Chapter 7: PDE in 1d (summary)

November 29, 2021

Goal: Use FEM and the time integrators from the previous chapter to numerically discretise the heat and wave equations in $1 d$.

- Consider the inhomogeneous heat equation with homogeneous Dirichlet boundary conditions

$$
\left\{\begin{array}{l}
u_{t}(x, t)-u_{x x}(x, t)=f(x, t) \quad 0<x<1,0<t \leq T \\
u(0, t)=u(1, t)=0 \quad 0<t \leq T \\
u(x, 0)=u_{0}(x) \quad 0<x<1,
\end{array}\right.
$$

where u_{0} and f are given functions.
Since it is seldom possible to find the exact solution $u(x, t)$ to the above problem, we need to find a numerical approximation of it. We proceed as follows

1. To get a VF of the heat equation, consider the test/trial space
$H_{0}^{1}=\left\{v:[0,1] \rightarrow \mathbb{R}: v, v^{\prime} \in L^{2}(0,1), v(0)=v(1)=0\right\}$. Then, multiply the DE by a test function $v \in H_{0}^{1}$, integrate over [0,1], and use integration by parts to get the VF:
For all $0<t \leq T$

$$
\begin{equation*}
\text { Find } \quad u(\cdot, t) \in H_{0}^{1} \quad \text { s.t. } \quad\left(u_{t}(\cdot, t), v\right)_{L^{2}}+\left(u_{x}(\cdot, t), v_{x}\right)_{L^{2}}=(f(\cdot, t), v)_{L^{2}} \quad \forall v \in H_{0}^{1} \tag{VF}
\end{equation*}
$$

with the initial condition $u(x, 0)=u_{0}(x)$.
2. To get a FE problem, we consider the following subspace of the above space H_{0}^{1}
$V_{h}^{0}=\left\{v:[0,1] \rightarrow \mathbb{R}: v\right.$ cont. pw. linear on unif. partition $\left.T_{h}, v(0)=v(1)=0\right\}=\operatorname{span}\left(\varphi_{1}, \ldots, \varphi_{m}\right)$, where $h=\frac{1}{m+1}$ and φ_{j} are the hat functions.
The FE problem then reads:
For all $0<t \leq T$

$$
\begin{equation*}
\text { Find } \quad u_{h}(\cdot, t) \in V_{h}^{0} \quad \text { s.t. } \quad\left(u_{h, t}(\cdot, t), \chi\right)_{L^{2}}+\left(u_{h, x}(\cdot, t), \chi_{x}\right)_{L^{2}}=(f(\cdot, t), \chi)_{L^{2}} \quad \forall \chi \in V_{h}^{0} \tag{FE}
\end{equation*}
$$

with the initial condition $u_{h}(x, 0)=\Pi_{h} u_{0}(x)$ the cont. pw. linear interpolant of u_{0}.
3. From the above FE problem, we obtain a system of linear ODE by choosing the test functions $\chi=\varphi_{i}$ for $i=1, \ldots, m$ and writing $u_{h}(x, t)=\sum_{j=1}^{m} \zeta_{j}(t) \varphi_{j}(x)$ with unknown coordinates $\zeta_{j}(t)$. Inserting everything in (FE), one gets the ODE

$$
\begin{array}{r}
M \dot{\zeta}(t)+S \zeta(t)=F(t) \tag{ODE}\\
\zeta(0)
\end{array}
$$

where M is the (already seen) $m \times m$ mass matrix, S is the (already seen) $m \times m$ stiffness matrix, $F(t)$ is an $m \times 1$ vector with entries $F_{i}(t)=\left(f(\cdot, t), \varphi_{i}\right)_{L^{2}}$ for $i=1, \ldots, m$, the initial condition is given by

$$
\zeta(0)=\left(\begin{array}{c}
u_{0}\left(x_{1}\right) \\
\vdots \\
u_{0}\left(x_{m}\right)
\end{array}\right)
$$

and the unknown vector reads

$$
\zeta(t)=\left(\begin{array}{c}
\zeta_{1}(t) \\
\vdots \\
\zeta_{m}(t)
\end{array}\right)
$$

4. To find a numerical approximation of $\zeta(t)$ at some discrete time grid $t_{0}=0<t_{1}<\ldots<t_{N}=T$, with $t_{j}-t_{j-1}=k=\frac{T}{N}$, one can for instance use backward Euler scheme which reads

$$
\begin{aligned}
\zeta^{(0)} & =\zeta(0) \\
(M+k S) \zeta^{(n+1)} & =M \zeta^{(n)}+k F\left(t_{n+1}\right) \quad \text { for } \quad n=0,1,2, \ldots, N-1 .
\end{aligned}
$$

Solving these linear systems at each time step provides numerical approximations $\zeta^{(n)} \approx \zeta\left(t_{n}\right)$ that can be inserted in the FE solution to get approximations to the exact solution to the heat equation $u_{h}^{k}\left(x, t_{n}\right)=\sum_{j=1}^{m} \zeta_{j}^{(n)} \varphi_{j}(x) \approx u\left(x, t_{n}\right)$.

- Consider the wave equation (inhomogeneous) wave equation with homogeneous Dirichlet boundary conditions

$$
\left\{\begin{array}{l}
u_{t t}(x, t)-u_{x x}(x, t)=f(x, t) \quad 0<x<1,0<t \leq T \\
u(0, t)=u(1, t)=0 \quad 0<t \leq T \\
u(x, 0)=u_{0}(x) \quad 0<x<1 \\
u_{t}(x, 0)=v_{0}(x) \quad 0<x<1
\end{array}\right.
$$

where u_{0}, v_{0} and f are given functions.
Introducing a new variable for the velocity $v=u_{t}$, one can rewrite the above wave equation as a system of first order

$$
w_{t}(x, t)=A w(x, t)+F(x, t)
$$

with $w(x, t)=\binom{u(x, t)}{v(x, t)}, F(x, t)=\binom{0}{f(x, t)}$ and the operator $A=\left(\begin{array}{cc}0 & 1 \\ \frac{\partial^{2}}{\partial x^{2}} & 0\end{array}\right)$.
For the homogeneous wave equation, that is when $f \equiv 0$, one has conservation of the energy

$$
\frac{1}{2}\left\|u_{t}(\cdot, t)\right\|_{L^{2}}^{2}+\frac{1}{2}\left\|u_{x}(\cdot, t)\right\|_{L^{2}}^{2}=\frac{1}{2}\left\|v_{0}\right\|_{L^{2}}^{2}+\frac{1}{2}\left\|u_{0}^{\prime}\right\|_{L^{2}}^{2} .
$$

The discretisation of the wave equation is similar to the one seen above for the heat equation (we use the same notation as above):

1. The VF reads: Find $u(\cdot, t) \in H_{0}^{1}$, for all $0<t \leq T$, such that

$$
\left(u_{t t}(\cdot, t), v\right)_{L^{2}}+\left(u_{x}(\cdot, t), v_{x}\right)_{L^{2}}=(f(\cdot, t), v)_{L^{2}}
$$

for all test functions $v \in H_{0}^{1}$ and with initial conditions $u(x, 0)=u_{0}(x), u_{t}(x, 0)=v_{0}(x)$.
2. The FE problem reads: Find $u_{h}(\cdot, t) \in V_{h}^{0}$, for all $0<t \leq T$, such that

$$
\left(u_{h, t t}(\cdot, t), \chi\right)_{L^{2}}+\left(u_{h, x}(\cdot, t), \chi_{x}\right)_{L^{2}}=(f(\cdot, t), \chi)_{L^{2}}
$$

for all test functions $\chi \in V_{h}^{0}$ and initial conditions $u_{h}(x, 0)=\Pi_{h} u_{0}(x), u_{h, t}(x, 0)=\Pi_{h} \nu_{0}(x)$.
3. The linear system of ODEs is given by

$$
\begin{aligned}
M \dot{\zeta}(t) & =M \eta(t) \\
M \dot{\eta}(t)+S \zeta(t) & =F(t) .
\end{aligned}
$$

Finally, one obtains a numerical approximation of the solution to this ODE by using the CrankNicolson scheme with time step k for instance:

$$
\left(\begin{array}{cc}
M & -\frac{k}{2} M \\
\frac{k}{2} S & M
\end{array}\right)\binom{\zeta^{(n+1)}}{\eta^{(n+1)}}=\left(\begin{array}{cc}
M & \frac{k}{2} M \\
-\frac{k}{2} S & M
\end{array}\right)\binom{\zeta^{(n)}}{\eta^{(n)}}+\binom{0}{\frac{k}{2}\left(F\left(t_{n+1}\right)+F\left(t_{n}\right)\right)}
$$

The above provides an approximation $u_{h}^{k}\left(t_{n}, x\right)=\sum_{j=1}^{m} \zeta_{j}^{(n)} \varphi_{j}(x)$ of the solution u of the above wave equation.

Further resources:

- www.wikipedia.org
- math.lamar.edu
- www.wikipedia.org
- www.brilliant.org
- math.lamar.edu
- chem.libretexts.org

