MVE172 Basic Stochastic Processes and Financial Applications Written re-exam Monday 11 April 2022 8.30-11.30

Teacher and telephone jour: Patrik Albin 0317723512
AIDS: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).

Grades: 8, 12 and 16 points for grades 3,4 and 5 , respectively.
Motivations: All answers/solutions must be motivated. Good Luck!

Task 1. Show that if for a discrete time Markov chain state i is recurrent and does not communicate with state j in sense of Hsu book (i.e., $i \nLeftarrow j$), then $p_{i j}=0 . \quad$ (5 points)

Task 2. Let $\{X(t)\}_{t \geq 0}$ be a Wiener process with drift coefficient $\mu \in \mathbb{R}$ and $\operatorname{Var}\{X(1)\}$ $=\sigma^{2}>0$. Find the conditional probability density function of $X(t)$ given that $X(s)=x$ for $0<s<t$. (5 points)

Task 3. Let X_{1}, X_{2}, \ldots be independent random variables with possible values $\{-1,1\}$ and $\mathbf{P}\left\{X_{i}=-1\right\}=q=1-p$ and $\mathbf{P}\left\{X_{i}=1\right\}=p$. Show that $\left\{Y_{n}\right\}_{n=0}^{\infty}$ given by $Y_{n}=(q / p)^{X_{1}+\ldots+X_{n}}$ for $n \geq 1$ and $Y_{0}=1$ is a martingale. (5 points)

Task 4. Consider a taxi station where taxis and customers arrive in accordance with independent Poisson processes with respective rates of one and two per minute. A taxi will wait no matter how many other taxis are present. However, an arriving customer that does not find a taxi waiting leaves. Find (a) the average number of taxis waiting, and (b) the proportion of arriving customers that get taxis.
(5 points)

MVE172 Solutions to written re-exam 11 April 2022

Task 1. If $p_{i j}>0$, then $p_{j i}(n)=0$ for all n as otherwise i and j would communicate. But then the process starting in i has a probability at least $p_{i j}>0$ of never returning to i which contradicts the recurrence of i.

Task 2. We may write $X(t)=\sigma W(t)+\mu t$ where $W(t)$ is a standard Wiener process so that $(X(t) \mid X(s)=x)=(\sigma W(t)+\mu t \mid \sigma W(s)+\mu s=x)=\sigma(W(t)-W(s))+\mu t+$ $(\sigma W(s) \mid \sigma W(s)=x-\mu s)$ so that $(X(t) \mid X(s)=x)$ is $\mathrm{N}\left(x+\mu(t-s), \sigma^{2}(t-s)\right)$-distributed as $W(t)-W(s)$ and $W(s)$ are independent.

Task 3. This is Task 5.105 i the Hsu book which is a solved exercise on the course web page.

Task 4. The number of taxis waiting $\{X(t)\}_{t \geq 0}$ is a $\mathrm{M} / \mathrm{M} / 1$ queueing system with $\lambda=1$ and $\mu=2$. Therefore (a) $\mathbf{E}\{X(t)\}=\lambda /(\mu-\lambda)=1 / 2$ and (b) the proportion of arrival of customers that find at least one taxi waiting $1-p_{0}=\lambda / \mu=1 / 2$.

