From the table of LT, one has (shifting 2)

$$
\mathscr{L}^{-1}\left\{\mathrm{e}^{-T s} F(s)\right\}(t)=f(t-T) \theta(t-T), \quad \text { where } \quad F(s)=\mathscr{L}\{f(t)\}(s)
$$

and

$$
\mathscr{L}\left\{\mathrm{e}^{-a t}\right\}(s)=\frac{1}{s+a} .
$$

Hence,

$$
\mathscr{L}^{-1}\left\{\mathrm{e}^{-2 s} \frac{1}{s+1}\right\}(t)=f(t-2) \theta(t-2)
$$

using shifting 2 with $F(s)=\frac{1}{s+1}$. Now, using the above with $a=1$, one has $f(t)=\mathrm{e}^{-t}$ and then

$$
\mathscr{L}^{-1}\left\{\mathrm{e}^{-2 s} \frac{1}{s+1}\right\}(t)=f(t-2) \theta(t-2)=\mathrm{e}^{-(t-2)} \theta(t-2)
$$

