MSG800/MVE170 Basic Stochastic Processes

Written re-exam Tuesday 23 August 2022 2-6 PM

Teacher and Jour on Telephone: Patrik Albin, telephone 0317723512.
Aids: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).

Grades: 12 points for grades 3 and G, 18 points for grade 4,21 points for grade VG and 24 points for grade 5 , respectively.

Motivations: All answers/solutions must be motivated. Good Luck!

Task 1. Consider a discrete time Markov chain $\{X(n)\}_{n=0}^{\infty}$ with state space $\{0,1,2,3\}$, starting value $X(0)=0$ and transition probabilities $p_{i j}=1 / 4$ for all i, j. Find the expected value of the time it takes the chain to reach the state 3 . (5 points)

Task 2. Writing $\{W(t)\}_{t \geq 0}$ for a Wiener process with $\mathbf{E}\left\{W(1)^{2}\right\}=1$, is there a (nonrandom) function $f:[0, \infty) \rightarrow \mathbb{R}$ such that $\left\{\int_{0}^{t} W(r)^{2} d r+f(t)\right\}_{t \geq 0}$ is a martingale with respect to the history of the W-process $F_{s}=\sigma(W(r): r \in[0, s])$? (5 points)

Task 3. Find the variance of the random variable $X(t)+X^{\prime}(t)$ when $X(t)$ is a zero-mean WSS process with autocorrelation function $R_{X}(\tau)=\mathrm{e}^{-\tau^{2} / 2}$. (5 points)

Task 4. Let $\{X(t)\}_{t \geq 0}$ be a Poisson process with intensity $\lambda>0$ and write T_{1}, T_{2}, \ldots for the independent exponentially distributed with parameter λ times between its jumps from 0 to 1 , from 1 to 2 , etc. Then $\sum_{i=1}^{n} T_{i}$ is a continuously gamma-distributed random variable with probability density function $f_{\sum_{i}^{n} T_{i}}(x)=\lambda^{n} x^{n-1} \mathrm{e}^{-\lambda x} /((n-1)!)$ for $x \geq 0$. Use this to prove that $X(t)$ is Poisson distributed with parameter λt. (Hint: $\mathbf{P}\{X(t)=n\}=\mathbf{P}\left\{\sum_{i=1}^{n} T_{i} \leq t<\sum_{i=1}^{n+1} T_{i}\right\}$.) (5 points)

Task 5. The input to a continuous time LTI system is a WSS continuous time random process $X(t)$ with autocorrelation function $R_{X}(\tau)=\frac{\sin (a \tau)}{\pi \tau}$ for $\tau \in \mathbb{R}$ for a constant $a>0$, while the LTI system has impulse response of the same form $h(t)=\frac{\sin (b t)}{\pi t}$ for $t \in \mathbb{R}$ for a constant $b>0$. Find the autocorrelation function of the output $Y(t)$ from the system. (5 points)

Task 6. Find the probability distribution of the time it takes a continuous time Markov chain $\{X(t)\}_{t \geq 0}$ with state space $\{0,1,2,3\}$ and generator $g_{i j}=1 / 3$ for $i \neq j$ to move from the starting value $X(0)=0$ to the value 3 . (5 points)

MSG800/MVE170 Solutions to re-exam 23 August 2022

Task 1. Writing T for the time of consideration and Y for a waiting time distribution with parameter $p=3 / 4$ so that $\mathbf{P}\{Y=k\}=(1 / 4)^{k-1}(3 / 4)$ for $k=1,2, \ldots$ we have $\mathbf{E}\{T\}=\mathbf{E}\{Y\}+(2 / 3) \cdot \mathbf{E}\{T\}$ giving $\mathbf{E}\{T\}=3 \mathbf{E}\{Y\}=4$.

Task 2. $\mathbf{E}\left\{\int_{0}^{t} W(r)^{2} d r+f(t) \mid F_{s}\right\}=\int_{0}^{s} W(r)^{2} d r+\mathbf{E}\left\{\int_{s}^{t}(W(r)-W(s))^{2} d r+(t-s) W(s)^{2}\right.$ $\left.+2 W(s) \int_{s}^{t}(W(r)-W(s)) d r \mid F_{s}\right\}+f(t)=\int_{0}^{s} W(r)^{2} d r+\int_{s}^{t}(r-s) d r-(t-s) W(s)^{2}+0+$ $f(t) \neq \int_{0}^{s} W(r)^{2} d r+f(s)$ for non-random functions f, so the answer is NO.

Task 3. According to exercises 6.7 and 6.8 in the Hsu book $\mu_{X^{\prime}}(t)=\mu_{X}^{\prime}(t)=0$, $R_{X, X^{\prime}}(\tau)=R_{X}^{\prime}(\tau)=-\tau \mathrm{e}^{-\tau^{2} / 2}$ and $R_{X^{\prime}}(\tau)=-R_{X}^{\prime \prime}(\tau)=\left(1-\tau^{2}\right) \mathrm{e}^{-\tau^{2} / 2}$, so that $\operatorname{Var}\left\{X(t)+X^{\prime}(t)\right\}=\mathbf{E}\left\{\left(X(t)+X^{\prime}(t)\right)^{2}\right\}=R_{X}(0)+2 R_{X, X^{\prime}}(0)+R_{X^{\prime}}(0)=1+0+1$.

Task 4. $\mathbf{P}\{X(t)=0\}=\mathbf{P}\left\{t<T_{1}\right\}=\mathrm{e}^{-\lambda t}$ and $\mathbf{P}\{X(t)=n\}=\mathbf{P}\left\{\sum_{i=1}^{n} T_{i} \leq t<\right.$ $\left.\sum_{i=1}^{n+1} T_{i}\right\}=\int_{0}^{t} f_{\sum_{i}^{n} T_{i}}(x) \mathbf{P}\left\{T_{n+1}>t-x\right\} d x=\int_{0}^{t} \frac{\lambda^{n} x^{n-1}}{(n-1)!} \mathrm{e}^{-\lambda x} \mathrm{e}^{-\lambda(t-x)} d x=\frac{(\lambda t)^{n}}{n!} \mathrm{e}^{-\lambda t}$ for $n \geq 1$.

Task 5. We have $S_{X}(\omega)=1$ for $|\omega| \leq a$ and $S_{X}(\omega)=0$ otherwise while $H(\omega)=1$ for $|\omega| \leq b$ and $H(\omega)=0$ otherwise, so that $S_{Y}(\omega)=|H(\omega)|^{2} S_{X}(\omega)=1$ for $|\omega| \leq \min (a, b)$ and $S_{Y}(\omega)=0$ otherwise which corresponds to $R_{Y}(\tau)=\frac{\sin (\min (a, b) \tau)}{\pi \tau}$ for $\tau \in \mathbb{R}$.

Task 6. Writing T for the time under consideration and using that $X(t)$ spends a unit parameter exponentially distributed time at each state we get $\Psi_{T}(\omega)=\Psi_{\exp (1)}(\omega)$. $\left((1 / 3) \cdot 1+(2 / 3) \cdot \Psi_{T}(\omega)\right)$ so that $\Psi_{T}(\omega)=\frac{(1 / 3) \cdot \Psi_{\exp (1)}(\omega}{1-(2 / 3) \cdot \Psi_{\exp (1)}(\omega)}=\frac{1 / 3}{1 / 3-j \omega}$ making T exponentially distributed with parameter $1 / 3$.

