MVE172 Basic Stochastic Processes and Financial Applications Written re-exam Tuesday 23 August 2022 2-5 PM

TEACHER AND TELEPHONE JOUR: Patrik Albin 0317723512

AIDS: Either two A4-sheets (4 pages) of hand-written notes (xerox-copies and/or computer print-outs are not allowed) or Beta (but not both these aids).
GRADES: 8, 12 and 16 points for grades 3, 4 and 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Task 1. Consider a discrete time Markov chain $\{X(n)\}_{n=0}^{\infty}$ with state space $\{0, 1, 2, 3\}$, starting value X(0) = 0 and transition probabilities $p_{ij} = 1/4$ for all i, j. Find the expected value of the time it takes the chain to reach the state 3. (5 points)

Task 2. Writing $\{W(t)\}_{t\geq 0}$ for a Wiener process with $\mathbf{E}\{W(1)^2\} = 1$, is there a (nonrandom) function $f:[0,\infty) \to \mathbb{R}$ such that $\{\int_0^t W(r)^2 dr + f(t)\}_{t\geq 0}$ is a martingale with respect to the history of the W-process $F_s = \sigma(W(r): r \in [0,s])$? (5 points)

Task 3. Find the variance of the random variable X(t)+X'(t) when X(t) is a zero-mean WSS process with autocorrelation function $R_X(\tau) = e^{-\tau^2/2}$. (5 points)

Task 4. Let $\{X(t)\}_{t\geq 0}$ be a Poisson process with intensity $\lambda > 0$ and write T_1, T_2, \ldots for the independent exponentially distributed with parameter λ times between its jumps from 0 to 1, from 1 to 2, etc. Then $\sum_{i=1}^{n} T_i$ is a continuously gamma-distributed random variable with probability density function $f_{\sum_{i=1}^{n} T_i}(x) = \lambda^n x^{n-1} e^{-\lambda x} / ((n-1)!)$ for $x \ge 0$. Use this to prove that X(t) is Poisson distributed with parameter λt . (HINT: $\mathbf{P}\{X(t) = n\} = \mathbf{P}\{\sum_{i=1}^{n} T_i \le t < \sum_{i=1}^{n+1} T_i\}.$) (5 points)

MVE172 Solutions to written re-exam 23 August 2022

Task 1. Writing T for the time of consideration and Y for a waiting time distribution with parameter p = 3/4 so that $\mathbf{P}\{Y = k\} = (1/4)^{k-1}(3/4)$ for k = 1, 2, ... we have $\mathbf{E}\{T\} = \mathbf{E}\{Y\} + (2/3) \cdot \mathbf{E}\{T\}$ giving $\mathbf{E}\{T\} = 3 \mathbf{E}\{Y\} = 4$.

Task 2. $\mathbf{E}\{\int_0^t W(r)^2 dr + f(t)|F_s\} = \int_0^s W(r)^2 dr + \mathbf{E}\{\int_s^t (W(r) - W(s))^2 dr + (t-s)W(s)^2 + 2W(s)\int_s^t (W(r) - W(s)) dr|F_s\} + f(t) = \int_0^s W(r)^2 dr + \int_s^t (r-s) dr - (t-s)W(s)^2 + 0 + f(t) \neq \int_0^s W(r)^2 dr + f(s)$ for non-random functions f, so the answer is NO.

Task 3. According to exercises 6.7 and 6.8 in the Hsu book $\mu_{X'}(t) = \mu'_X(t) = 0$, $R_{X,X'}(\tau) = R'_X(\tau) = -\tau e^{-\tau^2/2}$ and $R_{X'}(\tau) = -R''_X(\tau) = (1-\tau^2) e^{-\tau^2/2}$, so that $\operatorname{Var}\{X(t) + X'(t)\} = \mathbf{E}\{(X(t) + X'(t))^2\} = R_X(0) + 2R_{X,X'}(0) + R_{X'}(0) = 1 + 0 + 1.$

Task 4. $\mathbf{P}\{X(t) = 0\} = \mathbf{P}\{t < T_1\} = e^{-\lambda t} \text{ and } \mathbf{P}\{X(t) = n\} = \mathbf{P}\{\sum_{i=1}^n T_i \le t < \sum_{i=1}^{n+1} T_i\} = \int_0^t f_{\sum_i^n T_i}(x) \mathbf{P}\{T_{n+1} > t - x\} dx = \int_0^t \frac{\lambda^n x^{n-1}}{(n-1)!} e^{-\lambda x} e^{-\lambda(t-x)} dx = \frac{(\lambda t)^n}{n!} e^{-\lambda t} \text{ for } n \ge 1.$