
60p24.9q ` 60p22.7q

120
“ 23.8

2. Find a 90% CI on µ1 ´ µ2.
t-distribution with df “ 120. tα{2 “ t0.05 “ 1.658 (note that the
table does not give the values for degrees of freedom greater than
100 , use then an approximation). A 90% CI is therefore

p40´ 29˘ 1.658
a

23.8p1{61` 1{61qq “ p9.54, 12.45q

3. Does the new laser appear to read more bar codes per second on
the average?

Yes, since the interval does not contain 0 and is positive-valued.
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Preliminary test: Comparison of variance

Denote with Fαpdf1, df2q the α-quantile of the F -distribution. A
confidence interval for σ2

1{σ
2
2 is

Iσ2
1{σ

2
2
“

„

s2
1{s

2
2

Fα{2pn1 ´ 1, n2 ´ 1q
,

s2
1{s

2
2

F1´α{2pn1 ´ 1, n2 ´ 1q



Use for a hypothesis test H0 : σ2
1{σ

2
2 “ 1 (same as H0 : σ2

1 “ σ2
2q

.
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Linear regression



What is linear regression

Regression is a technique used for estimating the relationship
between variables.

Often we want to predict a variable Y (the dependent variable) in
terms of another variable x (the independent variable) (or more
generally understand the relationship between Y and x).

266



Example

We want to investigate how the specific heat capacity of a
substance (the ability of the substance to store heat energy)
depends on temperature.

For each of the five temperatures, two heat capacity measurements
are made with the following results:

Temperature (°C) 30 40 50 60 70

Heat capacity 0.70 0.74 0.78 0.80 0.82
0.72 0.73 0.75 0.78 0.81
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Model description

We have measured a response variable Y for fixed values of an
explanatory variable x that can be controlled without errors.

We use a linear model for pYi, xiq, i “ 1, . . . , n:

Yi “ β0 ` β1xi ` εi (20.1)

• εi are independent Np0, σ2q random variables describing
measurement errors.

• β0 is the intercept parameter.

• β1 is the slope parameter.
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Model description

Another way of writing the model is

Yi „ Npβ0 ` β1xi, σ
2q.

The expected value of Y is determined by the linear relationship
with x, and the variance of measurement error σ2 describes the
variation of the individual observations around the expected value
β0 ` β1x. Assumption: Yi are independent..
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Task

Given a sample (visualized by a scatterplot)

pY1, x1q, pY2, x2q, . . . , pYn, xnq

we want to estimate the line with parameters β0 and β1 as well as
σ2, the variation of the Yi-values from the regression line β0 ` β1x
at xi.

With the estimated parameters, we can predict Y for a given value
of x.
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Least squares estimator

β0 and β1 are estimated by the method of least-squares which is
done by minimizing

SSE “
n
ÿ

i“1

ε2i “
n
ÿ

i“1

pyi ´ β0 ´ β1xiq
2

Let b0 and b1 values of β0 and β1 respectively minimizing the SSE.
Then,

b1 “

n
n
ř

i“1
xiyi ´

ˆ

n
ř

i“1
xi

˙ˆ

n
ř

i“1
yi

˙

n
n
ř

i“1
x2
i ´

ˆ

n
ř

i“1
xi

˙2

and
b0 “ ȳ ´ b1x̄

272



Least squares estimator

An estimator for the variance parameter σ2 is s2 “
Q0

n´2
where

Q0 “

n
ÿ

i“1

pyi ´ b0 ´ b1xiq
2

(b0 and b1 your estimates).
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Different way of computing the estimate
The LS-estimators for β0 and β1 are

b1 “ Sxy{Sxx and b0 “ ȳ ´ b1x̄

where

Sxx “
n
ÿ

i“1

pxi ´ x̄q
2 “

n
ÿ

i“1

x2
i ´ nx̄

2

Syy “
n
ÿ

i“1

pyi ´ ȳq
2 “

n
ÿ

i“1

y2
i ´ nȳ

2

Sxy “
n
ÿ

i“1

pxi ´ x̄qpyi ´ ȳq “
n
ÿ

i“1

xiyi ´ nx̄ȳ

An estimator for the variance parameter σ2 is s2 “
Q0

n´2 where

Q0 “

n
ÿ

i“1

pyi ´ b0 ´ b1xiq
2 “ Syy ´ b1Sxy “ Syy ´

S2
xy

Sxx
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Estimators for the example

We estimate parameters of the regression line in the example. We have
x̄ “ 50, ȳ “ 0.763 and

Sxx “
10
ÿ

i“1

x2
i ´ 10x̄2 “ 27000´ 10 ¨ 502 “ 2000

Syy “
10
ÿ

i“1

y2
i ´ 10ȳ2 “ 5.8367´ 10 ¨ 0.7632 “ 0.01501

Sxy “
10
ÿ

i“1

xiyi ´ 10x̄ȳ “ 386.8´ 10 ¨ 50 ¨ 0.763 “ 5.3

and therefor the estimate

b1 “ Sxy{Sxx “ 5.3{2000 “ 0.00265

b0 “ ȳ ´ b1x̄ “ 0.6305

s2 “
1

n´ 2

˜

Syy ´
S2
xy

Sxx

¸

“ 0.00012, s “
?

0.00012 “ 0.011
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The estimated regression line is b0 ` b1x
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Shortcut used by the book

Shortcut
The book often uses

Sxy
Sxx

“
nSxy
nSxx

“
n
řn
i“1 xiyi ´ p

řn
i“1 xiqp

řn
i“1 yiq

n
řn
i“1 x

2
i ´ p

řn
i“1 xiq

2
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Example 2

Let X denote the number of lines of executable SAS code, and let
Y denote the execution time in seconds. The following is a
summary information:

n “ 10
10
ÿ

i“1

xi “ 16.75
10
ÿ

i“1

yi “ 170

10
ÿ

i“1

x2
i “ 28.64

10
ÿ

i“1

y2
i “ 2898

10
ÿ

i“1

xiyi “ 285.625

Estimate the line of regression.
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Example 2

Using the shortcut...

b1 “
10p285.625q ´ p16.75qp170q

10p28.64q ´ p16.75q2
“ 1.498

b0 “
170

10
´ 1.498

16.75

10
“ 14.491

Estimated model:

Yi “ 1.498xi ` 14.491` εi
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Our estimator for β1 is B1 “ β̂1 (the random quantity w. value
b1).

Properties of the estimator for the slope

We have EpȲ q “ β0 ` β1x̄ and VpȲ q “ σ2

n . The book shows
using

řn
i“1pxi ´ x̄q “ 0 and the rules of expectation and variance

EpB1q “ β1 VpB1q “
σ2

Sxx
“

σ2

řn
i“1pxi ´ x̄q

2

So we see that B1 is an unbiased estimator for β1.
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Our estimator for β0 is B0 “ β̂0 (the random quantity with value
b0.) µ̂0px0q “ B0 `B1x0 is an estimator for
Epβ0 ` β1x0qp“ EY if Y “ β0 ` β1x0 ` εq

Properties of estimators for intercept and prediction of Y
With µ̂Y px0q “ B0 `B1x0 also

Epµ̂Y px0qq “ β0 ` β1x0

with

Vpµ̂Y px0qq “ σ2

„

1

n
`
px0 ´ x̄q

2

Sxx



With x0 “ 0 we see that B0 is unbiased.
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Distribution of the estimators

Theorem

For normally distributed εi it holds that Ȳ , B0, B1 and
µ̂Y px0q “ B0 `B1x0 are also normally distributed.

Because the estimator is a sum of Yi, by the CLT this also holds
approximately if the distribution of the εi deviates from the normal
distribution.

Theorem
If εi is normally distributed it holds that

pn´ 2qS2

σ2
„ χ2pn´ 2q

further S2 is independent of Ȳ , B0, B1 and µ̂Y px0q.
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Confidence interval and test

Let θ one of β0, β1 or µY px0q “ β0 ` β1x0.

We know that these estimates are normally distributed and have
determined the variance of the estimates.

If SEpθ̂q denotes the standard error of the estimator, the
statistic

T “
θ̂ ´ θ

SEpθ˚q
„ tpn´ 2q

is often used for tests and a confidence interval is,

Iθ “ pθ̂ ˘ tα{2pn´ 2qSEpθ̂qq
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Example

Consider the previous example and suppose we want to see if there
is a relation between X and Y with a significance level α “ 5%.
There is a relation between X and Y if and only if β1 ‰ 0, which is
our alternative hypothesis. Let H0 : β1 “ 0. We have a two tailed
test.

b1 “ 1.498, Sxx “
´

n
řn
i“1 x

2
i ´ p

řn
i“1 xiq

2
¯

{n “ 0.584, Syy “ 8

and Sxy “ 0.875.

Therefore SSE “ 8´ 1.498p0.875q “ 6.69 and

s2 “ SSE {8 “ 0.84

The test statistic is

T “
b1 ´ 0

a

S2{SXX
“

1.498
a

0.84{0.584
“ 1.25

t0.025 “ 2.306. Hence, we do not reject the hypothesis. 284



Example

A 95% C.I. on β0 in our previous example is given by

14.491˘ 2.306
a

0.84p28.64q{5.84
p14.491´ 4.68, 14.491` 4.68q

p9.81, 19.181q

We are 95% sure that the true regression line crosses the y -axis
between the points y “ 9.81 and y “ 19.81.
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Confidence interval

• Confidence interval for β0:

Iβ0 “

¨

˝β̂0 ˘ tα{2pn´ 2qs

d

1

n
`

x̄2

Sxx

˛

‚

• Confidence interval for β1:

Iβ1 “

ˆ

β̂1 ˘ tα{2pn´ 2q
s

?
Sxx

˙

• Confidence interval for µY px0q “ β0 ` β1x0:

IµY px0q “

¨

˝β̂0 ` β̂1x0 ˘ tα{2pn´ 2qs

d

1

n
`
px0 ´ x̄q2

Sxx

˛

‚
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Prediction interval

• Sometimes you want to know where a future observation will
be for a certain value of x, for this use a prediction interval:

• The difference between a prediction interval IY px0q and a
confidence interval IµY px0q is that IµY px0q indicates where the
expected value (the line!) is likely, while IY px0q indicates where
a future observation is likely.

• Since observations scatter around the regression line, the
prediction interval must be wider than the confidence interval,
and it can be shown that

Ŷ px0q „ N

ˆ

β0 ` β1x0, σ
2p1`

1

n
`
px0 ´ x̄q

2

Sxx
q

˙

.

The prediction interval is

IY px0q “

»

–β̂0 ` β̂1x0 ˘ tα{2pn´ 2qs

d

1`
1

n
`
px0 ´ x̄q2

Sxx

fi

fl 287



Confidence interval and prediction interval
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Model validation



Model validation

A very important part of a regression analysis is the validation of
the model. This means that we must ensure that it is appropriate
to use a simple regression model. The most common method for
this is the calculation of residuals.

ei “ yi ´ β̂0 ´ β̂1xi

For the regression to be valid the residuals

• must be distributed approximately normally with expected
value 0,

• do not reveal any special structure as a function of x.

• Have about the same variation for all different values of x. For
example, the variance for large values of x should not increase.

Check this visually by drawing the residuals as a function of x and
using normal distribution plots. 289



Example
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Example
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